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Abstract: We formulate the statistics of the discrete multicomponent fragmentation event using a1

methodology borrowed from statistical mechanics. We generate the ensemble of all feasible distributions2

that can be formed when a single integer multicomponent mass is broken into fixed number of3

fragments and calculate the combinatorial multiplicity of all distributions in the set. We define random4

fragmentation by the condition that the probability of distribution be proportional to its multiplicity, and5

obtain the partition function and the mean distribution in closed form. We then introduce a functional6

that biases the probability of distribution to produce in a systematic manner fragment distributions7

that deviate to any arbitrary degree from the random case. We corroborate the results of the theory by8

Monte Carlo simulation, and demonstrate examples in which components in sieve cuts of the fragment9

distribution undergo preferential mixing or segregation relative to the parent particle.10
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1. Introduction-I31

Objects disintegrate into fragments via impact, detonation, degradation, or cleavage of the bonds that32

hold the structure together. The object in question may range from the sub-atomic [1,2] and molecular33

[3–5] to living organisms [6], social structures [7,8] and celestial bodies [9], a diversity of scale and physics34

that is united by a common mathematical formalism. At its core fragmentation is a branching process35

in which a parent object (“particle”) produces a set of offspring. The evolution of a population that36

undergoes splitting of this form is given by the fragmentation equation, an integro-differential equation37

that accounts for the generation and depletion of size due to fragmentation [10,11]. The primary input38

to this formulation is a breakup model that specifies the distribution of fragments produced by a given39

parent size and the relative rate at which different sizes break up. This population balance approach forms40

the basis for the mathematical treatment and numerical modeling of fragmentation in granular, colloid and41

polymeric systems [11–18]. The mathematical literature of the fragmentation equation is rich and focuses42

on analytic solutions, existence criteria and stability. Of particular interest is the emergence of “shattering,”43

a process akin to a phase transition that is demonstrated through the appearance of a finite population of44

particles with zero mass [19–22]. An alternative approach views fragmentation as the disintegration of45

bonds between the constitutive units of the particle and uses percolation theory to model and simulate the46

breakup of systems with topological structure. In contrast to the population balance method, which is47

a mean-field method, percolation treats fragmentation at the discrete probabilistic level [7,8,23]. Other48

treatments view fragmentation in a more abstract way as a partitioning of a discrete event space and use49

combinatorial and probabilistic methods to obtain the partition function and the mean distribution in this50

space [24–27].51

A central question in fragmentation is the distribution of fragments per fragmentation event. The most52

common theoretical model is that of random binary fragmentation. In this model a parent cluster produces53

two fragments with uniform probability [22]. Empirical models have been proposed for the breakage of54

a single component into multiple pieces of unequal size and typically require a set of parameters that55

control the shape of the fragment distribution [28,29]. Systems of practical interest are almost always56

multicomponent. Pharmaceutical granulation is a case in point: granules contain an active pharmaceutical57

ingredient, an inert excipient, binder, and are characterized by additional attributes such as porosity or58

shape factor that behave as pseudo components [30]. Nonetheless not generalized approaches exist to treat59

the problem of multicomponent fragmentation into arbitrary number of fragments. The mathematical60

treatment of multicomponent fragmentation into arbitrary number of pieces cannot be simply obtained as61

an extension of the one-component problem. In addition to the size distribution of fragments one must62

consider the distribution of components, provide rules for apportioning components to the fragments, offer63

a definition of what is meant by “random fragmentation” when both size and composition are distributed,64

and provide the means for constructing models that deviate from the random case to any extent desired.65

The purpose of this paper is to address these questions by formulating the statistics of a single66

fragmentation event in the discrete domain for arbitrary number of fragments and components in a67

way that is general and not bound by the details of the particular application. Our interest is not in the68

physics behind the splitting of an object into smaller parts, but rather in the probabilistic treatment of69

the partitioning itself under the constraint of a conservation law, conservation of mass. The main idea is70

this. We start with a multicomponent particle that is made of discrete units of any number of components,71

subject it to one fragmentation event with fixed number of fragments, and construct the set of all fragment72

distributions that can be obtained in this manners. We calculate the partition function of this ensemble of73
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random fragments, assign probabilities in proportion to the multiplicity of each distribution, and obtain74

the mean distribution in terms of the partition function. We then introduce a bias functional that biases the75

distribution away from that of random fragmentation. We present results from Monte Carlo simulations76

to corroborate the theory and show that components may preferentially mix or unmix in the fragments77

depending on the choice of the bias functional.78

2. Random fragmentation79

2.1. One-component random fragmentation80

In discrete fragmentation, a particle composed of M integer units breaks up into N fragments,81

{m1, m2 · · ·mN} that satisfy the mass balance condition82

N

∑
i=1

mi = M. (1)

The distribution of fragments is given by vector n = (n1, n2 · · · ) whose element ni is the number of83

fragments that contain i units of mass. We suppose that N is fixed but n is not; that is, if the fragmentation84

event is repeated with an identical parent particle the distribution of fragments may be different but the85

total number of fragments is always N. We refer to this process as N-nary fragmentation. All fragment86

distributions produced by this mechanism satisfy the following two conditions:87

∞

∑
i=1

ni = N, (2)

∞

∑
i=1

ini = M. (3)

The first condition states that the number of fragments is N; the second that their mass is equal to the88

mass of the parent particle. Conversely, any distribution that satisfies the above two equations is a feasible89

distribution of fragments by N-nary fragmentation of mass M. Thus the set EM;N of all distributions90

that satisfy Eqs. (2) and (2) forms the ensemble of fragment distributions produced from M. We assign a91

probability P(n) on the distributions in EM;N , normalized over all distributions that satisfy Eq. (2) and (3).92

Our goal is to obtain this distribution under various fragmentation models.93

We will call the process random fragmentation if all ordered lists of N fragments produced by the same94

mass are equally probable. This views the ordered list of fragments, which we call configuration, as the95

primitive elementary stochastic variable in this problem.96

2.1.1. Probability of random fragment distribution97

Proposition 1. The probability of distribution n produced by random N-nary fragmentation of mass M is98

P(n) =
n!(

M− 1
N − 1

) , (4)

where n = (n1, n2 · · · )! is the multinomial coefficient of distribution n,99

n! =
(∑i ni)!
∏i ni!

=
N!

n1!n2! · · · . (5)
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Figure 1. Random fragmentation of integer mass M into N pieces is equivalent to breaking a string with M
beads at N − 1 random points. With M = 10, N = 3 the number of possible partitions is (9

2) = 36. If the
mass is made up of two colors every permutation of the beads is equally probable; with MA = 6, MB = 4
the number of partitions increases by the factor (6+4

4 ) = 210 and the total number of permutations is 7560.

Proof. First we note that the number of ordered lists that can be formed by breaking integer M into N100

fragments is101

Ω(1)
M;N =

(
M− 1
N − 1

)
. (6)

This is the number of ways to partition integer M into N parts and can be shown easily as follows [31]:102

thread M balls into a string and partition them into N pieces by cutting the string at N − 1 points (Fig. 1).103

There are M− 1 points where we can cut and must choose N − 1 of them. The number of ways to do this104

is the binomial factor on the RHS of Eq. (6).105

If all ordered lists of fragments are equally probable, the probability of ordered list m =106

(m1, m2 · · ·mN) is107

Prob(m) =
1

Ω(1)
M;N

. (7)

There are n! ordered lists with the same distribution of fragments n. Accordingly, the probability of n is108

P(n) = n! Prob(m) =
n!
.

Ω(1)
M;N (8)

This proves the proposition.109

The multinomial factor n! is the multiplicity of distribution n, namely, the number of configurations110

(ordered lists of fragments) represented by n. Using ω(n) = n! to notate this multiplicity, the probability111

of distribution is expressed as112

P(n) =
ω(n)

Ω(1)
M;N

, (9)

and Ω(1) satisfies113

∑
n

ω(n) = Ω(1)
M;N . (10)

The summation is over all distributions n ∈ EM;N , namely, over all distributions that satisfy Eqs. (2) and (3).114

Accordingly, Ω(1)
M;N is the total multiplicity in the ensemble, equal to the number of ordered configurations115

of fragments that can be produced from integer mass M breaking into N fragments. We refer to Ω(1)
M;N as116

the partition function of the one-component ensemble of fragments.117
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2.1.2. Mean fragment distribution118

Each distribution n appears in the ensemble of fragment distributions with probability P(n); the119

mean distribution of fragments is their ensemble average:120

〈n〉 = ∑
n

n P(n) (11)

with P(n) from Eq. (4) and with the summation going over all distributions that are produced by N-nary121

fragmentation of integer mass M.122

Proposition 2. The mean distribution in N-nary random fragmentation is123

〈nk〉
N

=
Ω(1)

M−k;N−1

Ω(1)
M;N

=

(
M− k− 1

N − 2

)/(
M− 1
N − 1

)
, (12)

with M ≥ N ≥ 2 and k = 1, · · ·M− N + 1.124

Proof. First we write the probability of distribution in the form125

P(n) =
N!

Ω(1)
M;N

∞

∏
i=1

α
ni
i

ni!
(13)

with αi > 0 and note that this reverts to Eq. (4) when αi = 1. We will retain the factors αi and will set them126

equal to 1 at the end. The normalization condition on the probability P(n) reads127

Ω(1)
M;N = N! ∑

n

∞

∏
i=1

α
ni
i

ni!
. (14)

The derivative of log Ω(1)
M;N with respect to αk is128

∂ log Ω(1)
M;N

∂αk
=

N!

αkΩ(1)
M;N

∑
n

nk ∏
i

(
α

ni
i

ni!

)
=
〈nk〉
αk

, (15)

where 〈nk〉 is the mean value of nk in the ensemble of fragments. We also have129

∂Ω(1)
M;N

∂αk
= N

(N − 1)! ∑
n

nk 6=0

(
· · ·

α
nk−1
i

(nk − 1)!
· · ·
) = N Ω(1)

M−k;N−1. (16)

The summand in the expression in the middle amounts to removing one fragment of mass k from all130

distributions of the ensemble; accordingly, the quantity in braces is the partition function Ω(1)
M−k;N−1.131

Combining Eqs. (15) and (16) and setting αk = 1 we obtain Eq. (12). A similar proof was given by Durrett132

et al. [25] for a closely related system.133

Equation (12) was previously obtained by Montroll and Simha [12] via a combinatorial derivation.134

Notably it is the same distribution as in discrete binary aggregation (the reverse process of binary135

fragmentation) with constant kernel, derived by Hendriks et al. [24] who also credit older unpublished136

work by White. It also appears outside the context of fragmentation when the probability distribution is of137

the form of Eq. (13) (see for example [32]).138

For large M the fragment distribution becomes139
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〈nk〉 →
N(N − 1)

M

(
1− k

M

)N−2
. (17)

This is the continuous limit of random fragmentation of a straight line into N segments, an elementary140

result that has been derived multiple times in the literature. The earliest report known to us is by Feller141

[33] who corrected an earlier approximation by Ruark [34].142

2.2. Two-component random fragmentation143

2.2.1. Representations of bicomponent populations144

We now consider a particle that is made of two components. The particle contains MA units of145

component A, MB units of component B and its mass is M = MA + MB. The distribution of fragments is146

given by the two-dimensional vector n = {na,b} where na,b is the number of fragments that contain a units147

of A and b units of B. This distribution satisfies the conditions148

∞

∑
a=0

∞

∑
b=0

na,b = N, (18)

∞

∑
a=0

∞

∑
b=0

a na,b = MA, (19)

∞

∑
a=0

∞

∑
b=0

b na,b = MB. (20)

The set EMA ,MB ;N of all distributions that satisfy the above conditions constitutes the set of feasible149

distributions in bicomponent fragmentation. Strictly speaking the upper limit in these summations is150

constrained by a ≤ MA, b ≤ MB. Under the convention that na,b = 0 outside the meaningful range of a151

and b, we may set the upper limit to ∞.152

The color-blind size distribution or simply “size distribution” nA+B = {nk} is the distribution of the153

mass of the fragments k = a + b regardless of composition:154

nk =
k

∑
a=0

na,k−a, k = 1, 2 · · · (21)

and satisfies the conditions155

∞

∑
k=1

nk = N, (22)

∞

∑
k=1

knk = MA + MB = M. (23)

These are the same as Eqs. (2) and (3) in the one-component case for a particle with mass MA + MB.156

Accordingly, the feasible set of the color-blind distribution is EM;N with M = MA + MB.157

The sieve-cut distribution nA|k = {na|k} is the number of fragments with size k that contains a units158

of component A:159

na|k = na,k−a, (a = 1 · · · k, k = 1 · · ·M). (24)
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and satisfies the normalizations160

∞

∑
k=1

k

∑
a=0

na|k = N,

∞

∑
k=1

k

∑
a=0

ana|k = MA,

∞

∑
k=1

k

∑
a=0

kna|k = MA + MB.

We divide the sieve-cut distribution by the number of fragments of size k to obtain the compositional161

distribution of component A within fragments of fixed size k,162

ca|k =
na|k
nk

. (25)

The compositional distribution is normalized to unity and may be interpreted as the conditional probability163

to obtain a fragment with a units of A, given that the fragment has mass k. The bicomponent distribution164

may now be expressed in terms of the color-blind distribution nA+B and the compositional distribution165

ca|k in the form166

na,k−a = nk ca|k. (26)

If we divide both sides by the total number of fragments the result reads as a joint probability: the167

probability na,k−a/N to obtain a fragment with mass k that contains a units of component A is equal to the168

probability nk/N to obtain a fragment of mass k times the probability ca|k to obtain a fragment with a units169

of component A given that the mass of the fragment is k.170

2.2.2. The ensemble of random fragment distributions171

Random fragmentation is implemented by analogy to the one-component case: we line up the unit172

masses in the particle into a string and cut at N − 1 places. Every cut is equally probable and so is every173

permutation in the order of the beads.174

Proposition 3. The probability of fragment distribution n in random bicomponent fragmentation is175

P(n) =
n!

Ω(2)
MA ,MB ;N

∞

∏
a=0

∞

∏
b=0

(
a + b

a

)na,b

. (27)

where n! is the multinomial coefficient of the bicomponent distribution,176

n! =
N!

∏∞
a=0 ∏∞

b=0 na,b!
(28)

and Ω(2)
MA ,MB ;N is the two-component partition function, given by177

Ω(2)
MA ,MB ;N =

(
MA + MB

MA

)
Ω(1)

MA+MB ;N . (29)
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Proof. First we count the number of ordered sequences of fragments (configurations). Configurations are178

distinguished by the order the fragments and by the order of components within fragments (Fig. 1). We179

color the components and place them in a line in some order. There are MA A’s and MB B’s; the number180

of permutations is (MA+MB
MA

). Each permutation produces Ω(1)
MA+MB ;N configurations with Ω(1) given in Eq.181

(6). The total number of configurations therefore is their product and proves Eq. (29).182

Since all configurations are equally probable, the probability of fragment distribution n is proportional183

to the number of configurations with that distribution. This is equal to the number of permutations in the184

order of the fragments times the number of permutations in the order of components within the fragments.185

The number of permutations in the order of fragments is given by the multinomial factor of bicomponent186

distribution in Eq. (28). The number of permutations of components within a fragment that contains a187

units of A and b units of B is (a+b
a ) and since there are na,b such fragments, the total number of internal188

permutations in distribution n is189

∞

∏
a=0

∞

∏
b=0

(
a + b

a

)na,b

. (30)

The probability of distribution n is equal to the product of Eqs (28) and (30) divided by the total number of190

configurations, given by Eq. (29). The result is Eq. (27) and proves the Proposition.191

As a corollary we obtain the multiplicity of the bicomponent distribution,192

ω(n) = n!
∞

∏
a=0

∞

∏
b=0

(
a + b

a

)na,b

. (31)

Thus we write193

P(n) =
ω(n)

Ω(2)
MA ,MB ;N

(32)

with Ω(2) = ∑n ω(n).194

An alternative result for P(n) is obtained by expressing the bicomponent distribution n in terms of195

the color-blind distribution nA+B and all sieve-cut distributions nA|k. The result is196

P(n) =
nA+B!

Ω(2)
MA ,MB ;N

∞

∏
k=1

{
nA|k!

k

∏
a=0

(
k
a

)na|k
}

(33)

and is based on the identity197

n!
∞

∏
a=0

∞

∏
b=0

(
k
a

)na,b

= nA+B!
∞

∏
k=0

{
nA|k!

k

∏
a=0

(
k
a

)na|k
}

. (34)

Here nA+B! is the multinomial coefficient of the color-blind distribution,198

nA+B! =
N!

n1! n2! · · · (35)

and nA|k! is the multinomial coefficient of the sieve-cut distribution,199

nA|k! =
nk!

n0|k! n1|k! · · · nk|k!
. (36)
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2.2.3. Mean fragment distribution200

Proposition 4. The mean distribution of fragments in random bicomponent fragmentation is201

〈na,b〉
N

=

(
a + b

a

)Ω(2)
MA−a,MB−b;N−1

Ω(2)
MA ,MB ;N

(37)

Proof. The proof follows in the steps of the one-component problem. We express the multiplicity and the202

partition function in the form203

ω(n) = N!
∞

∏
a=0

∞

∏
a=b

α
na,b
a,b

na,b!
, (38)

Ω(2)
MA ,MB ;N = N! ∑

n

∞

∏
a=0

∞

∏
a=b

α
na,b
a,b

na,b!
(39)

With αa,b = (a+b
a ) we recover the result for random fragmentation but for the derivation we treat αa,b as a204

variable. Following the same procedure that led to Eq. (12) we now obtain205

〈na,b〉
N

= αa,b
Ω(2)

MA−a,MB−a;N−1

Ω(2)
MA ,MB ;N

. (40)

To arrive at this result we note that differentiation of the partition function with respect to αa,b by analogy206

to Eq. (16) amounts to removing one cluster that contains a units of A and b units of B, thus producing207

the partition function Ω(2)
MA−a,MB−b;N−1 in the numerator of Eq. (40). Setting αa,b = (a+b

a ) we obtain Eq.208

(37).209

Alternative Proof. An alternative proof will be obtained by a mean-field argument. First we write the210

mean distribution in the form211

〈na|k〉 = 〈nk〉ca|k, (41)

where 〈na|k〉 and 〈nk〉 are the ensemble averages of na|k and nk, respectively, and ca|k = 〈na|k〉/〈nk〉 is the212

compositional distribution within the mean distribution. We begin with the observation that the mean213

color-blind distribution is the same as in the one-component case. This follows from the fact that the choice214

of the points at which the string of beads is cut is independent of the compositional makeup of the particle215

(Fig. 1). Thus 〈nk〉 is given by Eq. (12) with M = MA + MB:216

〈nk〉
N

=
Ω(1)

MA+MB−k;N−1

Ω(1)
MA+MB ;N

(42)

We obtain the compositional distribution by the following construction. Imagine that all possible217

distributions are stacked vertically to form a table so that column 1 contains the first fragment in all218

distributions, column 2 contains all second fragments and so on. All columns are permutations of each219

other (this follows from the construction of the fragments illustrated in Fig. 1) and since all permutations220

are equally likely (this follows from the condition of random fragmentation), all columns have the same221

fragment and compositional distribution; therefore we only need to consider one of them. The equivalent222
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Figure 2. The compositional distribution ca|k in particles of mass k = 2, 3 and 4. The parent particle contains
MA = 4 units of A, MB = 3 units of B and breaks into N = 4 pieces. Lines are from Eq. (37) and points are
from MC simulation after 20, 000 fragmentation events. The excellent agreement between MC and theory
demonstrates the exact nature of Eq. (37) and validates the MC method. The binomial distribution is only
asymptotically valid and in this case is a poor approximation because the size of the fragments is small.
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problem now is this: count the number of ways to select a beads from a pool of MA A’s and k− a beads223

from a pool of MB B’s and take its ratio over the total number of ways to pick k beads:224

ca|k =

(
MA

a

)(
MB

k− a

)/(
MA + MB

k

)
. (43)

The mean distribution then is the product of the size and compositional distributions:225

〈na|k〉 = 〈nk〉 ca|k, (44)

or226

〈na,b〉
N

=
(MA

a )(MB
b )

(MA+MB
a+b )

Ω(1)
MA+MB−a−b;N−1

Ω(1)
MA+MB ;N

(45)

It is straightforward algebra to show that this is equivalent to Eq. (37).227

For MA � a, MB � b, the compositional distribution goes over to the binomial:228

(MA
a )(MB

b )

(MA+MB
a+b )

→
(

a + b
a

)
φa

Aφb
B, (46)

with φA = MA/(MA + MB), φB = 1− φA. Figure (2) shows compositional distributions for a bicomponent229

particle with MA = 4 units of A and MB = 3 units of B. This is a more compact expression than Eq. (43)230

but is valid only in the asymptotic limit.231

As a means of a demonstration we show the results of a Monte Carlo simulation, which are seen to232

be in excellent agreement with theory. The binomial distribution, also shown for comparison, is only in233

qualitative agreement because the fragment masses are small and the conditions for asymptotic behavior234

are not met in this case.235

2.3. Any number of components236

Extension to any number of components follows in a straightforward manner from the bicomponent237

case but the notation becomes less transparent. Suppose the parent particle consists of K components238

A, B · · · and contains MA units of A, mB units of B and so on. The distribution of fragments is now239

expressed by the K-dimensional vector n = {na,b···} that gives the number of fragments that contain a240

units of component A, b units of B etc. This distribution satisfies241

∑
a,b···

na,b··· = N (47)

∑
a,b···

zna,b··· = MZ; z = a, b · · · (48)

where MZ is the mass of component z = a, b · · · in the parent particle. The set of all distributions242

that satisfy the above conditions constitutes the ensemble of all distributions that are produced by the243

fragmentation of the parent particle into N fragments.244

Random fragmentation is once again implemented as shown in Fig. 1: Given a string of colored beads245

we cut it at N − 1 random points to produce N fragments. All permutations of the beads are equally246

probable. Accordingly, configurations are equally probable. The number of configurations is247
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Ω(K)
m;N = M! Ω(1)

M;N =

(
M!

MA!MB! · · ·

)(
M− 1
N − 1

)
, (49)

where M = MA + MB + · · · is the total mass of the particle and M! = (MA, MB · · · )!. The multiplicity248

ω(n) of distribution n is the number of configurations with that distribution and is given by the number249

of permutations in the order of fragments and in the order of components within each fragment:250

ω(n) = n! ∏
a,b···

(
(a + b + · · · )!

a!b! · · ·

)na,b···
= n! ∏

c
(c!)nc (50)

with c! = (a, b · · · )!. The probability of distribution n is251

P(n) =
ω(n)

Ω(K)
M;N

(51)

and the partition function is the sum of multiplicities of in the ensemble:252

Ω(K)
M;N = ∑

n
ω(n). (52)

The mean distribution of fragments is253

〈nc|k〉
N

= c!
Ω(K)

M−c;N−1

Ω(K)
M;N

(53)

and is the generalization of (37). Alternatively, the mean distribution can be expressed by analogy to Eq.254

(44) as the product of the color blind distribution with a mean compositional distribution:255

〈nc|k〉
N

=
〈nk〉

N
cc|k. (54)

The mean color-blind size distribution 〈nk!/N〉 is the same as in one-component fragmentation,256

〈nk〉
N

=
Ω(1)

M−k;N−1

Ω(1)
M;N

(55)

with M = MA + MB + · · · , k = a + b + · · · , and cc is the conditional probability that the compositional257

vector of fragment size k in the mean distribution is c = (a, b · · · ):258

cc|k =

(
MA

a

)(
MB
b

)
· · ·
/(

M
a + b + · · ·

)
. (56)

This is the generalization of Eq. (43).259

3. Nonrandom bicomponent fragmentation260

In random fragmentation all permutations are equally probable. We now bias the probability of261

the permutation by a functional W(n) of the fragment distribution such that the probability of fragment262

distribution n in is263
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P(n) =
ω(n)W(n)

Ω̃(K)
MA ,MB ;N

(57)

with264

Ω̃(K)
MA ,MB ;N = ∑

n
ω(n)W(n). (58)

with ω(n) from Eq. (50). Here ω(n) is the intrinsic multiplicity of n in the ensemble of fragments, while265

the product ω(n)W(n) .
= ω̃(n) is its apparent (biased) multiplicity as weighted by the bias functional and266

distinguished by the tilde. Similarly, the partition function Ω̃ is the summation of the apparent (biased)267

multiplicities of all distributions in EMA ,MB ;N . All permutations in the same configuration of fragments are268

equally probable under this formulation, as they all have the same distribution n. With W = 1 we recover269

the random case (all permutations in all configurations are equally probable). Accordingly, “random” and270

“unbiased” both refer to uniform bias W = 1.271

3.1. Linear ensemble272

The bias functional W will remain unspecified. This allows us to choose the bias so as to produce any273

desired distribution of fragments. A special but important case is when W is of the product form274

W(n) = ∏
a

∏
b
(wa,b)

na,b , (59)

where wa,b are factors that depend on a and b but not on the fragment distribution itself. The log of the275

bias is then a linear function of n:276

log W(n) = ∑
a

∑
b

na,b log wa,b. (60)

The result states that the log of the bias is homogeneous functional of n with degree 1, i.e. log(λn) =277

λ log W(n) for any λ > 0. We refer to this case as linear bias with the understanding that linearity actually278

refers to the log of W.279

Proposition 5. The mean distribution of fragments under the bias in Eq. (59) is280

〈na,b〉
N

= wa,b

(
a + b

a

) Ω̃(2)
MA−a,MB−b;N−1

Ω̃(2)
MA ,MB ;N

(61)

with281

Ω̃(2)
MA ,MB ;N = N! ∑

n

∞

∏
a=0

∞

∏
b=0

wna,b
a,b

na,b!

(
a + b

a

)na,b

(62)

and the summation over all n that satisfy Eqs. (18)–(20).282

Proof. We write the apparent multiplicity ω̃(n) of distribution n as283

ω̃(n) = N!
∞

∏
a=0

∞

∏
a=b

(αa,b)
na,b

na,b!
, (63)
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and the probability of distribution as284

P(n) =
N!

Ω̃MA ,MB ;N

∞

∏
a=0

∞

∏
a=b

(αa,b)
na,b

na,b!
, (64)

with285

αa,b = wa,b

(
a + b

a

)
, (65)

The claim of Proposition 5 then follows directly from Proposition 4.286

3.2. Composition-independent bias287

If the bias factors are of the form wa,b = ga+b, where gk is a function of a single variable, the acceptance288

probability of a configuration of fragments depends on the mass k = a + b of the fragment but not on its289

composition. This leads to a simple expression for the mean distribution by the following argument. With290

reference to Fig. 1, fix the points where the string is cut; this amounts to fixing the color blind distribution291

of the fragments. All permutations of components are equally probable because they have the same292

distribution. Accordingly, the compositional distribution is the same as in the random case and is given by293

Eq. (43). The size distribution on the other hand is biased and is the same as when the same bias is applied294

to one-component distribution. The final result is295

〈na,b〉
N

=
(MA

a )(MB
b )

(MA+MB
a+b )

〈na+b〉
N

, (66)

where 〈na+b〉 = 〈nk〉 is the one-component size distribution under bias wa,b = ga+b,296

〈nk〉
N

= gk
Ω̃(1)

MA+MB−k;N−1

Ω̃(1)
MA+MB ;N

(67)

with297

Ω̃(1)
MA+MB ;N = N! ∑

n

∞

∏
k=1

gnk
k

nk!
. (68)

Except for special forms of gk the partition function will not be generally available in closed form. Table 1298

summarizes three cases for which exact results are possible. All three cases are associated with distributions299

encountered in binary aggregation [35]. The partition functions in cases 1 and 2 refer to the constant300

and sum kernels, respectively, and are exact; Case 3 is associated with the product kernel and gives the301

asymptotic limit of the partition function for M, N � 1, M/N < 2, conditions that refer to the pre-gel302

state [36].303

In the general case wa,b depends on both a and b explicitly and affects both the size and compositional304

distributions. This case will be demonstrated by simulation in the next section.305

4. Simulation of biased fragmentation306

Except for certain special forms of the bias the mean fragment distribution cannot be calculated307

analytically and the only recourse is stochastic simulation. Here we describe a Monte Carlo (MC) algorithm308

for sampling the ensemble of distributions. We will then use this method to demonstrate result for two309

cases of biased bicomponent fragmentation.310
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Table 1. Closed form results for three composition-independent bias functionals

wa,k−a Ω(1)
M;N

Case 1 1
(

M− 1
N − 1

)

Case 2
kk−1

k!
mM−N N!

M!

(
M− 1
N − 1

)

Case 3‡ 2
(2k)k−2

k!

(
mM−N N!

M!

)2 (M− 1
N − 1

)

‡asymptotically for M, N � 1, M/N < 2

4.1. Monte Carlo sampling by exchange reaction311

Suppose m = ((a1, b1), · · · (aN , bN)) is a configuration of N bicomponent fragments, such that312

fragment i contains ai units of component A and bi units of component B. The probability of configuration313

is equal to the probability of its distribution, P(n), divided by its multiplicity ω(n); from Eq. (57) this314

probability is315

Prob(m) =
W(m)

Ω(2)
MA ,MB ;N

, (69)

where W(m) = W(n) is the bias of configuration m, equal to the bias of its distribution n. If the bias316

functional is of form in Eq. (59) its value for configuration m is317

W(m) =
N

∏
i=1

wai ,bi
. (70)

Here the product if over the N fragments in the configuration, whereas in Eq. (59) it is over all all units a318

and b in the distribution. Suppose that two fragments i and j exchange mass according to the reaction319

(ai, bi) + (aj, bj)→ (a′i, b′i) + (a′j, b′j) (71)

under the conservation conditions ai + aj = a′i + a′j and bi + bj = b′i + b′j. This amounts to a transition320

m→ m′ between configurations with equilibrium constant321

Km→m′ =
Prob(m′)
Prob(m)

=
W(m′)
W(m)

=
wa′i ,b

′
i
wa′j ,b

′
j

wai ,bi
waj ,bj

. (72)

The stationary distribution of this exchange reaction is the same as that in Eq. (57) [35]. Accordingly, the322

ensemble of fragment distributions may be sampled via exchange reactions by tuning the equilibrium323

constant to the selection functional according to Eq. (72).324

To implement this sampling computationally we represent fragments as a list of 1’s (representing325

component A) and 0’s (component B). We pick two clusters i and j at random, merge them into a single326

list, randomize the order of components, and break them into two new fragments by picking a break point327
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at random. We accept the resulting configuration by the Metropolis criterion based on the equilibrium328

constant in Eq. (72): we accept the result of the exchange if rnd ≤ Km→m′ , where rnd is a random number329

uniformly distributed in (0, 1); otherwise we reject. With W = 1 every exchange reaction is accepted,330

which amounts to random fragmentation. The randomization of the order of components in the merged list331

ensures that all permutations are considered with equal probability. If W = 1 the resulting configuration332

is always accepted and the distribution conforms to random fragmentation. This is how the MC results333

in Fig. 2 were obtained and the agreement with the theoretical distribution serves as a validation of the334

numerical algorithm.335

4.2. Two examples336

In random fragmentation (wa,b = 1) the compositional distribution is given by Eq. (43). We may337

choose the bias functional so as to produce deviations in either direction relative to the random case. It is338

possible to produce positive deviations (preferential segregation of components in the fragments relative339

to random mixing) or negative deviations (more intimate mixing than in random mixing). We demonstrate340

both behaviors using the two examples below:341

1. Case I (positive deviations)342

wa,b = (a + 1)α + (b + 1)α (73)

2. Case II (negative deviations)343

wa,b = (a + 1)α(b + 1)α (74)

In Case I the fragment bias wa,b is an additive function of the amounts of the two components.344

Considering that a + b is constrained by mass balance, the fragment bias is large for fragments that are rich345

in either component but small for fragments that are relatively mixed. This ought to favor the formation of346

fragments in which the components are relative segregated. The fragment bias in Case II is a multiplicative347

function of the amounts of the two components. It is large in fragments that contain both components but348

quite small if one component is present in excess of the other. This form ought to produce fragments that349

are better mixed than fragments produced by random fragmentation.350

We test these behaviors in Fig. 3 which shows results for α = 4. In this example the particle contains351

an equal number of units of each component, MA = MB = 20, and breaks into N = 4 pieces. In both352

cases the size distribution deviates from that in random fragmentation. Compositional distributions are353

shown for sieve-cut masses k = 2, 4 and 8. The additive bias (Case I) produces distributions that are more354

spread out relative to the random case. For k = 2, in particular, the compositional distribution is inverted355

relative to the random case. This indicates strong segregation, as the majority of fragments contains either356

A or B, while only few fragments in this size contain both components. As the fragment size increases357

the segregation of components is less pronounced, though always present, as indicated by the fact that358

the random distribution is always narrower. The opposite behavior is observed in Case II: distributions359

are narrower than those in random fragmentation, especially at the smaller fragment sizes. In this case360

the fragments are better mixed relative to the parent particle. As a general trend in both cases, deviations361

from random mixing are most pronounced in small fragment sizes. Large fragments on the other hand are362

close to randomly mixed. There is simply not enough material to produce a large fragment that is highly363

enriched in one component; thus mixing prevails. This limitation is not present in small clusters.364
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Figure 3. Size and compositional distributions at fragment sizes k = 2, 4 and 8 for two bias functionals:
(a)–(d): wa,b = (1 + a)4(1 + b)4; (e)–(h): wa,b = (1 + a)4 + (1 + b)4. In both cases the particle contains
MA = 20 units of A, MB = 20 units of B and breaks into N = 4 fragments.
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5. Concluding Remarks365

We have presented a treatment of multicomponent fragmentation on the basis of random366

fragmentation in combination with an appropriate functional that biases the ensemble of feasible367

distributions. The two key notions in this treatment are the set of feasible distributions and the multiplicity368

of distribution within this set as established by the rules that define “random” fragmentation. In the369

random-fragmentation ensemble distributions are proportional to their multiplicity. This problem is370

analytically tractable and we have presented its solution for any number of component and number of371

fragments. A third key notion is that of the bias functional that modulates the probability of distributions372

of feasible distributions and allows us to obtain fragment distributions other than that of random373

fragmentation with deviations in either direction.374

Random fragmentation is not endowed with any special universality. In certain problems, such as the375

linear chain in Fig. 1, selecting the bonds to break at random might be a reasonable physical model and376

random fragmentation applies; in general though this will not be the case. The importance of random377

fragmentation is mathematical. Similar to the “fair coin” or the “ideal solution,” it provides an analytically378

solvable reference case from which to measure deviations in systems that do not conform to this model.379

The tool that quantifies these deviations is the bias functional. This functional, analogous to the activity380

coefficient in solution thermodynamics [37], permits the systematic construction of distributions that381

exhibit any degree of deviation from the random case. This is a key result of this formulation.382

In single-component fragmentation the quantity of interest is the mean size distribution of the383

fragments. In multicomponent systems we are additionally concerned with the compositional distribution384

of the fragments. This introduces a new dimension to the problem and raises questions of mixing and385

unmixing of components. Do fragments inherit the compositional characteristics of the parent particle?386

Do they become progressively more well mixed or less? Both behaviors are possible and are quantified via387

the bias functional W. This functional is where the mathematical theory of fragmentation presented here388

makes contact with the physical mechanisms that lead to the disintegration of material particles. To make389

this connection quantitatively, one must begin with the a physical model of fragmentation that assigns390

probabilities to all possible distributions of fragments that can be generated. This is a major undertaking391

and is specific to the particular problem that is being considered. The point we wish to make is that392

once such results are available, their reduction into a compositional distribution passes through the bias393

functional, which represents the contact point between physics and the mathematical formulation of394

fragmentation.395

Lastly, the connection to statistical mechanics should not be lost. We have constructed an ensemble396

whose fundamental element (“microstate”) is a the ordered configuration of fragments; its total number397

in the ensemble is the partition function. The higher-level stochastic variable (the observable) is the398

distribution of fragments and its probability is determined by its multiplicity in the ensemble. The form399

of the probability in Eq. (13), also known as Gibbs distribution [27], is encountered in time reversible400

processes as well as in population balances of aggregation and breakup [24–27,38]. The derivation of the401

mean distribution in the random case follows in the steps of the Darwin-Fowler method [39]. Additionally,402

the compositional distribution in random breakup is given asymptotically by the binomial distribution in403

Eq. (46). This establishes a reference for compositional interactions analogous to that of the ideal solution404

in thermodynamics. In fact, the Shannon entropy of the binomial distribution is the ideal entropy of mixing405

when two pure components coalesce into a single particle that contains mass fraction φA of component406

A. These connections are not coincidental. Biased sampling from a distribution generates a probability407

space of distributions and when the base distribution is exponential, this ensemble obeys thermodynamics408

[40]. In fragmentation the base distribution is a multicomponent exponential: the size distribution in Eq.409

(12) goes over to the exponential distribution when M, N � 1. In this limit the ensemble of fragments410
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becomes mathematically equivalent to a thermodynamic ensemble of two components with interactions411

that produce positive or negative deviations relative to ideal solution.412
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