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Abstract—This paper addresses the problem of radar wave-
form design for imaging targets in a cluttered environment. A
multistatic radar scenario is considered for sparse and random
sensor positions. The target impulse response (TIR) is modeled
using the simulated frequency response of a buried metallic mine,
and the clutter is modeled using the compound Gaussian (CG)
distribution. We explore novel waveform design techniques with
respect to the Mutual Information (MI) criterion based on CG
clutter. The first method presents a waveform that exploits the
CG distribution of the scene reflectivity function when projected
onto a sparse basis. This is compared to the second method,
called the target-specific approach that uses knowledge of the
target and clutter frequency response to optimize a matched
illumination waveform. In both cases, the Taguchi and particle
swarm optimization (PSO) solvers are employed for MI based
waveform design optimization. To validate and compare the
effectiveness of the optimized waveforms, the resulting scene
reflectivity function is estimated using the sparsity-driven reg-
ularization radar imaging method. Our experimental results
demonstrate that both waveform optimization techniques result
in significantly better image reconstruction performance than the
traditional LFM waveform; and that the target-specific approach
additionally suppresses clutter information in the scene.

Index Terms—Waveform Optimization, Mutual Informa-
tion, Multistatic Imaging, Compound Gaussian, Taguchi algo-
rithm, Particle Swarm Optimization, Sparsity-Driven Regular-
ized Radar Imaging

NOMENCLATURE

TIR, CIR Target/Clutter Impulse Response
CG Compound Gaussian
MI Mutual Information
PSO Particle Swarm Optimization
LFM Linearly Frequency Modulated
PSD Power Spectral Density
TS, non-Ts Target Specific/non-Target Specific
TFR, CFR Target/Clutter Frequency Response
g Vectorized Scene
c Wavelet Coefficient Vector
Σw Gaussian Covariance Matrix
ΦΦΦ Wavelet Dictionary
ΨΨΨ Radon transform of Wavelet Dictionary
x Transmit Waveform
pθi(t) Impulse Response of Scene
z Compound Gaussian Multiplier
X Transmit Convolution Matrix
y Received Signal Vector
Sg/c(f) Target/Clutter Power Spectral Density

I. INTRODUCTION

High range resolution (HRR) imaging techniques such as
strip-mode/spotlight-mode synthetic aperture radar (SAR), in-
verse SAR (ISAR), interferometric SAR (IFSAR), multistatic
imaging and others provide inherent advantages over optical
methods. The advantages are evident in heavily cluttered
environments such as heavy vegetation (forests, or long grass)
and ground penetrating applications such as nondestructive
subsurface imaging [1]. In this paper, waveform optimiza-
tion techniques for multistatic radar imaging are presented.
For scene surveillance, multistatic radar provides illumination
from multiple different transmit receive-pairs, allowing for
improved coverage of potential targets and potentially useful
information for target recognition.

In mine detection applications, radar returns often contain
unwanted and waveform dependent reflections from the envi-
ronment, in turn restricting the radars ability to detect and
image targets. Waveform design seeks to optimally probe
the environment to maximize target return information at the
receiver to mitigate these effects. This channel can be modeled
as a linear time-invariant (LTI) system as the effects of clutter
on the waveform are linear [2]. Therefore, by viewing the
surrounding environment as an LTI system, the problem is
viewed as solving for the upper bound of the channel capacity
and the change in information between the input and output
is measured using information-theoretic metrics. Therefore,
extracting target information is posed as maximizing the mu-
tual information between the quantity of interest and received
waveform conditioned upon the input; a transmit signal.

Mutual information (MI) for radar waveform design and
imaging has received a lot of attention [3]–[9]. The authors of
[10] use MI for multiple-input multiple-output (MIMO) radar
waveform design. They show that maximizing the MI at the
receiver for a random TIR is equivalent to minimizing the
minimum mean square error (MMSE) in estimating the TIR. In
[11], MI is applied to waveform optimization where the target
ensemble is modeled as a Gaussian mixture model (GMM).
The concept of dual-MI is used in [12] to maximize and
minimize the TIR and clutter impulse response (CIR) returns
respectively. The optimization of mutual information has also
seen use in the coexistence of radar and communication
systems. More recently, the mutual information is derived for a
target ensemble modeled as a Gaussian mixture in the context
of matched illumination [13]. However, it is still unclear
whether maximizing mutual information at the receiver is an
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optimal solution to waveform design when compared to other
metrics. The authors of [14] aim to answer this question by
providing a relationship between mutual information, signal-
to-noise ratio (SNR), and the Kullback-Leibler divergence.

In this paper, two methods of waveform optimization for
HRR imaging using MI are presented and named the non-
target specific (non-TS), and target specific (TS) waveform
optimization procedures.

The first method presents a procedure that exploits the CG
distribution of the radar image as a prior for modelling the
scene response. The MI between the received signal and the
CG image vector is derived to form the optimal transmit
waveform. The first source of novelty in this method is the
analytical characterization of the mutual information (MI) for a
vector described by the compound Gaussian distribution (CG).
In [15], [16], it was shown empirically that with a sparse
wavelet representation of natural scenes, a CG distribution is a
good fit to model the image vector. Therefore, by defining the
scene reflectivity function as the product of the inverse of a
2-dimensional (2D) wavelet basis and corresponding wavelet
coefficients, the CG distribution models these coefficients. The
second source of novelty lies in using the CG statistics of
the scene to the problem of waveform optimization. Here, the
work makes a systematic application of the developed tools to
imaging targets buried underground.

A third source of novelty is the developed theory for both
target specific (TS) and non-TS waveform optimization for
radar imaging. The authors provide a rigorous framework by
which the waveforms are optimized for the case of multistatic
imaging. These algorithms are then tested against a linearly
frequency modulated waveform.

The second waveform optimization procedure extends the
method to specifically maximize target information at the
receiver using the theory of matched illumination. In the theory
of matched illumination, the PSD of the transmit waveform
is matched to the target response to maximize target returns
at the receiver. This is achieved by weighting the available
power toward the target frequencies. The reduced power at the
remaining frequencies aims to suppress clutter effects on the
channel. In [17]–[19], the concept of matched illumination for
the maximization of the signal-to-interference-and-noise-ratio
(SINR) is considered for colored and waveform dependent
clutter/interference. In [20], the theory of matched illumination
is used to optimize a full-polarization waveform and corre-
sponding receiver impulse response for non-zero clutter.

The power spectral density (PSD) is used to differentiate
between clutter and target returns due to its ability to describe
how power is distributed over frequency. Therefore, the fre-
quency response extracts distinguishing frequency information
to characterize the each response.

Since the scattering effects of targets and clutter operate
linearly on the channel, designing a PSD that maximizes
the target information at the receiver is synonymous with
maximizing the Shannon-Hartley capacity. We use the target
frequency response (TFR) and the clutter frequency response
(CFR) to do this. The CG distribution provides a model for
the overall measured scene reflectivity function and serves as
a rich model for high resolution clutter. The coherent detection

of targets in CG clutter has been explored in [21], which mod-
els the scattering of electromagnetic waves interacting with the
scene. In [22], [23], it is shown that clutter scenes generally
possess this structure. Therefore, the clutter is modeled as
being CG. The mine is modeled using the simulated frequency
response of a metallic mine buried 2 cm beneath the surface.

The assumption of a known TFR implies that an estimation
of the target impulse response (TIR) exists. Target estimation
is often done using a Kalman filter [24]. Should the assumption
fail, signal mismatch may occur. The authors of [25] aim to
tackle this issue and provide a method for estimating the target
impulse response.

A novel method of applying spectrally matched illumination
to radar imaging is presented. To accomplish this, the MI cost
functions are optimized using Taguchi [26] and particle swarm
optimization (PSO) techniques [27]. The MI is conditioned
upon the unknown transmit waveform which is found using
the optimization algorithms. A total power constraint is placed
upon the waveforms. This ensures that the power of the
optimized waveform coincides with the transmit pulse design
specifications and is fairly compared. Once the waveforms are
found, a constant modulus is enforced using the method of
projections onto convex sets (POCS) [28]. With a constant
modulus, the system operates at peak power efficiency at all
times.

To validate our analysis, the optimized waveforms are
transmitted using the multistatic radar scenario. We estimate
the sparse image vector using sparsity-driven regularization
radar imaging, and the reconstruction performance is measured
using the following metrics: structural similarity (SSIM) index,
SNR, peak-SNR (PSNR), and mean square error (MSE).

In Section II, we present the multistatic imaging scenario.
In Section III, we present the scene reflectivity function.
Section IV presents the mutual information. Section V presents
the optimal waveforms. Section VI presents the algorithms.
Section VII presents the simulation parameters. Section VIII
presents the results. Our conclusions are in Section IX.

II. SYSTEM SETUP

The radar system model is first defined for the case of a
single monostatic radar transmitting in the environment. The
defined model is then extended to the multistatic case of M
sensors for radar imaging.

A. Radar Model

A single monostatic radar is modeled as transmitting a
signal, x(t) ∈ RN , along the range direction, r, that cuts
through the center of the scene at a positive angle, θ, from
the cross-range axis, u.

An energy constraint E = Tρ is placed on the transmit
waveform such that

‖x‖2 ≤ Tρ, (1)

where ρ is the average power per sample and T is the duration
of the signal. The complex target reflectivity function, is
defined as g(u, v) ∈ C. With this formulation, the return at
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time, t, from an image point (u0, v0) at a range, r0, is defined
as

yr0(t) = g(u0, v0)x

(
t− 2r0

νp

)
, (2)

where 2r0/νp is the two-way time delay of the waveform at
a range, r0 [29], and νp is the speed of wave propagation.

From (2), the reflectivity g(u0, v0) is defined as the integral
over the radar returns from the set of all points along the line
perpendicular to the range location, r0, and written as

yr0(t) = Rθi,r0 {g(u, v)}x
(
t− 2r0

νp

)
. (3)

Rθi,r0
{
g(u, v)

}
: RN → R is the Radon transform [30,

Chapter 2] of g(u, v) at angle, θi, and range location, r0, which
corresponds to the integral over all entries of g(u, v) that lie
along the line, r = r0, (also known as an iso-range contour).
To form the full receive vector, the returns from all L ranges
at angle, θi, within the image is written as

y(t) =

∫
r

Rθi,r {g(u, v)}x
(
t− 2r

νp

)
dr (4)

which is recast as

y(t) = pθi(t) ∗ x(t) (5)

where ∗ is the convolution operator and pθi(t) =
Rθi,k

{
g(u, v)

}
to shorten notation. This system equation is

interpreted as the response to an LTI system with input, x(t),
impulse response, pθi(t), and output, y(t). The received signal
y(t) is then sampled at the receiver.

The impulse response of the scene, pθi(t), provides a model
for the interaction of the transmit waveform with the sensing
environment. Given, y(t), the goal of this paper is to estimate
the scene impulse response, pθi(t), by optimizing the sensing
waveform, x(t). The information contained in the received
signal, y(k), that describes the scene impulse response, pθi(t),
is obtained by measuring the mutual information between
them. Equation (5) underlies the system model.

B. Multistatic Radar Model

The model is extended to a scenario in which two separate
radars, Radar i and Radar j, are present as shown in Figure 1.
The radars transmit above the ground at an elevation angle of
45 degrees. Figure 1 portrays a setup known as multistatic
radar in which one radar transmits a waveform and both
receive the returns, which are jointly processed to construct
the scene reflectivity function. This structure holds when the
model is extended to the multi-static case with M radars in
which one radar transmits and all receive.

Given that Radar i transmits, the received signal at Radar
i, yi ∈ RN+L−1, is written using (5) as

yi = Ai,ipθi ∗ x + ni, (6)

where x = [x(1), . . . , x(N)]
T , Ai,i is a path loss coefficient,

and ni is additive Gaussian noise such that ni ∼ N (0, σ2
nI)

where σ2
n is the variance.

To describe the return at Radar j, the response at Radar j
due to Radar i is approximated as the response of an imaginary

Fig. 1. Bistatic system in which two radars are available. A multistatic radar
system is assumed in which one transmits and both receive. This is extended
to M radars.

radar placed at the bistatic bisector of the two radars [31],
[32]. This phenomenon is also studied in [33]. The bistatic
bisector is the angle that divides the bistatic angle in half—
this is denoted as θb = 1

2 (θi − θj). With this approximation,
the return at Radar j is written as

yj = Ai,jpθb ∗ x + nj . (7)

To exploit the CG distribution of the scene reflectivity func-
tion, the formulation of the system model will now incorporate
the sparse structure of the image. First, the matrix version of
the image G is defined as

G ∈ RIr×Ic : gi,j = g(i, j), (8)

where Ir is the number of rows in the image and Ic is the
number of columns, then we write G as

g̃ = vec(G) = ΦΦΦc (9)

where ΦΦΦ ∈ RL×D is a dictionary constructed of D vectorized
wavelet atoms used as a basis and c ∈ RD is a random vector
modeling the scene reflectivity function. As mentioned, the
wavelet coefficient image vector, c, is seen to be distributed
as a CG, which implies

c = zw, (10)

where w is a Gaussian vector such that w ∼ N (0,ΣΣΣw)
where ΣΣΣw is the covariance matrix. Because the Gaussian
scale mixture distribution is defined as an integral over, z, it is
therefore continuous with respect to z. For the special case of
a finite mixture of Gaussian distributions shown in (10), the
multiplier, z, is a non-negative, scalar, and discrete random
variable with probability mass function (PMF) pZ(z).

The overall set of wavelet coefficients is partitioned into
subsets commonly called neighbourhoods. We assumed that
each neighborhood has a common structure, as is common in
image processing literature, and thus are similarly distributed.
Therefore, the covariance matrix is constructed as a block
diagonal matrix with copies of a neighborhood covariance
matrix, ΣΣΣNbr, on the diagonal [34], [35].

The neighborhood covariance matrix ΣΣΣNbr is explicitly
computed from training data or is known a priori. The PMF
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of the scalar mixing random variable, z, is computed explicitly
from training data using maximum-likelihood techniques [15].

Using the sparse CG model (6) is rewritten as

yi = (Ai,iRθiΦΦΦc) ∗ x + ni, (11)

where, Rθi , is the Radon transform at angle θi written as
a matrix operation because it is a linear operator. Defining
the Radon transform of the sparse wavelet dictionary as ΨΨΨi =
Ai,iRθiΦΦΦ, and form the convolution matrix X ∈ R(N+L−1)×L

as

X =


x(1) 0 · · · 0
x(2) x(1) 0 · · · 0

...
. . .

...
0 · · · 0 x(N) x(N − 1)
0 · · · 0 x(N)

 , (12)

the returns at Radars i and j are written as

yi = XΨΨΨic + ni, (13)
yj = XΨΨΨjc + nj . (14)

The convolution matrix in (12) is sparse, where the non-
zero entries are contained within an uppermost and lowermost
diagonal. We take advantage of these properties using sparse
coding which reduces the computational complexity and en-
ables us to perform compressive imaging. This is detailed in
Subsection VII-A.

The model in (14) is extended to other radar systems in
the multistatic array. For a total of M radar systems with only
Radar i transmitting, the total responses are stated as a system
of equations such as

y = XΨΨΨc + n, (15)

where X is a block diagonal matrix with M copies of X down
the diagonal, and

ΨΨΨ = [ΨΨΨT
1 ,ΨΨΨ

T
2 , . . . ,ΨΨΨ

T
M ]T ,

n = [nT1 ,n
T
2 , . . . ,n

T
M ]T ,

where n ∼ N (0, σ2
nI).

Upon reception, estimating the image vector c, from y,
is well-posed by minimizing a regularized least squares cost
functional defined as

J(c) = ‖y −XΨΨΨc‖22 + λ‖c‖pp (16)

where the sparsity of c is achieved by setting p = 1 and the
parameter λ ≥ 0. The estimated image vector ĉ that minimizes
(16) is projected onto the sparse wavelet basis to form the
estimated scene reflectivity function, g̃est = Φĉ.

III. SCENE REFLECTIVITY MODELING

The image impulse response pθi , of the scene is modeled by
assuming a metallic mine buried 2 cm beneath a rough and dry
surface. The frequency dependent radar cross section (RCS)
was simulated using the Army finite-difference time-domain
(AFDTD) algorithm [36]. The in-phase and quadrature-phase
frequency responses are shown in Figure 2.

The rough and dry surface is modeled as a CG distribution.
This model is well suited for large sporadic variations in the re-
flected signal from rough surface scatterers [22]. To model the
CFR, the interference model from [37] is borrowed; however
the Gaussian interference is replaced with the more accurate
CG distribution after the parameters of the distribution are
estimated from the scene.

Fig. 2. Shown are the target and clutter frequency responses including their
linear combination as the overall scattering response of the scene. The CFR
shows the CG nature of the clutter. The TFR and CFR are plotted over the
3-dB bandwidth of the transmit waveform.

A common technique in the literature is to assume that the
impulse response of a target is given by a complex Gaussian
random variable. In [2, p. 48], the authors state in the case
that an extended target is not known a priori, it makes sense
to model the TIR using a finite-energy random process, as the
distribution of scattering centers for an extended target are well
modeled using a Gaussian random process. However, it can be
shown that with natural scenes, the statistics (when represented
on a wavelet basis) do not behave in a Gaussian manner, but is
in fact characterized closely as a CG [15], [16]. In [16] it was
also shown that radar images follow the CG distribution more
closely than the Gaussian distribution. This fact is exploited
to characterize the scene reflectivity function when deriving
the MI.

IV. WAVEFORM DESIGN USING MUTUAL INFORMATION

A. Waveform 1: Non-Target Specific

This section derives the non-target specific waveform using
knowledge of the CG distribution as a prior to model the
scene reflectivity function. The MI between the complete set
of received signals, y = [yT1 ,y

T
2 , . . . ,y

T
M ]T , and the image

vector, c, given the transmit waveform, x is derived. The
conditional MI is denoted by I(y; c|x). Using the signal model
in Section II, the conditional mutual information can be written
as

I(y; c|x) = h(y|x)− h(y|c,x), (17)

where h(·) denotes differential entropy [38, Chapter 9]. The
second term on the right-hand side, h(y|c,x), is reduced to
the well-known Gaussian differential entropy

h(y|c,x) = h(n) =
1

2
K log

(
2πeσ2

n

)
(18)
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where the constant K = M(N + L − 1). As (18) has no
dependence on the transmit waveform, it has no effect on the
solution. Thus, for optimization purposes this term is ignored
and the focus shifts to the first term on the right hand side of
(17).

The solution to the differential entropy, h(y|x), that remains
waveform dependent (in (15)) is derived. Using the CG model
of (10) for c in (17) yields

y = zXΨΨΨw + n. (19)

Since the multipliers in the first term on the right hand side
are not random, XΨΨΨw is still a Gaussian vector. Denoting
this quantity as Q = XΨΨΨw gives a new random vector with
covariance matrix

cov(Q,Q) = E
[
QQT

]
= XΨΨΨΣΣΣwΨΨΨTX

T
(20)

and the Gaussian vector is distributed as

Q ∼ N
(
0,XΨΨΨΣΣΣwΨΨΨTX

T )
. (21)

The system model is then rewritten as

y = zQ + n, (22)

which is the sum of a CG and a Gaussian random variable.
Thus, rewriting the expression for MI results in

I(y; c|x) = h(zQ + n|x)− 1

2
K log

(
2πeσ2

n

)
. (23)

Although Gaussian functions have a closed form differential
entropy as shown in (18), there is no closed form solution for
the differential entropy of the sum of a Gaussian and a CG.

This is due to the fact that differential entropy is defined as
(in the discrete case) h(x) = −

∑∞
−∞ f(x) log f(x). There-

fore the differential entropy of this vector is the logarithm of
the sum of exponentials [39].

From [39], upper and lower bounds

hl(x) ≤ h(zQ + n|x) ≤ hu(x) (24)

for the h(zQ + n|x) are found and are used to bound the MI,
(23). The upper bound hu, is defined (from [39]) for h(zQ +
n|x) as

hu(x) ,
∑
i

wi ·
(
− logwi +

1

2
log
(
(2πe)D|Ci|

))
(25)

where wi = pz(zi) and Ci = z2iXΨΨΨΣΣΣwΨΨΨTX
T

+ σ2
nI is the

covariance matrix of zQ + n.
Similarly, the lower bound, hl(x) is defined as

−
∑
i

wi · log

(∑
j

wj
[
(2π)D/2|Ci + Cj |

]−1/2)
(26)

where Ci and Cj are defined as in (25) but summed over
different indices. Appendix A shows the derivation of (26)
using [39] as it is less obvious.

The upper and lower bounds on the differential entropy
shown in (25) and (26), respectively, then bound the condi-
tional mutual information (17) between the received signal
vector and the image vector. Therefore, the optimization of
the waveform optimized depends on the optimization of the

bounds as shown in in Section V-A and Section V-B for the
upper and lower bounds, respectively. The resulting target
reconstruction using these waveforms is shown in Section
VIII-A.

B. Waveform 2: Target Specific

This section presents the matched illumination techniques
used to form a target specific (TS) waveform. The TS wave-
form takes into account the TFR and CFR that make up the
scene reflectivity function.

Since maximizing the MI is posed as a channel capacity
problem, matched illumination waveform design makes use
of the Shannon-Hartley theorem. From this theorem, maxi-
mizing the mutual information is reformulated in terms of the
signal-to-interference-plus-noise ratio (SINR). The conditional
mutual information in the frequency domain is written as [5]

I(y; g|x) = T

∫
B

log

(
1 +

2|X(f)|2Sg(f)

TPn(f) + 2|X(f)|2Sc(f)

)
df.

(27)
Here, Sg and Sc denote the power spectral density of the
target and clutter respectively. This is viewed as optimizing
the signal-to-interference-plus-noise ratio (SINR) where our
degree of freedom is the power spectral density of the transmit
waveform, |X(f)|2.

V. WAVEFORM OPTIMIZATION

The optimization of the MI defined in Section IV is pre-
sented. The bounds on the mutual information based cost
function are explicitly given in Section V-A and Section
V-B respectively. The convexity of each bound is proven by
decomposing it as a convex combination of elementary convex
functions; and by exploiting the positive definiteness of the
relevant Hessian matrix.

A. Optimization of Upper Bound, hu(x)

The transmit waveform, xu, that maximizes the upper bound
on the MI (25), is presented. The objective is defined as

xu = argmax
x:‖x‖2≤Tρ

hu(x). (28)

Inserting the expression hu(x) and ignoring constants, (28) is
rewritten as

xup = argmax
x:‖x‖2≤Tρ

∑
i

wi log det (Ci). (29)

Since there is a one-to-one correspondence of the waveform,
x, and the convolution matrix, X, (29) is expanded as

Xup =

argmax
X:‖X‖2F≤LMNρ

∑
i

wi log det
(
z2iXΨΨΨΣΣΣwΨΨΨTX

T
+ σ2

nI
)
(30)

This upper bound is concave in X. This is shown by
applying the Cholesky decomposition to ΣΣΣw = DwDT

w since
covariance matrices are at least positive semi-definite. Using
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this and Sylvester’s determinant theorem [40], the objective
function (30) is rearranged (shown in Appendix B) to get∑

i

wi log det

(
z2i
σ2
n

DT
wΨΨΨTX

T
XΨΨΨDw + I

)
. (31)

Therefore, the log-determinant is concave as it depends on the
positive quantity X

T
X, [41]. Defining RX = X

T
X, as the

main variable for optimization the upper bound is concave in
RX and (31) is rewritten as

argmax
RX:tr(RX)≤LMNρ

∑
i

wi log det

(
z2i
σ2
n

DT
wΨΨΨTRXΨΨΨDw + I

)
.

(32)
RX is a block diagonal matrix where each of the M identical
blocks are RX = XTX. Therefore, to find the optimal
waveform we show that RX is a matrix of autocorrelation
values in observation 1.

Observation 1. The transmit convolution matrix as a function
of length N sequence x, and a length L impulse response is
defined as C(x, L) ∈ R(N+L−1)×L. Therefore, the Hermitian-
Toeplitz autocorrelation matrix RX = C(x, L)TC(x, L) ∈
RL×L is written as

RX =


r0 r1 · · · rL−1
r1 r0 · · · rL−2
...

. . .
...

rL−1 rL−2 · · · r0

 . (33)

Since the autocorrelation function of x is defined as

r(τ) =

∫ T

0

x(t)x(t− τ)dt, (34)

where x(t) is nonzero only on the interval 0 ≤ t < T , the
entries of, RX ∈ RL×L, are expressed as rij = r(τ) where
τ = i− j.

The proof is shown in Sub-appendix C.A. Therefore, build-
ing on observation 1, extracting x from ΓΓΓ is given in corollary
1.

Corollary 1. Given a Hermitian, Toeplitz, and positive
semidefinite matrix RX ∈ RL×L, a convolution matrix
C(x, L) that satisfies RX = C(x, L)TC(x, L) is given by
C(x0, L) where x0 is defined as

x0 = F−1
{√
F {r}

}
, (35)

where r ∈ RN is an autocorrelation sequence built from RX

and F{·} is the discrete Fourier transform. Note that it is
assumed that N > L, and r is zero-padded to be of length
2(N − 1) + 1.

The proof is shown in Sub-appendix C.B. Therefore, the
overall optimization problem is written as in Lemma 1.

Lemma 1. The block diagonal transmit waveform autocorre-
lation matrix, RX = X

T
X, that maximizes the upper bound

on mutual information, hup(x), is found using the following
convex program,

argmax
∑
i

pz(zi) log det

(
z2i
σ2
n

DT
wΨΨΨTRXΨΨΨDw + I

)
.

such that tr(RX) ≤ LMNρ,
RT

X = RX,
RX Toeplitz,

RX � 0.
(36)

Proof. Follows from Observation 1 and Corollary 1.

B. Optimization of Lower Bound, flow(x)

For completeness, the lower bound on mutual information
is be presented. Due to a similar structure, most of this
optimization will follow the same pattern as optimization of
the upper bound in the preceding section. Rewriting the lower
bound on mutual information, (26), while ignoring constants
gives

−
∑
i

wi log

∑
j

wj [det (Ci + Cj)]
−1/2

 . (37)

Expanding out the inside of the log(·) using Ci defined in
(25) gives∑

j

wj

[
det
((
z2i + z2j

)
XΨΨΨΣΣΣwΨΨΨTX

T
+ 2σ2

nI
)]−1/2

. (38)

Using the Cholesky decomposition and Sylvester’s determi-
nant theorem as in (30), (38) is equivalent to

∑
j

wj

[
det

(
z2i + z2j

2σ2
n

DT
wΨΨΨTRXΨΨΨDw + I

)]−1/2
(39)

Since the convexity of the lower bound (39) is less obvious,
the following Lemmas are presented.

Lemma 2. Let f(t) be a twice-differentiable, real function
that takes only non-negative values (i.e., f(t) ≥ 0) and whose
derivatives satisfy the following inequality,

(1 + λt+ f (t)) f ′′(t)− f ′(t)− λ ≤ 0, (40)

where λ > 0. Then, the following function, g(t), is concave in
t ≥ 0,

g(t) = log(1 + λt+ f(t)). (41)

The proof is shown in Sub-appendix D.A. Using the preceding
lemma, the following result is shown.

Lemma 3. Given a discrete non-negative random variable z
with associated pmf pz(z) and constants d`,j ≥ 0, λ` ≥ 0
for ` = 1, 2, . . . , D, the following function, h(t), is convex in
t ≥ 0,

h(t) = log

∑
j

pz(zj)

[
z2Dj

D∏
`=1

[1 + d`,j + λ`t]

]−1 .

(42)

The proof is shown in Sub-appendix D.B.
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Lemma 4. The function, f(X) : RD×D → R

f(X) = −
∑
i

pz(zi)·

log

∑
j

pz(zj)
[
det(I + (z2i + z2j )X)

]−1 (43)

is concave for a positive semidefinite X.

The proof is shown in Sub-appendix D.C. Therefore, as per
Lemma 4 it can be seen that the lower bound is convex.

C. Optimization of Target Specific Waveform

To form the TS waveform, we use the matched illumination
techniques presented in Section IV-B. The transmit waveform
that maximizes the TS mutual information of (27) is presented.
The TS waveform is optimized for a known target response,
and the clutter is described as being of the CG nature. Using
this, the cost function (27) is optimized to find the optimal
waveform. The TS matched illumination technique optimizes
the PSD, |X(ω)|2, of the transmit waveform. Therefore, a time
domain waveform with the desired PSD must be found.

By optimizing the power spectrum of the waveform,

X(ω) = |X(ω)| exp (j∠X (ω)), (44)

the phase function φ = ∠X(ω) remains arbitrary. Therefore,
designing a waveform that fulfils both the constant envelope
and power spectrum requirements is turned into one of em-
bedding the optimized spectrum into the phase of a time series
signal. This is done using the ‘Projections onto Convex Sets’
(POCS) method [42].

This method finds a point that is either closest to, or within
the intersection of, two or more sets by alternating projection
operators between the sets. Convergence is guaranteed if
all sets are convex, and their intersections are non-empty.
However, this is not the case for waveform design [43].

Both the set of all signals whose Fourier transform has
the same magnitude, C, and the set of constant envelope
signals, D, do not form convex sets. However, using projection
operators, a point, xk, is projected to a nearest neighbor within
each set. The best point is the one with the smallest distance
from all sets. The method is defined for an initialization signal,
x0, as

xk+1 = PC(yk), yk = PD(xk), k = 0, 1, 2, ... (45)

where the projection operators, PC , and, PD, define the
projections onto the set of Fourier transform magnitudes and
constant envelope signals, respectively, over the iterations, k.
The projection operators are defined as

PD(xk) = F−1
[
Sopt exp j(∠F{xk})

]
PC(yk) = u exp j(∠yk).

(46)

where Sopt is the given PSD. This method is seen as a phase-
retrieval technique and produces a phase-coded waveform. The
waveform, x, generated using the POCS is thus optimized by
finding the optimal phase coding, y. This algorithm can be
initialized by defining, x0 to be a phase-coded waveform with
each sample chosen to have a random phase in [−π, π].

As both C and D are not convex sets, points that minimize
the distance may not be unique. Therefore, it is necessary to
develop tolerance and convergence criteria to ensure that the
algorithm converges asymptotically as k → ∞. The MSE is
defined as

MSE =
1

N

N∑
n=1

∥∥Sopt −F
{
Rx

}∥∥2
2

(47)

where Rx is the autocorrelation of xk+1 in (45), and F is the
Fourier transform operator. The distance between the two sets
is said to be been minimized based upon this MSE. If

MSE < ε (48)

for a certain K̂ number of iterations where ε is a set tolerance,
a point, x∗, is said to minimize the distance between the two
sets. For a proof on the convergence of projections onto convex
sets see [44].

The resulting point, x∗, is a constant envelope signal, which
approximates the optimized power spectrum. Although the
initialization signal, x0, can be random with phase in [−π, π],
it was seen that the lowest MSE at convergence occurred when
the initial point was an amplitude modulated LFM waveform.

VI. OPTIMIZATION ALGORITHMS

The complete optimization procedure from transmit to re-
ceive is shown for both the CG and TS based approaches de-
scribed in the previous section. Algorithm 1 shows the closed
loop procedure for the optimization of the CG waveform.

Algorithm 1 CG Waveform Optimization
Inputs: ΨΨΨ, g̃, λ,M,N
1. Estimate Clutter Statistics

c = ΨΨΨT g̃← project scene onto wavelet basis
Σ̂ΣΣw = E

[
cNcTN

]
← estimate covariance

z =

√
cTNΣ̂ΣΣ

−1
w cN/N ← find CG multipliers

ΣΣΣw = E
[
cNcTN/z

2
]

2. Optimize Waveform
Optimize (36) using Algorithm 3 or 4
X← form transmit matrix using (35) and (12)

3. Transmit Optimized Waveform
y = XΨΨΨc + n

4. Received Waveform
ĉ = argminc∈R ||y −XΨc||22 + λ||c||pp
g̃est = ΨΨΨĉ← form new scene

Algorithm 2 shows the closed loop procedure for the optimiza-
tion of the TS waveform.

To solve step 2 in Algorithms 1 and 2, the Taguchi and PSO
solvers are presented. Both Algorithm 1 and Algorithm 2 are
slowed down by solving the sparsely regularized least squares
minimization problem and are therefore, O(Nk), complex.

A. Taguchi Algorithm

In order to optimize the MI, Taguchi optimization tech-
niques are applied to the waveform design process. An orthog-
onal array (OA) is used as a search grid for weighting power
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Algorithm 2 TS Waveform Optimization
Inputs: ΨΨΨ, g̃, Sg(f), Sc(f), ε, λ,M,N
1. Estimate Clutter Statistics

c = ΨΨΨT g̃← project scene onto wavelet basis
Σ̂ΣΣw = E

[
cNcTN

]
← estimate covariance

z =

√
cTNΣ̂ΣΣ

−1
w cN/N ← find CG multipliers

ΣΣΣw = E
[
cNcTN/z

2
]

2. Optimize Waveform
Sopt ← Optimize (27) using Algorithm 3 or 4
x← find time domain waveform using (46)
X← form transmit matrix using (12)

3. Transmit Optimized Waveform
y = XΨΨΨc + n

4. Received Waveform
ĉ = argminc∈R ||y −XΨc||22 + λ||c||pp
g̃est = ΨΨΨĉ← form new scene

at each frequency. By using the OA, the Taguchi algorithm
is both efficient and versatile. Rather than an exhaustive test
of all possible power level combinations for optimizing the
weights, the OA provides the most informative subset of these
combinations. The versatility is due to the Taguchi algorithm’s
ability to solve non-convex problems. A comprehensive refer-
ence for OAs is found at [45]. Pseudo code for the Taguchi
algorithm is given in Algorithm 3.

Bold, lower case letters denote row vectors, upper case
letters denote matrices, subscripts denote elements, and su-
perscripts denote the iterations.

Algorithm 3 Taguchi Algorithm
Initialize ŵ0 = 1n ∈ Rn, s0 = 0l ∈ Rl
Bin width b =

[
l
n

]
Define Aij ∈ Rm×n and step size µ
for k = 1, 2, . . . do ← iterations

for i = 1, ...,M do ← rows
for j = 1, ..., N do ← columns

if (Aij = −1) then Wk
ij = ŵk−1j − µ;

else if (Aij = 0) then Wk
ij = ŵk−1j ;

else if (Aij = 1) then Wk
ij = ŵk−1j + µ;

end for
p = 1; q = b;
for g = 1, ..., L do ← update input

skp:q = Wk
ig ∗ 1b

p = p+ b; q = q + b;
end for
cki = f

(
sk
)
← compute MI

end for
rbest = max

(
ck
)
; ŵk = Wk(rbest, :);

end for

B. Particle Swarm Optimization (PSO)

The PSO algorithm is also used for waveform optimization.
The PSO algorithm randomly initializes points (‘particles’) in
the waveform space defined by the cost function. Since the

PSO algorithm is also non-convex optimizer, this method can
be generalized for any objective in waveform optimization.
Convergence for the PSO algorithm is defined such that the
improvement in MI does not improve by a certain tolerance
over a number of iterations. The algorithm is summarized in
Algorithm 4.

Algorithm 4 PSO Algorithm
p← define number of particles
X0 ∈ Rp×l ← initialize particle positions over l dimensions
K ← define maximum iterations
while Convergence criteria not met and k < K do

for i = 1, ..., p do
ci = f(xi);← compute MI
ĉi = f(x̂i)← find personal best solution
if ci > ĉi then ĉi = ci;

end for
gbest = max(ĉ)← find global best solution
for j = 1, ...p do

v(xj , x̂j , gbest);← find velocity
xj ;← find solution

end for
end while

VII. SIMULATIONS

A. Sparsity-Driven Imaging

To test the optimized waveforms, the signals are transmit
onto the scene with a metallic mine buried 2 cm beneath the
surface. Sparsity-driven regularization radar imaging is used
to estimate the sparse vector of coefficients that make up the
scene reflectivity function [46], [47].

As is shown in (9), the vectorized scene reflectively function
can be decomposed into a dictionary and a vector of coef-
ficients, and received signal is written as (15). The transmit
waveform convolution matrix X is formed using the optimized
waveform. Since the receive vector (15), the sparse basis, and
the transmit waveform are known, the sparse image vector is
the only unknown and is estimated using l1 regularized least
squares of the form

ĉ = argmin
c∈R

||y −XΨc||22 + λ||c||pp (49)

where λ ≥ 0 is the regularization parameter, and p = 1. The
truncated Newton interior-point method is used to solve (49)
[47]. Once the coefficients ĉ are estimated, the received scene
reflectivity function is g̃est = ΦT ĉ.

The regularization parameter is 0.5. The number of sensor
positions is 5. Note that the regularization term, λ||c||1, forces
the scene reconstruction to be sparse. Although a geometrical
explanation is intuitive, it suffices to note that the l1-norm is
simply the sum of absolute values. Therefore, minimizing this
term forces all but some of the values in c to approach zero
enforcing sparsity on the solution.

A note on the dimensionality: It was found that representing
a scene G ∈ RM×N , as a vector requires a dictionary
of dimensionality MN ×MN and thus the problem grows
quadratically. Explicitly computing such a basis for a large M
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and N requires a huge amount of Random Access Memory
(RAM). In the wavelet dictionary, it was observed that the
number of nonzero entries was 4MN , whereas the total
number of entries grew as (MN)2. This enabled the use
of sparse coding throughout, by storing only the nonzero
elements and their locations.

Figure 3 shows the difference between the nonzero elements
and the total number of elements for a dictionary.

Fig. 3. The sparsity of the scene wavelet dictionary is shown.

B. Metrics

Image comparison metrics are used to assess the quality
of waveforms in the reconstruction of the scene reflectivity
function. The metrics are the SSIM index [48], the PSNR, the
pixel to pixel MSE, and the SNR. The PSNR is defined as

PSNR = 20 log10

(
MAXI√

MSE

)
. (50)

where MAXI is the maximum pixel value in the image. For
example, when represented in 8-bit, MAXI = 255. The MSE
is the mean squared error between the ground truth image and
reconstructed scene.

The SSIM is a widely used robust image comparison metric
and encapsulates the spatial dependency of pixels on one-
another rather than looking at absolute error. The SSIM is
defined as

SSIM(x,y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(51)

where µx and σx are the mean and variance of a pixel
patch x ∈ RK , whose size takes into account a subset of
pixels in the image. Both x, and y, are the same size and
denote patches from the reconstructed and ground truth scene
respectively. The constants are defined as c1 = (k1L)2, and
c2 = (k2L)2, where L is the dynamic range of the pixel values,
and (k1, k2) = (0.01, 0.03) by default.

VIII. RESULTS

In this section the estimated scene reflectivity functions
are presented using the optimized non-matched illumination

waveform defined in Section IV-A and the matched illumina-
tion waveform of Section IV-B. The phase history for each
waveform is collected for a scene in which the response of a
target buried 2 cm beneath the surface is phase and magnitude
distorted by a randomly generated CG clutter response.

The optimization procedure for both the non-matched il-
lumination waveform and the matched illumination waveform
are defined in Algorithm 1 and Algorithm 2 respectively. Using
the sparse imaging framework defined in Section VII-A, the
scene reflectivity function for each waveform is estimated from
the phase history. Each waveform is compared to the scene
reflectivity function estimated from the phase history of an
LFM waveform for the same bandwidth and energy.

The quality of each waveform in estimating the target
reflectivity function is measured by the target reconstruction
performance. Target reconstruction performance is defined as
the similarity between the estimated scene and the target
response in the presence of no clutter, shown in Figure 4.
A high degree of similarity thus measures the degree to which
the waveform is able to suppress clutter and therefore, Figure
4 will be considered the ground truth. This is quantified using
the image metrics defined in Section VII-B. For each estimated
scene reflectivity function, the SSIM values are given. A value
of 0 indicates no similarity between two scenes, and a value
of 1 indicates that the scenes are the same. The higher the
SSIM value, the higher the similarity between the estimated
scene and the ground truth target response thus quantifying
the waveform’s quality at reconstructing the target.

Fig. 4. Ground truth radar scene showing a metallic mine. When computing
reconstruction performance for each waveform, this image is the reference.

Once the transmit waveform is optimized, the block diag-
onal convolution matrix as defined in (15) is formed. This is
done by first forming a single convolution matrix, X, using
(12). Using the convolution matrix a block diagonal matrix,
X ∈ RM(N+L−1)×ML, is formed where M = 5 copies of X
are placed, one for each sensor in the multistatic radar. The
number of sensors equates to the number of Radon transform
projections of the scene reflectivity function. Therefore, it is
clear M = 5 is a sparse number of sensors as the scene is
fully reconstructed using only five ‘cross-range’ locations.

A. Non-Target Specific Waveform

The results of optimizing the upper bound on the Non-TS
waveform of Section V-A are presented first. The PSO and
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Taguchi optimization procedures of Algorithm 3 and Algo-
rithm 4 respectively are used to optimize the waveform. Table I
and Table II show the target reconstruction performance using
the PSO and Taguchi algorithms respectively.

The reconstructed scene reflectivity function from transmit-
ting the PSO optimized waveform is presented in Figure 5.
The results of the scene in Figure 5 to the ground truth scene

Fig. 5. Reconstructed scene using the sparse prior non-target specific
waveform (32) optimized using the PSO algorithm. SSIM reconstruction value
is 0.3634.

of Figure 4 are presented in column one of Table I.
The reconstructed scene reflectivity function from transmit-

ting the Taguchi optimized waveform is presented in Figure 6.
The results of comparing the scene in Figure 6 to the ground

Fig. 6. Reconstructed scene using the sparse prior non-target specific
waveform (32) optimized using the Taguchi algorithm. SSIM reconstruction
value is 0.3859.

truth scene of Figure 4 are presented in column one of Table
II.

The waveform is further compared to a constant modulus
LFM waveform to show the improvement in target reconstruc-
tion that an optimized waveform offers over a conventional
waveform. Each waveform is normalized to have the same
energy. The resulting target reconstruction using the LFM
waveform is shown in Figure 7. The resulting image metrics
for the LFM waveform target reconstruction performance are
given in Table III.

B. Target Specific Waveform

Secondly, the results of the TS waveforms as defined in
Section IV-B are presented. The PSO and Taguchi optimization

Fig. 7. Reconstructed scene using an LFM waveform. SSIM reconstruction
value is 0.2928.

procedures of Algorithm 3 and Algorithm 4 respectively are
used to optimize the waveform. Table I and Table II show the
target reconstruction performance using the PSO and Taguchi
algorithms respectively.

As the PSD of the TS waveform is optimized, a time
domain waveform is formed using the POCS method outlined
in Section V-C. The results are compared to the ground truth
image of Figure 4 using the image metrics outlined in Section
VII-A.

The reconstructed scene using the PSO algorithm to opti-
mize the TS waveform is shown in Figure 8. The results of

Fig. 8. Reconstructed scene using the PSO matched illumination PSD of
(27). SSIM reconstruction value is 0.4467.

comparing the scene in Figure 8 to the ground truth scene of
Figure 4 are presented in column two of Table I.

The reconstructed scene using the Taguchi algorithm to
optimize the TS waveform is shown in Figure 9. The results
of comparing the scene in Figure 9 to the ground truth scene
of Figure 4 are presented in column two of Table II.

Comparing the results of the LFM waveform in Table III,
both the non-target specific and target specific waveforms are
seen to reconstruct the scene reflectivity function with higher
similarity to the ground truth image.

Since the clutter is generated using the random CG distri-
bution, the performance very much depends on the generation
of the random numbers. Therefore, Monte Carlo methods
provided bounds on the performance of each waveform.

Table I shows the results from the Monte Carlo experiments
using the PSO algorithm to optimize the waveforms.
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Fig. 9. Reconstructed scene using the Taguchi optimized matched illumination
PSD of (27). SSIM reconstruction value is 0.4305.

TABLE I
PSO RECONSTRUCTION PERFORMANCE

Waveform Non-TS TS
SSIM 0.3612± 0.01981 0.4386± 0.02748
PSNR (dB) 14.28± 0.9800 16.56± 1.420
SNR (dB) 2.618± 0.9800 4.897± 1.420
MSE 0.03834± 0.009173 0.02332± 0.007963

Table II shows the results from the Monte Carlo experiments
using the Taguchi algorithm to optimize the waveforms.

TABLE II
TAGUCHI RECONSTRUCTION PERFORMANCE

Waveform Non-TS TS
SSIM 0.3867± 0.02058 0.4333± 0.02583
PSNR (dB) 15.63± 1.203 20.09± 1.134
SNR (dB) 3.969± 1.203 8.435± 1.134
MSE 0.02843± 0.008060 0.01014± 0.003091

Table III shows the reconstruction performance bounds for
the LFM waveform.

TABLE III
BENCHMARK RECONSTRUCTION PERFORMANCE

Waveform LFM
SSIM 0.3102± 0.01803
PSNR (dB) 11.59± 0.7492
SNR (dB) −0.06517± 0.7492
MSE 0.07031± 0.01206

These results demonstrate that our optimized waveforms
show a significant improvement over the LFM waveform for
all image reconstruction metrics, suggesting that the waveform
is not algorithm or metric dependent and generally enhances
the scene reflectivity function.

IX. DISCUSSION

This paper presents two methods of waveform design for
Sparsity-driven regularization imaging. The first method de-
rives the mutual information when the scene is represented
using a sparse basis. Therefore, the distribution is used as a
prior in forming the waveform. Since the differential entropy
of a CG distribution has no closed form solution, upper and
lower bounds are derived for the MI. The maximization of

the lower and upper bounds is over the transmit waveforms,
and therefore the solutions provide optimal transmit signals
for imaging.

The second, TS, waveform method takes full advantage of
a cognitive radar’s ability to estimate a TIR. Therefore, the
matched illumination MI aims to maximize target information
at the receiver. This is achieved by using the known power
spectra of the target and clutter, and thus tailoring the spectrum
of the transmit waveform by allocation power to the frequen-
cies in which the clutter is least dominating. Therefore, the MI
optimizes the PSD of the transmit waveform that maximizes
the MI. To form a time domain signal with the optimal PSD
from matched illumination the method of POCS is used. This
allows the envelope of the transmit signal to be constant, while
transmitting a signal with the optimized transmit spectrum.

The MI is optimized using both Taguchi optimization and
PSO. The Taguchi algorithm is efficient and versatile as it
uses OAs for the search space, and is able to solve non-convex
problems. The PSO algorithm is extended to waveform design
and compares favorably to the Taguchi algorithm.

The results show that by utilizing the scene prior distribu-
tion, and then taking full advantage of the TIR, the scene is
reconstructed with a higher degree of accuracy as measured
using the SSIM, PSNR, SNR, and MSE for both the PSO and
Taguchi optimization algorithms.

The authors are currently extending this work by working
from first principles. That is to say, starting with Maxwell’s
equations and numerically simulating the scenario by tracking
the propagation of the EM waves as they are scattered. This
includes the nature of the complex target, the type of soil, the
loss in power experienced within the soil, and the second order
scattering effects that occur when the EM signal penetrates
boundary one (the air-surface boundary), is scattered from
the second boundary (the target buried within the soil), and
scattered again from the soil/air boundary.

In future work, we propose to conduct systematic studies
into expanding the robustness of TS specific waveforms to
encompass a class of target profile models. In particular, if
the assumed target profile used to optimize the waveform
does not match the true target profile in the scene, potential
performance degradation may occur due to a mismatch be-
tween the assumed target profile and the true target profile.
We provide initial results to explore the robustness of our
TS waveform optimization framework with respect to model
mismatch. This is achieved by optimizing the waveform based
on a pristine (noiseless) target model and applying it to a scene
where varying levels of noise are added to the pristine target
profile; the results are shown Figure 10. Figure 10 shows the
TS specific waveform is robust with respect to a reasonable
variation in model mismatch, and eventually degrades, as
expected, in performance as the model mismatch becomes
larger.
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APPENDIX A
LOWER BOUND

From [39] the lower bound is defined as

h(x) = −
L∑
i=1

wi log

( L∑
j=1

wjzi,j

)
zi,j =

∫
R
N (x; 0,Ci)N (x; 0,Cj)dx

(52)

The integral of the product of two zero mean Gaussian’s, zi,j ,
has a closed form solution as [49]

zi,j =
1√

(2π)D|Ci||Cj |
∣∣C−1i + C−1j

∣∣ . (53)

Therefore, (52) simplifies to

h(x) = −
∑
i

wi · log

(∑
j

wj
[
(2π)D|Ci + Cj |

]−1
2

)
. (54)

APPENDIX B
SYLVESTER’S DETERMINANT

The determinant in (30) with the Cholesky decomposition
for ΣΣΣw = DwDT

w is∣∣∣∣ z2iσ2
n

XΨΨΨDwDT
wΨΨΨTX

T
+ I

∣∣∣∣ (55)

Using Sylvester’s determinant identity:

det (I + AB) = det (I + BA), (56)

A = XΨΨΨDw

B = DT
wΨΨΨTX

T
.

(57)

Therefore, (55) can be rewritten as∣∣∣∣ z2iσ2
n

DT
wΨΨΨTX

T
XΨΨΨDw + I

∣∣∣∣ (58)

and (31) follows.

APPENDIX C
TRANSMIT CONVOLUTION MATRIX

A. Observation 1

Proof. Since r[−k] = r[k], the lower triangular portion of
RX is positive and the matrix is Hermitian. Finally, as, RX,
is a covariance matrix, it follows that it is also positive semi-
definite.

B. Corollary 1

Proof. Since RX and L are given, this problem becomes
equivalent to finding x to satisfy the equality RX =
C(x, L)TC(x, L). As was described in Observation 1, the en-
tries of RX correspond to a length 2(L−1)+1 autocorrelation
function, r, of x. Therefore, the equality will be satisfied if it is
possible to find an x with the given autocorrelation sequence.
Since

F{r} = |X0(ω)|2, (59)

where X0(ω) is the discrete Fourier transform for x0. There-
fore by taking the square root and the inverse discrete Fourier
transform the expression x0 is produced.

APPENDIX D
CONVEXITY OF LOWER BOUND

A. Lemma 2

Proof. Taking the second derivative of g(t), we have

g′′(t) =
(1 + λt+ f(t))f ′′(t)− f ′(t)− λ

(1 + λt+ f(t))2
. (60)

For g(t) to be concave, (60) must non-positive. Noting first
that the denominator of (60) is strictly positive, the condition
g′′(t) ≤ 0 is sufficient to produce the inequality (40) and thus
the lemma.

B. Lemma 3

Proof. To begin the proof, a simpler version of the equation
in question is studies. Define h̃(t) as h(t) with d`,j changed
to be d`, therefore

h̃(t) = log

∑
j

pz(zj)z
−2D
j

− D∑
`=1

log (1 + d` + λ`t) .

(61)
This rearrangement is valid as the product no longer depends
on j and can be separated from the sum. It can be show that
(61) is convex in t [41]. Thus, by mapping (42) to (61) the
convexity would follow. This can be accomplished using the
following definition of d` that depends on t

d`(t) =
1∑

j

βj [1 + d`,j + λ`t]
−1
− (1 + λ`t), (62)
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where βj =
pz(zj)

z2Dj

∑
j

pz(zj)

z2Dj

−1. It can be shown that

substituting d`(t) for d` in (61) gives h(t) = h̃(t); thus,
the two expressions are equivalent. Therefore, h̃(t) can be
rewritten as

h̃(t) = log

∑
j

pz(zj)z
−2D
j

− D∑
`=1

log (1 + d`(t) + λ`t) .

(63)
Since it can be verified that d`(t) ≥ 0, d′`(t) ≥ 0 and d′′` (t) ≤
0, by looking at the second term of (63) and Lemma 2 the
full expression can be said to be convex.

Using Lemma 2, and Lemma 3, the lower bound is shown
to be convex in Lemma 4.

C. Lemma 4

Proof. To prove concavity, the convexity of −f(X) is proven.
Since a non-negative weighted sum of convex functions is
convex it remains to show the convexity of

w(X) = log

∑
j

pz(zj)
[
det(I + (z2i + z2j )X)

]−1 . (64)

For simplicity, we let z̃2j = z2i + z2j as it is now assumed that
the index i is fixed. To prove the convexity of this expression,
a commonly used method of checking the convexity using one
variable is employed. This is done by seeing if w(X + tV) is
convex in t, for any positive semidefinite matrices X and V.
Expanding out w(X + tV) results in

w(X + tV) =

log

∑
j

pz(zj)
[
det(I + z̃2j (X + tV))

]−1
= − log det(X)+

log

∑
j

pz(zj)
[
det
(
X + z̃2j (I + tX−1/2VX−1/2)

)]−1
= − log det(X)+

log

∑
j

pz(zj)

[
D∏
`=1

(
z̃2j (1 + λlt

)
+ λx,`)

]−1
(65)

where λl ≥ 0 and λx,` ≥ 0 are the eigenvalues of
X−1/2VX−1/2 and X. Pulling out the z̃2j from the product
results in

= − log det(X)

+ log

∑
j

pz(zj)z̃
−2D
j

[
D∏
`=1

(
1 + λlt+

λx,`
z̃2j

)]−1 .

(66)
where d`,j =

λx,`

z̃2j
. Therefore, the second term is of the form

in Lemma 3 and is convex in t.
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