Musculoskeletal wing-actuation model of hummingbirds predicts diverse effects of primary flight muscles in hovering flight

Hummingbirds have evolved to hover and manoeuvre with exceptional flight control. This is enabled by their musculoskeletal system that successfully exploits the agile motion of flapping wings. Here, we synthesize existing empirical and modelling data to generate novel hypotheses for principles of hummingbird wing actuation. These may help guide future experimental work and provide insights into the evolution and robotic emulation of hummingbird flight. We develop a functional model of the hummingbird musculoskeletal system, which predicts instantaneous, three-dimensional torque produced by primary (pectoralis and supracoracoideus) and combined secondary muscles. The model also predicts primary muscle contractile behaviour, including stress, strain, elasticity and work. Results suggest that the primary muscles (i.e. the flight 'engine') function as diverse effectors, as they do not simply power the stroke, but also actively deviate and pitch the wing with comparable actuation torque. The results also suggest that the secondary muscles produce controlled-tightening effects by acting against primary muscles in deviation and pitching. The diverse effects of the pectoralis are associated with the evolution of a comparatively enormous bicipital crest on the humerus.

Files

Metadata

Work Title Musculoskeletal wing-actuation model of hummingbirds predicts diverse effects of primary flight muscles in hovering flight
Access
Open Access
Creators
  1. Suyash Agrawal
  2. Bret W. Tobalske
  3. Zafar Anwar
  4. Haoxiang Luo
  5. Tyson L. Hedrick
  6. Bo Cheng
Keyword
  1. Hummingbird
  2. Musculoskeletal system
  3. Muscle contractile behavior
  4. Flapping flight
  5. Bioinspired robotics
License CC BY 4.0 (Attribution)
Work Type Article
Publisher
  1. Proceedings of the Royal Society B: Biological Sciences
Publication Date December 7, 2022
Publisher Identifier (DOI)
  1. https://doi.org/10.1098/rspb.2022.2076
Deposited January 23, 2023

Versions

Analytics

Collections

This resource is currently not in any collection.

Work History

Version 1
published

  • Created
  • Added 2022_Hummingbird_Musculoskeletal_Wing_Actuation_Agrawal.pdf
  • Added Creator Suyash Agrawal
  • Added Creator Bret W. Tobalske
  • Added Creator Zafar Anwar
  • Added Creator Haoxiang Luo
  • Added Creator Tyson L. Hedrick
  • Added Creator Bo Cheng
  • Published
  • Updated Keyword Show Changes
    Keyword
    • Hummingbird, Musculoskeletal system, Muscle contractile behavior, Flapping flight, Bioinspired robotics
  • Updated