An overview of oxygen vacancy dynamics in (1 − x)(Bi(1/2)Na(1/2))TiO3–xBaTiO3 solid solution

(Bi(1/2)Na(1/2))TiO3 (BNT) based ceramics have been the hot topic for a few years because of their multiple functions, from the piezoelectric properties to more recently the electrostatic energy storage performance. However, some basic issues are still unclear, preventing their wide application in real devices. One of them is the underlying conduction mechanism, the interplay of electronic and ionic carriers as a mixed ionic case and the subsequent quantification. This paper deals with the most basic compositions, which are the typical ones from the (1- x)(Bi(1/2)Na(1/2))TiO3-xBaTiO3 (BNT-xBT) phase diagram. The conductivity is primarily investigated by impedance spectroscopy, while different equivalent circuits are applied to different conduction mechanisms. A transition from predominantly ionic to predominantly electronic conduction is revealed to occur with the increase in BaTiO3 concentration. The mixed ionic-electronic conduction in the composition near the morphotropic phase boundary, namely BNT-7%BT, is identified and then quantified. To verify our interpretation of impedance results, dc degradation is, for the first time, conducted in this family of materials, from which the electronic and ionic conductions can be easily separated by accessing the mean time to failure. The successful combination of the two methods enables us to have an overview of how the oxygen vacancy dynamics in the BNT-xBT system epends upon the phase nature or the domain structure.

Files

Metadata

Work Title An overview of oxygen vacancy dynamics in (1 − x)(Bi(1/2)Na(1/2))TiO3–xBaTiO3 solid solution
Access
Open Access
Creators
  1. Zhongming Fan
  2. Clive A. Randall
License In Copyright (Rights Reserved)
Work Type Article
Publisher
  1. Journal of Materials Chemistry C
Publication Date July 22, 2021
Publisher Identifier (DOI)
  1. https://doi.org/10.1039/d1tc02668b
Deposited August 02, 2022

Versions

Analytics

Collections

This resource is currently not in any collection.

Work History

Version 1
published

  • Created
  • Added Fan-J-MatChemC-July2021.pdf
  • Added Creator Zhongming Fan
  • Added Creator Clive A. Randall
  • Published
  • Updated Work Title, Description Show Changes
    Work Title
    • An overview of oxygen vacancy dynamics in (1- x)(Bi<sub>1/2</sub>Na<sub>1/2</sub>)TiO<sub>3</sub>-x BaTiO<sub>3</sub>solid solution
    • An overview of oxygen vacancy dynamics in (1- x)(Bi1/2Na1/2)TiO3 (BNT) solid solution
    Description
    • <p>(Bi1/2Na1/2)TiO3 (BNT) based ceramics have been the hot topic for a few years because of their multiple functions, from the piezoelectric properties to more recently the electrostatic energy storage performance. However, some basic issues are still unclear, preventing their wide application in real devices. One of them is the underlying conduction mechanism, the interplay of electronic and ionic carriers as a mixed ionic case and the subsequent quantification. This paper deals with the most basic compositions, which are the typical ones from the (1- x)(Bi1/2Na1/2)TiO3-xBaTiO3 (BNT-xBT) phase diagram. The conductivity is primarily investigated by impedance spectroscopy, while different equivalent circuits are applied to different conduction mechanisms. A transition from predominantly ionic to predominantly electronic conduction is revealed to occur with the increase in BaTiO3 concentration. The mixed ionic-electronic conduction in the composition near the morphotropic phase boundary, namely BNT-7%BT, is identified and then quantified. To verify our interpretation of impedance results, dc degradation is, for the first time, conducted in this family of materials, from which the electronic and ionic conductions can be easily separated by accessing the mean time to failure. The successful combination of the two methods enables us to have an overview of how the oxygen vacancy dynamics in the BNT-xBT system depends upon the phase nature or the domain structure. </p>
    • (Bi1/2Na1/2)TiO3 (BNT) based ceramics have been the hot topic for a few years because of their multiple functions, from the piezoelectric properties to more recently the electrostatic energy storage performance. However, some basic issues are still unclear, preventing their wide application in real devices. One of them is the underlying conduction mechanism, the interplay of electronic and ionic carriers as a mixed ionic case and the subsequent quantification. This paper deals with the most basic compositions, which are the typical ones from the (1- x)(Bi1/2Na1/2)TiO3-xBaTiO3 (BNT-xBT) phase diagram. The conductivity is primarily investigated by impedance spectroscopy, while different equivalent circuits are applied to different conduction mechanisms. A transition from predominantly ionic to predominantly electronic conduction is revealed to occur with the increase in BaTiO3 concentration. The mixed ionic-electronic conduction in the composition near the morphotropic phase boundary, namely BNT-7%BT, is identified and then quantified. To verify our interpretation of impedance results, dc degradation is, for the first time, conducted in this family of materials, from which the electronic and ionic conductions can be easily separated by accessing the mean time to failure. The successful combination of the two methods enables us to have an overview of how the oxygen vacancy dynamics in the BNT-xBT system epends upon the phase nature or the domain structure. </p>
  • Updated Work Title, Description, Publication Date Show Changes
    Work Title
    • An overview of oxygen vacancy dynamics in (1- x)(Bi1/2Na1/2)TiO3 (BNT) solid solution
    • An overview of oxygen vacancy dynamics in (1 x)(Bi(1/2)Na(1/2))TiO3–xBaTiO3 solid solution
    Description
    • (Bi1/2Na1/2)TiO3 (BNT) based ceramics have been the hot topic for a few years because of their multiple functions, from the piezoelectric properties to more recently the electrostatic energy storage performance. However, some basic issues are still unclear, preventing their wide application in real devices. One of them is the underlying conduction mechanism, the interplay of electronic and ionic carriers as a mixed ionic case and the subsequent quantification. This paper deals with the most basic compositions, which are the typical ones from the (1- x)(Bi1/2Na1/2)TiO3-xBaTiO3 (BNT-xBT) phase diagram. The conductivity is primarily investigated by impedance spectroscopy, while different equivalent circuits are applied to different conduction mechanisms. A transition from predominantly ionic to predominantly electronic conduction is revealed to occur with the increase in BaTiO3 concentration. The mixed ionic-electronic conduction in the composition near the morphotropic phase boundary, namely BNT-7%BT, is identified and then quantified. To verify our interpretation of impedance results, dc degradation is, for the first time, conducted in this family of materials, from which the electronic and ionic conductions can be easily separated by accessing the mean time to failure. The successful combination of the two methods enables us to have an overview of how the oxygen vacancy dynamics in the BNT-xBT system epends upon the phase nature or the domain structure. </p>
    • (Bi(1/2)Na(1/2))TiO3 (BNT) based ceramics have been the hot topic for a few years because of their multiple functions, from the piezoelectric properties to more recently the electrostatic energy storage performance. However, some basic issues are still unclear, preventing their wide application in real devices. One of them is the underlying conduction mechanism, the interplay of electronic and ionic carriers as a mixed ionic case and the subsequent quantification. This paper deals with the most basic compositions, which are the typical ones from the (1- x)(Bi(1/2)Na(1/2))TiO3-xBaTiO3 (BNT-xBT) phase diagram. The conductivity is primarily investigated by impedance spectroscopy, while different equivalent circuits are applied to different conduction mechanisms. A transition from predominantly ionic to predominantly electronic conduction is revealed to occur with the increase in BaTiO3 concentration. The mixed ionic-electronic conduction in the composition near the morphotropic phase boundary, namely BNT-7%BT, is identified and then quantified. To verify our interpretation of impedance results, dc degradation is, for the first time, conducted in this family of materials, from which the electronic and ionic conductions can be easily separated by accessing the mean time to failure. The successful combination of the two methods enables us to have an overview of how the oxygen vacancy dynamics in the BNT-xBT system epends upon the phase nature or the domain structure. </p>
    Publication Date
    • 2021-08-28
    • 2021-07-22
  • Updated