Assessment of anisotropic mechanical properties of a 3D printed carbon whisker reinforced composite

Bakis, C. E., Haluza, R. T., Bartolai, J., Kim, J. J. and Simpson, T. W., "Assessment of Anisotropic Mechanical Properties of a 3D Printed Carbon Whisker Reinforced Composite," Advanced Composite Materials, 28(5):545–560 (2019). Abstract: A commercial carbon whisker reinforced polylactic acid composite made by a type of three-dimensional (3D) printing known as material extrusion additive manufacturing is investigated. The primary objective is to experimentally characterize and model the direction-dependent tensile modulus of elasticity of unidirectionally printed composite material to assess the degree of anisotropy induced during printing and to determine how well the measured properties can be predicted by multiscale mechanics-based models. The model predictions are based on microstructural characteristics such as the aspect ratio and orientation of the whiskers and the constituent volume fractions. Other material characteristics are assumed, such the cylindrical shape of voids in the matrix and the perfect bonding condition of the whiskers. The experiments indicate (1) that the modulus in the 0-deg. printed direction can be at least twice the modulus in the 90-deg. printed direction and (2) that whisker alignment is improved during printing. Two models accounting for imperfect whisker alignment are used to predict the modulus of the 0-deg. material reasonably well, although the 90-deg. modulus is over-predicted by both models. The 0-deg. direction is roughly two times stronger than the 90-deg. direction in tension.



Work Title Assessment of anisotropic mechanical properties of a 3D printed carbon whisker reinforced composite
Open Access
  1. Charles E Bakis
  2. Rudy T Haluza
  3. Joseph Bartolai
  4. Jeffrey Jason Kim
  5. Timothy W. Simpson
  1. 3D printing; material extrusion additive manufacturing; carbon whisker; composite; anisotropy; mechanical properties; multiscale modeling
License CC BY 4.0 (Attribution)
Work Type Journal
  1. Taylor and Francis
Publication Date August 12, 2019
  1. 3D printing, composite material, anisotropy
  1. Engish
Publisher Identifier (DOI)
  1. 10.1080/09243046.2019.1652030
Geographic Area
  1. USA
Related URLs
Deposited March 22, 2020




This resource is currently not in any collection.

Work History

Version 1

  • Created
  • Added Anisotropic_mechanical_properties_post_print_Aug2019.pdf
  • Added Creator Charles E Bakis
  • Added Creator Joseph Bartolai
  • Added Creator Jeffrey Jason Kim
  • Added Creator Timothy W. Simpson
  • Published

Version 2

  • Created
  • Added Creator Rudy T Haluza
  • Updated Creator Joseph Bartolai
  • Updated Creator Jeffrey Jason Kim
  • Updated Creator Timothy W. Simpson
  • Updated Subject, Language, Publisher, and 3 more Show Changes
    • 3D printing, composite material, anisotropy
    • Engish
    • Taylor and Francis
    Geographic Area
    • USA
    Publisher Identifier (DOI)
    • 10.1080/09243046.2019.1652030
    Related URLs
  • Updated Publication Date Show Changes
    Publication Date
    • 2019-08-12
  • Published
  • Updated