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Information exchange in cartels
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Antitrust authorities view the exchange of information among firms regarding costs, prices, or
sales as anticompetitive. Such exchanges allow competitors to closely monitor each other, thereby
facilitating collusion. But the exchange of aggregate information, perhaps via a third party, is
legal. The logic is that collusion is difficult if the identity of a price-cutting firm cannot be as-
certained. Here, we examine this logic using Stigler’s model of secret price cuts. We first identify
circumstances such that when no information exchange is possible, collusion is difficult. We then
show that if firms’ aggregate sales are made public, nearly perfect collusion is possible.

1. Introduction

� Antitrust authorities in most countries try to restrict the exchange of information among
competitors. In particular, the exchange of firm-specific data regarding costs, prices, and sales is
viewed, at the very least, with suspicion. But the sharing of aggregate data, perhaps via a trade
association or some other third party, is usually deemed to be legal. According to guidelines of
the European Commission:

“Exchanges of genuinely aggregated data, that is to say, where the recognition of indi-
vidualised company level information is sufficiently difficult, are much less likely to lead
to restrictive effects on competition than exchanges of company level data.” (European
Commission, 2011)

In the same vein, the US Federal Trade Commission suggests that competitors establish a
“safety zone” in which “the shared statistics are sufficiently aggregated that no participant can
discern the data of any other participant” (FTC, 2014). The Japan Fair Trade Commission too
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has ruled that the exchange of information “without clearly indicating the quantities, amounts,
etc. of the individual constituent enterprises … ” is permissible (JFTC, 2015).1

What is the logic of these guidelines? Individual data allow firms to monitor each others’
activities better than aggregates and so restrictions on the exchange of individual data limit the
possibility of coordination and collusion. Economic theory also seems to confirm this view. For
instance, Radner, Myerson, and Maskin (1986) show that in a repeated partnership game, imper-
fect public monitoring—where each participant observes only an aggregate—severely restricts
the prospects of cooperation relative to a situation in which individual choices are perfectly ob-
served. When only an aggregate is observed, individual transgressors cannot be identified. In
technical terms, the “pairwise identifiability” condition of Fudenberg, Levine, and Maskin (1994)
fails.2 Leading antitrust scholars, perhaps influenced by the theory, have also claimed that

“[ … ] aggregating the data largely removes the value of information in facilitating collu-
sion.” (Carlton, Gertner, and Rosenfield, 1997)

This seemingly compelling logic notwithstanding, many cartels seem to operate quite suc-
cessfully on the basis of aggregate information alone. Members of the copper plumbing tubes
cartel

“[ … ] set up a new data exchange system—initially on a monthly, later on a quarterly,
basis through the World Bureau of Metal Statistics. WBMS statistics only contained ag-
gregated figures and no company specific information.” (European Commission, 2004)3

In this article, we study a repeated oligopoly with private monitoring in the style of Stigler
(1964). Firms produce differentiated products and compete in prices. Firms’ sales are determined
by all the prices but are subject to individual and market shocks. In the baseline model, firms
cannot observe the prices set by others and so secret price cuts are possible. Rather, firms observe
only their own sales and, as in Stigler (1964), when sales are rather noisy, collusion is hard
to sustain because of the difficulties firms face in monitoring each others’ activities. We then
consider an alternative situation in which a third party—say, a trade association—publicly reveals
aggregate data on sales to all the participants. We assume that the sales data are accurate, perhaps
having been verified by a sufficiently accurate audit.4 We identify circumstances in which without
any information exchange, industry profits in any equilibrium are low, whereas with the public
availability of the aggregate, there exists an equilibrium in which firms’ profits are close to those
in a monopoly. This result suggests that the exchange of information among firms can be harmful
even when it is in aggregate form and the data of any individual participant cannot be discerned.5

Moreover, the potential increase in profits coming from the additional information available to
the firms can be quite large.

How can firms collude using only aggregate data? The key is that whereas individual sales
can be rather variable, aggregate sales are usually much less variable. Thus, if a firm cuts its price
from an agreed upon level, this will cause, with high probability, an increase in aggregate sales

1 In a case involving the titanium sponge industry, the JFTC did not allow the exchange of even aggregate infor-
mation. The reason was that there were only two firms in the industry and so aggregate information could be perfectly
disaggregated (JFTC, 1999).

2 This article considers finite games. See Matsushima (1989) for a similar result that applies to games with contin-
uous actions (as in the current article).

3 Prior to this, the cartel engaged in the direct exchange of sales figures. Thus the cartel chose to move to a system
where only aggregate information was exchanged. See Sugaya and Wolitzky (2018) for a rationalization of this change.

4 In the well-studied lysine cartel case, AC-Treuhand, a Swiss consulting firm, actually audited sales figures (Mar-
shall and Marx, 2008). The sorbates cartel verified reported sales by cross-checking against export figures reported to
the government.

5 Formally, as in Radner, Myerson, and Maskin (1986), the pairwise identifiability condition fails in our model.
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observed by all. Even though the identity of the price cutter is not revealed, firms can use the
aggregate as a signal to go into a punishment mode. This can be sufficient to deter price cuts.
Moreover, the fact that the variability of the aggregate is low means that there is only a small
chance of triggering a punishment if no one has cheated. Put another way, aggregate sales are
sensitive to price cuts but relatively insensitive to demand shocks. In the absence of aggregate
sales data, however, firms would have to rely only on their individual sales to detect such price
cuts. This would lead to large type 1 and/or type 2 errors—not punishing when warranted and
punishing when not—thereby, restricting equilibrium profits.

The key to our result is showing that small price cuts can be adequately deterred. If moni-
toring were perfect, then even the smallest price cut can, of course, be detected with probability
one and punished severely. But with imperfect monitoring, a small price cut has only a negligible
statistical effect on the aggregate and so only a small probability of triggering a punishment. Our
analysis reveals, nevertheless, that if the variability of the aggregate is small yet positive, the
trade-off is not worthwhile—the small potential gains from a small price cut are not enough to
outweigh the small potential losses from being punished.

� Related literature. Genesove and Mullin (2001) present a fascinating account of the in-
ternal functioning of a sugar-refining cartel from the 1920s. Much of our knowledge of how more
recent cartels operate comes from reports of the European Commission which prosecuted over
20 industrial cartels in the 1990s—ranging from amino acids to zinc phosphate. Much of this
material has been conveniently surveyed by Harrington (2006) and Marshall and Marx (2012).
Both have numerous accounts of how cartels use aggregate information disseminated via trade
associations or statistical bureaus. According to Marshall and Marx (2012), in at least 11 of the
22 European cases, collusion was facilitated by third parties.

Our basic model is that of a repeated game with private monitoring in which firms set
price and observe only their own sales. When sales are noisy, this channel is a poor method
of monitoring and so profits are limited. This, of course, was suggested by Stigler (1964) and
we use the methodology developed in our earlier work, Awaya and Krishna (2019), to quantify
Stigler’s argument.

When aggregate sales information is available, the situation changes to one with public
monitoring—all firms observe aggregate sales. There has been extensive interest in the ques-
tion of when cooperation is or is not possible when monitoring is public. Radner, Myerson, and
Maskin (1986) showed in an example that if deviators could not be identified via the public sig-
nals, then cooperation is impossible even when firms are arbitrarily patient. Identifiability plays
a key role in the work of Fudenberg, Levine, and Maskin (1994), who showed that when public
signals satisfy a pairwise identifiability condition, a “folk theorem” emerges. In finite games,
identifiability requires that the number of public signals is large relative to the number of actions.
In our model, there is a continuum of signals (aggregate sales) and actions (prices) and an analog
of the identifiability condition due to Matsushima (1989) is not satisfied. To see this simply, con-
sider a situation in which the public signal is just the total industry sales. When industry sales are
high, it is likely that someone deviated but the identity of the deviator cannot be deduced. Never-
theless, our main result is that collusive equilibria are possible even based only on nonidentifiable
signals. The reason is that, unlike earlier work, our result is not in the nature of a “folk theorem”
in which the signal structure is held fixed and firms’ discount factor is varied. We carry out a
different exercise—the discount rate is held fixed and we ask what happens as the public signals
become less noisy.

Formally, our results concern equilibria with two different monitoring structures. In the
base case, firms rely only on their own sales to ascertain the situation and we compare this to a
situation in which, in addition, aggregate sales data is available. Kandori (1992) has shown that
in games with imperfect public monitoring, more informative signals (in the sense of Blackwell)
weakly enlarge the set of public perfect equilibria. In our model, the base case is one of private
monitoring and so Kandori’s result cannot be used.
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Marshall and Marx (2008) study how aggregate data can aid collusion but in a model with a
homogenous product and large demand shocks. In such a setting, a price cut by a firm results in
zero sales of other firms. Aggregate sales data is useful because if a firm’s sales are zero whereas
aggregate sales are positive, then it knows that a rival cut its price. On the other hand, if there
is a large negative demand shock and aggregate sales are zero as well, then firms presume that
no one deviated. This means that the chances that the cartel will break down even if no one has
deviated are zero—there is no type 1 error.

In a recent article, Sugaya and Wolitzky (2018) also study the role of aggregate information
in cartels where each firm is a local monopoly. Market-specific sales information may reveal to
rivals that a particular market is attractive for entry. But such a deviation would not be possible
if only aggregate information were available. For this reason, the exchange of aggregate infor-
mation may be better for the cartel. In this model, the monitoring problem is trivial because if
one firm enters another firm’s market, this is detected immediately. In our model, the monitoring
problem is paramount. Moreover, whereas we are comparing a situation with no information ex-
change to one where aggregate information is exchanged, Sugaya and Wolitzky (2018) compare a
situation where only aggregate information is exchanged to one where firm-specific information
is exchanged.

There are a number of articles that have looked at how firm-specific sales information can aid
collusion. This line of research is pursued in Aoyagi (2002), Harrington and Skrzypacz (2011),
and our earlier work, Awaya and Krishna (2016). Aryal, Ciliberto, and Leyden (2018) have shown
how such communication affects price movements in the airline industry. In these models, sales
information cannot be verified but equilibrium strategies guarantee that all firms have the incen-
tive to report truthfully. In this article, we show that when only aggregate information is made
public, it is difficult to achieve truthful reporting of sales. The sharing of firm-specific cost infor-
mation is studied by Athey and Bagwell (2001).

We study the question of whether aggregate information facilitates collusion in a model with
private monitoring, but the same question could be posed in the context of Green and Porter’s
(1984) model of public monitoring as well. In the Green–Porter model, firms choose quantities
of a homogeneous product and the single market price is then determined by the total quan-
tity placed on the market as well as by shocks to market demand. Thus, although the price is
stochastic, total sales are not—these are completely determined by the choices of the firms. In
the Green–Porter model, imperfect monitoring results from the fact that firms observe only the
stochastic price and not total sales. If total sales figures were to be publicly announced, it would
be rather simple to detect a deviation—firms would see an increase in total sales, whereas the
deviator’s identity would still be hidden, a strategy that called for firms to react by playing the
one-shot equilibrium would be enough to deter any cheating.

The remainder of this article is organized as follows. Section 2 outlines the basic model and
formally defines the two repeated games we compare—one without aggregate information and
one with. Section 3 then shows that without aggregate information firms have great difficulty in
colluding when sales are rather noisy. The next section then identifies circumstances in which
the dissemination of aggregate sales information, say by a trade association, facilitates collusion.
Section 5 combines the results of the two previous sections to formally state our main finding.
The model in Section 4 assumes that the aggregate information is accurate and in Section 6 we
ask whether the firms in the cartel have the incentive to report their sales truthfully to the trade
association. Section 7 concludes.

2. The market

� Consider a market with n ≥ 2 symmetric firms. The firms produce differentiated prod-
ucts at a constant cost, which we set to zero without loss of generality. The products are
imperfect substitutes and firms compete in prices. Each firm i sets a price pi ∈ [0, pmax], for
its product and its sales, denoted by Yi, are stochastically determined by the prices set by all

C© The RAND Corporation 2020.
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firms p = (p1, p2, . . . , pn).6 We assume that given the prices p, firms’ sales Y = (Y1,Y2, . . . ,Yn)
are jointly distributed according to a multivariate log-normal density f (· | p), or equivalently,
firms’ log sales ln Y = (lnY1, lnY2, . . . , lnYn) are normally distributed. Specifically, log-sales are
jointly distributed according to a multivariate normal distribution of the form N (μ(p), �) where
μ(p) = E[ln Y | p] and � is the variance–covariance matrix. Notice that although the prices p
affect the expected log-sales μ(p), they do not affect �.

The expected sales of firm i’s product are

E[Yi | p] = qi(pi, p−i)

where the function qi is decreasing in pi and increasing in pj for j �= i. Furthermore, the function
qi is symmetric in the last n − 1 components—that is, the prices of other firms can be inter-
changed without affecting i’s expected sales.

The variance–covariance matrix is assumed to be of the form

� = σ 2

⎡⎢⎢⎢⎢⎢⎣
1 ρ · · · ρ

ρ 1 ρ

...
. . .

ρ ρ 1

⎤⎥⎥⎥⎥⎥⎦
where σ 2 is the variance of individual log sales and ρ < 0 is the pairwise correlation coefficient.
Firms’ log sales are thus negatively correlated and the requirement that � be positive definite is
equivalent to the condition that ρ > − 1

n−1
. The assumption that log sales are negatively correlated

is equivalent to assuming that idiosyncratic demand shocks are larger in magnitude than industry-
wide demand shocks. In other words, for a given price vector p, market demand is relatively
stable.7

Note that the expected sales of a firm can be written as

E[Yi | p] = exp
(
μi(p) + 1

2
σ 2
)

Firms maximize their expected profits:

πi(pi, p−i) = piqi(pi, p−i)

and we suppose that πi is strictly concave in pi. In addition, we require

Condition 1. For all i, qi is log-concave in pj, j �= i.

Condition 2.
n∑

j=1

eji < 0

where eji = ∂ ln q j

∂ ln pi
denotes the elasticity of j’s expected demand with respect to i’s price.

Both conditions are restrictions on the shape of demand. Condition 2 is just the elasticity
version of the condition that the “own-price effect” is greater than the sum of the “cross-price
effects.” When demand is linear, that is,

qi(pi, p−i) = α − βpi + 1

n − 1

∑
j �=i

p j (1)

6 Throughout, bold face characters denote vectors. As usual, if p is a vector of prices, we write (p′
i, p−i ) to denote

the vector where the ith component of p has been replaced by p′
i.

7 Harrington and Skrzypacz (2011) also study a model where firms’ sales are negatively correlated. Indeed, their
model total sales, although stochastic, are independent of prices.
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Condition 1 is satisfied, of course, and Condition 2 holds if β is large enough.

� Stage game. Let G denote the one-shot game where the firms choose prices pi and the
resulting expected profits are πi(pi, p−i).

We will assume that pM = (pM , pM , . . . , pM ) is the unique solution to the monopolist’s prob-
lem:

max
p

∑
i

πi(p)

and let πM be the resulting profits per firm. For technical reasons, we will also assume that a firm’s
expected sales are bounded away from zero. Of course, pmax is assumed to be no smaller than pM .
Let pB be a firm’s best response to a situation in which all the other firms set the monopoly price
pM , that is,

pB = arg max
p1

π1

(
p1, pM

−1

)
(2)

Our conditions guarantee that there exists a symmetric Nash equilibrium price pN of G and
let πN be the resulting profits of a firm. 8 We assume that monopoly pricing does not constitute
a Nash equilibrium, a property of most reasonable models of competition. We will also make
use of the following notion introduced by Moulin and Vial (1978): a joint distribution χ over the
prices of all firms is a coarse correlated equilibrium (CCE) if for all i and all pi,

Eχ [πi(P)] ≥ Eχ−i
[πi(pi, P−i)]

where P is the vector of random variables denoting prices and all expectations are taken with
respect to the distribution χ . Every Nash equilibrium is, of course, a CCE with zero correlation—
that is, one in which the distribution χ is a product of its marginals (the mixed strategies of
firms).9 Correlation in the choices of firms will be important when we consider the repeated
version of G because firms’ prices will become correlated via the information they receive.

For ε > 0, an ε-coarse correlated equilibrium (ε-CCE) is a distribution χ such that for all i
and all pi,

Eχ [πi(P)] ≥ Eχ−i
[πi(pi, P−i)] − ε

� Repeated game. We will study a repeated game Gδ where firms use the discount factor
δ < 1 to discount future profits. In each period t, firms choose prices pt and given these prices,
the sales Yt of all the firms are realized as described above. Following Stigler (1964), each firm
i observes only its own realized sales yt

i ; it observes neither the prices set by other firms nor
their sales.

Let (p1
i , y1

i , p2
i , y2

i , . . . , pt−1
i , yt−1

i ) denote the private history of firm i after t − 1 periods. A
strategy si for firm i is a collection of functions (s1

i , s2
i , . . .) such that in period t, st

i determines,
for each private history, a distribution over the set of prices [0, pmax]. Note that the possibility
that firms may randomize is permitted. A strategy profile s is simply an n-tuple of strategies
(s1, s2, . . . , sn). A Nash equilibrium of Gδ is strategy profile s such that for each i, the strategy si

is a best response to s−i.

� Repeated game with aggregate information. We will compare equilibria of the repeated
game Gδ with those of an alternative game GA

δ
in which, in addition to their own sales, firms

8 If the one-shot game has multiple symmetric Nash equilibria, let pN denote the Nash equilibrium price with the
lowest equilibrium profits.

9 More generally, every correlated equilibrium is also a CCE (and not necessarily vice versa).
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also receive a public signal A which is an aggregate of industry sales. In what follows, we will
suppose that

ln A = 1

n

n∑
j=1

lnYj

that is, ln A is the arithmetic mean of log sales, or equivalently, A is the geometric mean of sales.10

When such aggregate information is available, a firm’s strategy can depend not only
on its private history of prices and sales but also on the realizations of all past aggregates
(a1, a2, . . . , at−1). A special class of strategies are those in which firms’ choices depend only
on the history of aggregates (a1, a2, . . . , at−1) and as these are publicly known, such strategies
are called public strategies.

The particular aggregate chosen here—mean of log sales—is particularly convenient be-
cause, at prices p, if (lnY1, lnY2, . . . , lnYn) are jointly distributed according to the multivari-
ate normal N (μ(p), �) then the aggregate ln A is distributed according to a univariate normal
N (μ(p), θ 2) where the expectation of ln A is

μ(p) = 1

n

n∑
j=1

μ j(p) (3)

that is, the average of the firms’ expected log sales, and the variance of ln A is

θ 2 = 1

n
σ 2(1 + (n − 1)ρ) (4)

Later we will make use of the fact that for fixed σ 2, as ρ → − 1
n−1

, θ 2 → 0.

3. Bound with no information exchange

� In this section, we use the methodology developed in our earlier work, Awaya and Krishna
(2019), to bound the equilibrium profits in the repeated game Gδ in which no information is
exchanged and firms observe only their own sales. The next section will then show how this
bound can be overcome once aggregate sales information is available.

Specifically, in Awaya and Krishna (2019) we showed that the set of Nash equilibrium (NE)
payoffs of the repeated game Gδ is contained in the set of ε-CCE of the stage game G (see
Section 2 for a definition) for a value of ε that depends on the discount factor δ, the quality of
monitoring η and the payoffs in G. Precisely,

NE(Gδ ) ⊆ ε-CCE(G) (5)

where ε = δ2

1−δ
η‖π‖∞.

The key parameter determining ε is η—the quality of monitoring. We measure this as fol-
lows. Consider two price vectors p and p′ and the resulting joint distributions of the sales of firms
other than i, given by the multivariate log-normal densities f−i(· | p) and f−i(· | p′). If these two
distributions are close together, then it will be difficult for firms j �= i to detect the change from
p to p′. Thus, the quality of monitoring can be measured by the maximum “distance” between
any two such distributions. As in Awaya and Krishna (2019), we use the so-called total variation
metric to measure this distance. Because f is symmetric, the quality of monitoring is the same
for all firms.

10 A model where firms’ sales are themselves normally distributed and the aggregate is just the sum of these is
virtually isomorphic to the one studied here. The drawback of this alternative model, not present in the log-normal
model, is that sales would be negative with positive probability.
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Definition 1. The quality of monitoring of f is defined as

η = max
p,p′

∥∥ f−i(· | p) − f−i(· | p′)
∥∥

TV

where f−i is the marginal of f on Y−i and ‖ f − g‖TV denotes the total variation distance between
densities f and g.11

We now argue that as σ 2 → ∞, η → 0. Because the total variation distance is unaffected
by monotonic transformations, we also have

η = max
p,p′

∥∥N (μ−i, �−i) − N (μ′
−i, �−i

)∥∥
TV

where μ−i = μ−i(p) and μ′
−i = μ−i(p′) and �−i is the (n − 1) × (n − 1) submatrix of � obtained

by deleting the ith row and ith column of �.
Although the total variation distance between two multivariate normal distributions can-

not be written in closed form, a useful upper bound to the total variation distance between two
distributions f and g is given by

‖ f − g‖TV ≤
√

2H ( f , g)

where H denotes that Hellinger distance between the distributions. For normal distributions with
the same variance–covariance matrix, an explicit formula is

H
(N (μ−i, �−i),N

(
μ′

−i, �−i

)) =
√

1 − exp
(− 1

8
(�μ−i)

T (�−i)
−1

�μ−i

)
where �μ−i = μ−i − μ′

−i is the difference in means. The determinant of the (n − 1) × (n − 1)
matrix �−i is

det �−i = σ 2(1 − ρ)n−2(1 + (n − 2)ρ)

which is an increasing function of ρ over the interval (− 1
n−1

, 0). Thus, for any ρ > − 1
n−1

,

det �−i > σ 2

(
n

n − 1

)n−2( 1

n − 1

)
Thus, as σ 2 → ∞, det �−i → ∞ and hence the quadratic form in the expression for H goes
to zero. This implies for any η, there exists a σ 2 such that for all σ 2 > σ 2, η < η for all ρ ∈
(− 1

n−1
, 0). Note that σ 2 can be chosen independently of ρ.

It is easy to see that monopoly profits cannot be attained in any CCE of G. This is because
pM is the unique maximizer of joint profits and so the only way to attain these profits in a CCE
would be to put probability one on this price vector. But then a firm has a profitable deviation as
monopoly prices do not constitute a Nash equilibrium of G. This result then implies,

Proposition 1. For σ 2 large enough (and hence η small enough), the profits in any equilibrium
of Gδ are bounded away from monopoly profits.

� Linear demand. Proposition 1 establishes that when sales are quite variable, profits in
any equilibrium of the repeated game without information exchange Gδ are bounded away from
monopoly profits. This relies on the fact that for the one-shot price-setting game G we study, the
set of CCE is itself bounded away from monopoly profits. We now show that when (expected)
demands qi are linear in prices, no CCE can result in greater profits than those in the unique Nash
equilibrium of the game. Thus with linear demand, the gap between monopoly profits and the set
of CCE profits is as large as possible. For the case of a duopoly, this is implied by a result of

11 The total variation distance between two densities f and g on X is defined as ‖ f − g‖TV = 1
2

∫
X | f (x) − g(x)|dx.
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Gérard-Varet and Moulin (1978).12 The following result extends this to any number of firms and,
more important for our purposes, generalizes to include ε-CCE (allowing for the possibility of
ε = 0 as a special case).

Lemma 1. Suppose that for all i,

qi(pi, p−i) = α − βpi + 1

n − 1

∑
j �=i

p j

where β > 1. Then the ε-CCE of the one-shot price-setting game G that maximizes industry
profits is a pure strategy ε-Nash equilibrium.

Proof. The set of ε-CCE distributions is, by definition, convex. Because the price game is sym-
metric, this means that there is a symmetric ε-CCE distribution χ that maximizes industry profits.

The expected profits of firm i in this ε-CCE is

E[πi(P)] = E

[
Pi

(
α − βPi + 1

n−1

∑
j �=i

Pj

)]
(6)

where the expectation is taken over the random prices P = (P1, P2, . . . , Pn) with respect to χ .
Now as χ is symmetric, routine calculations show that

E[πi(P)] = E[P](α − βE[P] + E[P]) − (β − Corr)Var[P]

where E[P] is the common expectation of all the Pi, Var[P] is the common variance and Corr is
the common pairwise correlation coefficient between any two Pi and Pj. This can be rewritten as

E[πi(P)] = πi(E[P]) − (β − Corr)Var[P]

that is, the profits at the expected prices less a term that depends only on the correlation and
variance of the distribution χ .

The symmetric ε-CCE that maximizes industry profits is the solution to the problem: choose
E[P], Var[P], and Corr to

max πi(E[P]) − (β − Corr)Var[P]

subject to: for all i,

πi(E[P]) − (β − Corr)Var[P] + ε ≥ max
pi

πi(pi, E[P−i])

Because β > 1 ≥ Corr, any feasible, symmetric χ with Var[P] > 0 is inferior to a degener-
ate distribution on E[P] with Var[P] = 0. This is because the degenerate distribution would still
satisfy the constraints and lead to a higher value for the objective function. But any degenerate
distribution that is feasible is a pure-strategy ε-Nash equilibrium. �

Using Lemma 1 we obtain the following strengthening of Proposition 1.

Corollary 1. Suppose demand is linear and β > 1. Total industry profits in any equilibrium
of Gδ approach the total profits in the unique Nash equilibrium of the one-shot game G as σ 2

becomes large.

12 Gérard-Varet and Moulin (1978) have also shown that with nonlinear demand, there may be CCE with profits
that exceed those in any one-shot Nash equilibrium. Moulin, Ray, and Sen Gupta (2014) exhibit other examples of this
in two-person games with quadratic payoffs.
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4. Equilibrium with aggregate sales information

� Having shown that firms’ profits are bounded away from monopoly profits when no infor-
mation is exchanged, we now ask whether aggregate information can, in fact, help firms col-
lude to near-monopoly levels. In this section, we will establish that there are circumstances—
pertaining to the correlation in sales—such that aggregate information can facilitate collusion
even though it does not identify transgressors. Indeed, we will show that near-perfect collusion
is possible using rather simple “trigger strategies” in which firms start by charging the monopoly
price and permanently revert to punish via the one-shot Nash equilibrium if the aggregate of
sales ever exceeds a predetermined threshold. We emphasize that our result is not a “folk theo-
rem” in which the monitoring structure (the stochastic relationship between prices and sales) is
held fixed and the question is whether it is possible for firms to collude as the discount factor goes
to one. Indeed because the information available to firms is in aggregate form, the identifiability
problem does not allow a high degree of collusion even for high discount factors. Our analysis
proceeds along a different path. We hold the discount factor to be fixed and then instead change
the monitoring structure. Of course, the discount factor cannot be arbitrarily small. At the very
least, it should be high enough so that collusion is possible with perfect monitoring and we first
determine this minimum level.

� Perfect monitoring benchmark. Consider an artificial situation with perfect monitoring
in which firms can observe each other’s actions—the prices set by all firms—perfectly. In this
case, a simple “grim trigger” strategy—charge pM and continue to do so if all firms have charged
pM in all past periods; otherwise, charge pN —suffices to sustain monopoly prices as long as δ

is high enough. Specifically, with perfect monitoring, the grim trigger strategy constitutes an
equilibrium as long as

πM ≥ (1 − δ)π1

(
pB
)+ δπN

where pB is a firm’s stage game best response to all other firms setting the monopoly price pM

and to save on notation, we write π1(pB) = π1(pB, pM
−1). The inequality above is equivalent to

δ ≥ δ ≡ π1(pB) − πM

π1(pB) − πN
(7)

We will refer to δ as the perfect monitoring benchmark.

� A collusive equilibrium. The main result of this section is

Proposition 2. Fix δ > δ. When the variance of the aggregate, θ 2, is small enough, there ex-
ists a collusive equilibrium of the repeated game GA

δ
with aggregate sales information. As θ 2

approaches zero, the profits from these equilibria approach monopoly levels.

To establish the proposition, we will propose an explicit strategy for the firms. As mentioned
above, firms’ behavior will be dictated by a trigger value for the aggregate. We will then show
that the proposed strategies constitute an equilibrium as θ 2 becomes small, or equivalently, for
fixed σ 2, ρ approaches − 1

n−1
. Moreover, the equilibrium profits will approach monopoly levels

when the variability of total sales is small.13

� Strategies. Consider the following analog of the “grim trigger” strategy with a publicly
known trigger—a specific value a for the aggregate A (the exact value of the trigger a will be
determined later):

13 This is in contrast to the model of Harrington and Skrzypacz (2011) where total sales vary but independently
of prices.
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• In period 1, set the monopoly price pM .
• In any period t > 1, set the monopoly price if and only if in all past periods τ < t the aggregate

Aτ ≤ a. Otherwise, set the Nash price pN .

We will now show that for an appropriate choice of the trigger, a, the strategies given above
constitute an equilibrium.

Suppose all firms follow the suggested strategy and for all τ < t − 1 the condition Aτ ≤ a
has been satisfied so that in period t − 1 all firms set pM . If all firms charge pM , then the aggregate
ln A is normally distributed with mean μM ≡ μ(pM ) and variance θ 2. The probability that the
firms will then set pM in period t is just

Pr
[
At−1 ≤ a

] = Pr
[
ln At−1 ≤ ln a

]
= �

(
ln a − μM

θ

)
where � is the cumulative distribution function of the standard normal N (0, 1). If all firms
follow the suggested strategy, the resulting discounted average payoff of any firm must satisfy

v = (1 − δ)πM + δ

[
�

(
ln a − μM

θ

)
v +

(
1 − �

(
ln a − μM

θ

))
πN

]
and so

v =
(1 − δ)πM + δ

(
1 − �

(
ln a−μM

θ

))
πN

1 − δ�
(

ln a−μM

θ

) (8)

If firm 1, say, deviates and charges a price p1 in period t, then its per-period profits are

(1 − δ)π1(p1) + δ

[
�

(
ln a − μ(p1)

θ

)(
v − πN

)+ πN

]
where, to save on notation, we write

π1(p1) = π1

(
p1, pM

−1

)
as the expected per-period profits of firm 1 when it charges p1 and all other firms charge the
monopoly price pM and

μ(p1) = 1

n

∑
j

μ j

(
p1, pM

−1

)
is the industry mean of the expected log sales in the same circumstances.

Firm 1 does not have an incentive to deviate as long as: for all p1

(1 − δ)πM + δ

[
�

(
ln a − μM

θ

)(
v − πN

)+ πN

]
≥ (1 − δ)π1(p1) + δ

[
�

(
ln a − μ(p1)

θ

)(
v − πN

)+ πN

]
After substituting for v from (8) and rearranging terms, this becomes: for all p1

1 − δ�
(

ln a−μ(p1 )
θ

)
1 − δ�

(
ln a−μM

θ

) − π1(p1) − πN

πM − πN
≥ 0 (9)

It will be convenient to rewrite the incentive condition (9) by changing the variable
from prices p1 ∈ (0, pmax] to “log quantities,” specifically, industry mean expected log sales
m ∈ [μ(pmax), μ(0)). Because all other firms are charging pM , every price p1 of firm 1 induces
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a value of m uniquely and vice versa. To see the latter, notice that Conditions 1 and 2 (see Sec-
tion 2) imply that μ(p1) is a decreasing and concave function of p1 over the interval (0, pmax].
With this change of variable, (9) is equivalent to the statement that for all m ∈ [μ(pmax), μ(0)),

Lθ (m) ≡ 1 − δ�
(

ln a−m
θ

)
1 − δ�

(
ln a−μM

θ

) − �1(m) − πN

πM − πN
≥ 0 (10)

where �1(m) = π1(μ−1(m)). Because μ is decreasing and concave, so is μ−1 and the concavity
of π1 implies that �1 is concave as well. Of course, Lθ (μM ) = 0.

We will show below that when θ is small enough, for an appropriate choice of the trigger
threshold a = aθ , Lθ (m) ≥ 0 for all m ∈ [μ(pmax), μ(0)).

� Choice of trigger. The trigger is chosen so that no local deviation around monopoly is
profitable. In other words, the trigger is chosen to satisfy L′

θ
(μM ) = 0 and this can be done when

θ is below a threshold. Later we will show that when θ is small enough, this choice of a will also
make large deviations unprofitable.

Lemma 2. For all δ, there exists a θ ∗ such that for all θ < θ ∗ there is an aθ such that when a = aθ ,
Lθ attains a local minimum at μM .

Proof. Note that

L′
θ

(
μM
) = 1

θ

δφ
(

ln a−μM

θ

)
1 − δ�

(
ln a−μM

θ

) − �′
1(μM )

πM − πN

where φ ≡ �′ is the density of the standard normal N (0, 1).
Consider the function

λ(z) ≡ δφ(z)

1 − δ�(z)

This has a unique maximum at z∗ > 0, is decreasing for all z > z∗, and approaches 0 as z → ∞
(see Appendix A). Note that z∗ depends only on δ. Let θ ∗ be such that

1

θ ∗
δφ(z∗)

1 − δ�(z∗)
− �′

1(μM )

πM − πN
= 0

For any θ < θ ∗, there exists a unique zθ > z∗ that solves

1

θ

δφ(zθ )

1 − δ�(zθ )
− �′

1(μM )

πM − πN
= 0

and now let the trigger aθ be chosen to satisfy

ln aθ − μM

θ
= zθ > 0 (11)

Moreover, when a = aθ

L′′
θ

(
μM
) = 1

θ 2

δφ(zθ )zθ

1 − δ�(zθ )
− �′′

1 (μM )

πM − πN
> 0

because φ ′(z) = −zφ(z) and �′′
1 (μM ) < 0. �

� Preventing large deviations. The choice of the trigger aθ as in Lemma 2 prevents small
deviations around μM . We now complete the proof that the strategies constitute an equilibrium
by showing that, in fact, they deter large deviations as well. Precisely, once θ is small enough, for
all m, Lθ (m) ≥ 0. Specifically,
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FIGURE 1

A DEPICTION OF THE CONVERGENCE OF Lθ TO L0

Lemma 3. For any δ > δ, the perfect monitoring benchmark, there exists a θ such that for all
θ < θ ,

Lθ (m) > 0

for all m ∈ [μ(pmax), μ(0)).

The proof of Lemma 3 is rather involved and so we begin by outlining the main elements.
First, it is useful to divide the potential deviations into three cases depending on the value of m.

(1) μ(pmax) ≤ m ≤ μM

(2) μM < m ≤ μB

(3) μB < m < μ(0)

Case 1 considers deviations such that m is smaller than μM (or equivalently, deviations in
which a firm raises its price above the monopoly price pM ). Some routine calculations show that
L′

θ
< 0 for all m ≤ μM . Moreover, it attains a minimum value of 0 at m = μM and so Lθ > 0 for

all m < μM . Note that although charging such high prices may not be profitable in the short run,
there is a long-run benefit in that this increases the probability that the cartel will continue to
charge pM in the future. The argument above then establishes that the short-run losses outweigh
any long-run benefits.

Case 3 considers deviations such that m is larger than even μB (or equivalently, deviations in
which a firm undertakes a severe price cut below pB) In this case, it is easy to verify that L′

θ
> 0.

Now there is no trade-off between the short run and the long run—an increase in m (or a decrease
in p1) decreases both current profits and makes punishment more likely.

Although it is relatively simple to rule out deviations in Cases 1 and 3, doing so for Case 2
is complicated and constitutes the bulk of the proof. This is because Case 2 considers moderate
increases in m above μM . Equivalently, it considers moderate price cuts from pM which affect the
aggregate only slightly. For such deviations, the short-run versus long-run trade-off causes L′

θ
to

change sign, perhaps more than once (see Figure 1). Thus, it is difficult to identify a “best” devi-
ation and so a different approach is needed. The main idea here is to show that as θ gets small,
Lθ monotonically approaches L0, the corresponding function for θ = 0. The latter is equivalent
to a situation with perfect monitoring. The difficulty here is that L0 is a discontinuous function
(formally defined below in (12)). This is because, with perfect monitoring, even the smallest de-
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viation triggers a large punishment with probability one. The main argument rests on the fact that
Lθ converges pointwise to L0 (Lemma 9). But because L0 is discontinuous at μM , the pointwise
convergence of Lθ to L0 by itself does not guarantee that Lθ (m) ≥ 0 for m close to μM . In other
words, it is possible that small price cuts from pM may have a such a small probability of being
detected that they turn out to be profitable. To rule out this possibility, a closer examination of
the local behavior of Lθ in a neighborhood of μM (resulting from small price cuts) is needed and
taking care of all these details account for the somewhat lengthy proof.

Figure 1 illustrates the functions Lθ and L0 for the case of linear demand.14 The figure depicts
the functions Lθ for values of θ such that θ1 < θ2 < θ3 as well as the (discontinuous) function L0.
When θ is large (that is, θ = θ3), aggregate log sales are quite variable and the incentive condition
fails. As θ decreases to θ2, and then to θ1, aggregate sales become less variable and deviations
become unprofitable.

� Proof of Lemma 3.

Case 1. μ(pmax) ≤ m ≤ μM . Note that

L′′
θ
(m) = 1

θ 2

δφ
(

ln aθ −m
θ

)
1 − δ�

(
ln aθ −μM

θ

)( ln aθ − m

θ

)
− �′′

1 (m)

πM − πN

again using the fact that for the standard normal density φ ′(z) = −zφ(z). As �′′
1 (m) < 0, we have

that for all m ≤ μM

L′′
θ
(m) > 0

and so Lθ is strictly convex in the interval [μ(pmax), μM ]. Moreover, because the trigger is chosen
so that L′

θ
(μM ) = 0 (see Lemma 2) this means that Lθ reaches a minimum at μM ; that is, for all

m ∈ [μ(pmax), μM ), Lθ (m) > Lθ (μM ) = 0.

Case 2. μM ≤ m ≤ μB. Define

L0(m) =
{

0 if m = μM

1
1−δ

− �1(m)−πN

πM −πN if m �= μM (12)

Unlike the case for θ > 0, L0 is discontinuous at μM and in fact,

lim
m→μM

L0(m) = δ

1 − δ
(13)

and by comparing (10) to (12), it is easily verified that for all θ > 0, Lθ < L0. Moreover,

L′
θ
(m) > L′

0(m)

a fact that will play a key role below.
Define m̂θ to be the maximizer of Lθ in the interval [μM , μB]. From Lemma 10 in Appendix

B, as θ → 0, lim m̂θ = μM and lim Lθ (m̂θ ) = δ

1−δ
.

Three subcases have to be considered separately. Recall from (11) that μM < ln aθ .
First, if μM < m ≤ ln aθ , the same argument as in Case 1 shows that both Lθ (m) > 0 and

L′
θ
(m) > 0. Because m̂θ maximizes Lθ in [μM , μB], this implies that ln aθ < m̂θ .

Second, if ln aθ < m ≤ m̂θ , then

14 Specifically, n = 3 and δ = 0.7. The expected demand of firm i is qi = 10 − 2pi + 1
2
(pj + pk ).
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Lθ (m) = Lθ (ln aθ ) +
∫ m

ln aθ

L′
θ
(s)ds

≥ Lθ (ln aθ ) +
∫ m

ln aθ

L′
0(s)ds

≥ Lθ (ln aθ ) +
∫ m̂θ

ln aθ

L′
0(s)ds

as L′
θ
> L′

0 and L′
0 < 0. In the limit we have

lim
θ→0

Lθ (m) ≥ lim
θ→0

Lθ (ln aθ ) +
∫ lim m̂θ

lim (ln aθ )

L′
0(s)ds

= 1

2

δ

1 − δ

> 0

using Lemma 11 in Appendix B and the fact that lim m̂θ = lim(ln aθ ) = μM .
Finally, suppose that m̂θ ≤ m ≤ μB. Then,

Lθ (m) = Lθ (m̂θ ) +
∫ m

m̂θ

L′
θ
(s)ds

≥ Lθ (m̂θ ) +
∫ m

m̂θ

L′
0(s)ds

and taking limits and using (13), we have

lim
θ→0

Lθ (m) ≥ δ

1 − δ
+ lim

θ→0

∫ m

m̂θ

L′
0(s)ds

= L0

(
μM
)+

∫ m

μM

L′
0(s)ds

= L0(m)

> 0

where L0(μM ) = lims→μM L0(s) and L0(m) > 0 by our choice of δ.

Case 3. μB ≤ m ≤ μ(0). In this region

L′
θ
(m) = 1

θ

δφ
(

ln aθ −m
θ

)
1 − δ�

(
ln aθ −μM

θ

) − �′
1(m)

πM − πN

is positive because �′
1(m) < 0 for m > μB. Now because Lθ (μB) > 0 for small θ , then so is

Lθ (m).
This concludes the proof of Lemma 3.

5. Main result

� The main result then combines the findings of the previous two sections. In particular,
Proposition 1 shows that there is a σ (which can be chosen independently of ρ) such that for
all σ > σ , the profits from any equilibrium without aggregate information are bounded away
from monopoly levels. Proposition 2 shows that for any fixed σ , when ρ is small enough (and
hence θ is small as well), there exists an equilibrium with aggregate information whose profits
approximate monopoly.

Thus, we have
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Theorem 1. Fix δ > δ, the perfect monitoring benchmark. There exists a σ such that for ev-
ery σ > σ there exists a ρσ such that for all ρ < ρσ , there is an equilibrium with aggregate
sales information whose profits exceed that from any equilibrium without such information. In
the limit, for fixed σ , as ρ ↓ − 1

n−1
, profits from the equilibrium with aggregate sales approach

monopoly profits.

� Linear demand. An upper bound to the gains from the exchange of aggregate sales infor-
mation over no exchange is πM − πN . In the case of linear demand, this bound can be arbitrarily
approached when σ is large and ρ is small enough. Using Corollary 1 we have

Corollary 2. Fix δ > δ, the perfect monitoring benchmark. Given any κ > 0, there exists a σ

such that for every σ > σ there exists a ρσ such that for all ρ < ρσ , the profit gains from the
exchange of aggregate sales information exceeds πM − πN − κ .

6. Why Swiss accountants are needed

� We have supposed throughout that accurate aggregate sales information is disseminated
by a third party, say a trade association or a consulting firm employed by the industry. But this
requires that firms report their individual sales figures truthfully to the third party. There are
many instances in which firms verify sales figures. According to a European Commission report
in a cartel case involving amino acids:

“ADM [Archer Daniels Midland] stated that the way for them to communicate is through
a trade association. ADM explained by way of example that ADM reported its citric acid
sales every month to a trade association, and every year, Swiss accountants audited those
figures.” (European Commission, 2001b)

Similarly, in the carbonless paper cartel an employee of one of the firms

“[… ] who doubted the figures supplied by Sarrió (Torraspapel), had asked and received
permission to audit the information on Sarrió’s sales volumes on Sarrió’s premises. (Eu-
ropean Commission, 2001a)

We now consider a variant of our model in which firms report their log sales to a trade
association but these reports are not verifiable—that is, audits are not possible. In other words,
firms can tailor their reports strategically if they wish—these are merely “cheap talk.” Once
again the trade association publishes the average of log sales as reported by firms. In such a
setting, can the exchange of aggregate information facilitate collusion? We show below that if
the aggregate is composed of the unverified reports of individual firms, then there is always an
incentive to misreport, typically to underreport, sales. The reason is that as only aggregate sales
are made public, a firm can cheat by secretly cutting its price and then reporting sales in a way
that the distribution of reported aggregate sales after the price cut is identical to the distribution
of actual aggregate sales without the price cut. This result sheds some light on why cartels find
it difficult to share information accurately and so have to resort to external auditing or to other
verification methods.

Formally, suppose that as in the original model of Section 2, firms have private knowledge
of their own sales Yi. At the end of each period, each firm sends a report Zi to a third party—a
trade association—about its sales. These reports are unconstrained—a firm is free to report any
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amount Zi it wishes—and cannot be verified. The trade association publishes the average of the
reported log sales

ln A = 1

n

n∑
j=1

ln Zj

and in a public perfect equilibrium (PPE), firms’ pricing strategies depend only on the history
of these aggregates.15 We ask whether there are collusive public perfect equilibria—in which the
profits exceed those in the one-shot Nash equilibrium—with the property that every firm has the
incentive to truthfully and accurately report its sales to the trade association. In other words, are
there collusive equilibria in which it is optimal for every firm to report Zi = Yi provided that all
other firms are doing the same.

Proposition 3. No collusive pure strategy PPE with aggregate information can induce truth-
ful reporting.

Proof. Suppose s is a collusive pure strategy PPE with aggregate information A and sup-
pose that t is a period in which, given the public history of (reported) aggregates, ht−1 =
(a1, . . . , at−1),st (ht−1) = p �= pN . Then there is a firm, say 1, for whom a price, say p′

1, is such
that in period t, π1(p′

1, p−1) > π1(p). Note that because the history of aggregates is public, the
prices that firms will charge in period t, p is commonly known.

If firm 1 follows the strategy s1 and charges p1 as prescribed, then the log sales in period
t, ln Y are jointly distributed according to a multivariate normal distribution N (μ(p), �) and
so with truthful reporting, the aggregate ln A (average log sales) is distributed according to a
univariate normal distribution N (μ(p), θ 2), where μ(p) = 1

n

∑
i μi(p) and θ 2 = 1

n
σ 2(1 + (n −

1)ρ).
Now suppose firm 1 deviates to a price p′

1 in period t. Then, the log sales ln Y are jointly
distributed according to N (μ(p′

1, p−1), �) and the actual average log sales in period t, ln A are
distributed according to N (μ(p′

1, p−1), θ 2).
Suppose firm 1 misreports its log sales by a constant amount n(μ(p) − μ(p′

1, p−1)). Then
the reported average log sales, denoted by, ln A′ are such that

E[ln A′] = μ
(
p′

1, p−1

)+ 1

n
× n
(
μ(p) − μ

(
p′

1, p−1

))
= μ(p)

Thus, the distribution of the aggregate with no deviation and truthful reporting is the same as the
distribution after a deviation and false reporting. This means that firm 1 can make a short-term
gain with no long-term consequences. �

Although the proposition is quite general in that it makes no assumptions about the de-
mand functions, it concerns only pure strategy public perfect equilibria. Can randomized strate-
gies induce truthful reporting? We show in an example—with multiplicatively separable demand
functions—that even randomization cannot induce firms to report truthfully to the trade associa-
tion.

Proposition 4. Suppose that expected demand functions are multiplicatively separable, that is,
the expected demand

qi(p) = β(pi)
∏
j �=i

γ
(
pj

)
15 Firms’ overall strategies are private, however, because although their actions depend on public histories, their

reports may depend on private histories. Kandori (2003) calls such strategies semipublic.
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Then no collusive PPE, pure or mixed, can induce truthful reporting.

Proof. As above, suppose s is a collusive PPE that is possibly mixed and suppose that t is a period
in which given the public history of (reported) aggregates, ht−1 = (a1, . . . , at−1), the distribution
over prices st (ht−1) is not degenerate on pN . Then there is a firm, say 1, for whom a price, say p′

1,
is such that in period t, π1(p′

1, st
−1(ht−1)) > π1(st (ht−1)).

Note that when (expected) demand functions are multiplicatively separable, the effect of a
price change by firm 1 on the log sales of any firm is independent of the prices of firms other
than 1. Precisely, for all p1 and p′

1, the cross-price effect on log sales

ln qi(p) − ln qi

(
p′

1, p−1

) = γ (p1) − γ
(
p′

1

)
and the own-price effect

ln q1(p) − ln q1

(
p′

1, p−1

) = β
(
p′

1

)− β(p1)

do not depend on p−1.
Because

qi(p) = E[Yi | p] = exp
(
μi(p) + 1

2
σ 2
)

we have that

μi(p) = ln qi(p) − 1
2
σ 2

and so

μ(p) = 1

n

n∑
i=1

ln qi(p) − 1
2
σ 2

Similarly,

μ
(
p′

1, p−1

) = 1

n

n∑
i=1

ln qi(p1, p−1) − 1
2
σ 2

μ(p) − μ
(
p′

1, p−1

) = 1

n

(
β
(
p′

1

)− β(p1)
)+ n − 1

n

(
γ (p1) − γ

(
p′

1

))
Now suppose that firm 1 deviates and charges p′

1 instead of s1(ht−1
1 ). Suppose further that

the firm then reports its log sales to be:

ln Z1 = lnY1 + (β(p′
1

)− β(p1)
)+ (n − 1)

(
γ (p1) − γ

(
p′

1

))
In other words, the reported log sales ln Z1 equal the actual log sales lnY1 plus an amount that
depends neither on the prices of other firms p−1 nor on the sales of other firms y−1. Thus, this
constitutes a feasible “lying” strategy. Misreporting in this manner has the property that, for any
p−1, the resulting (false) aggregate ln A′ satisfies

E
[
ln A′ | p′

1, p−1

] = 1

n
E

[
ln Z1 +

n∑
i=2

lnYi | p′
1, p−1

]

= 1

n
E

[
n∑

i=1

lnYi | p′
1, p−1

]

+1

n

(
β
(
p′

1

)− β(p1)
)+ n − 1

n

(
γ (p1) − γ

(
p′

1

))
= μ

(
p′

1, p−1

)+ μ(p) − μ
(
p′

1, p−1

)
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= μ(p)

= E[ln A | p]

Suppose that p1 ∈ supp s1(ht−1) and p′
1 is a price that is profitable in the short run against

s−1(ht−1). Because the deviation is such that for all p−1, the distribution of the reported aggregate
after the deviation is the same as the distribution of the aggregate in the absence of a deviation, no
matter how the other firms are randomizing, this deviation will result in the same distribution of
the aggregate. Thus, we have shown that there is a deviating strategy for firm 1 which is profitable
in the short term and has no long-term consequences. �

A cautionary note. The results of this section should not be interpreted to say that there
is little harm in allowing firms to self-report sales to each other. Our analysis pertains only to
situations in which firms report their sales to a trade association which then publicly releases
aggregate information only. If individual sales figures were to become commonly known, it might
be possible to induce truthtelling.

7. Conclusion

� Communication is central to antitrust law—tacit collusion is not unlawful per se whereas
explicit collusion is. Kaplow (2013) has argued forcefully that this focus on “communication-
based prohibition” is misguided. First, communication that facilitates collusion can take many
forms and does not always have to take place in smoke-filled rooms. For instance, firms could
make public announcements of their pricing intentions. Second, one should focus on the wel-
fare effects of the conduct rather than how it was achieved. This aspect of communication—to
reach a collusive agreement—is, however, different from that considered here. In this article, we
study interfirm communication that may help firms monitor each other better to sustain a col-
lusive agreement. Antitrust authorities are well aware of this aspect of communication and have
sought to curb cartelization by imposing restrictions on the kinds of information that firms can
exchange. Our findings point out that these restrictions may be less effective than suggested by
economic theory.

Appendix A: Proof of Proposition 2

� Properties of λ. In this section we study the properties of the function

λ(z) ≡ δφ(z)

1 − δ�(z)

where φ and � are the density and distribution functions of the standard normal. Note that λ(z) is like a “discounted
hazard rate”—for δ = 1 it is just the hazard rate of the normal. Many arguments in the proof of the main result hinge on
the shape of λ.

Lemma 4. Suppose δ < 1. Then λ has a unique maximum at z∗ > 0.

Proof. Notice that

λ′ = (1 − δ�)δφ′ + δ2φ2

(1 − δ�)2

= −z(1 − δ�)δφ + δ2φ2

(1 − δ�)2

= λ(λ − z)

where the second equality follows from the fact that φ′ = −zφ for the standard normal density φ. Thus, for all z ≤ 0,
λ′(z) > 0.
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Next, because λ(z) < δ

1−δ
φ(z), and limz→∞ φ(z) = 0, we have that limz→∞ λ(z) = 0 as well. Together with the fact

that λ(0) > 0 and for all z ≤ 0, λ′(z) > 0, this implies that there exists an z∗ > 0 where λ reaches a maximum. Let z∗ > 0
be the smallest maximizer of λ. Then

0 = λ′(z∗ ) = λ(z∗ )(λ(z∗ ) − z∗ )

and thus λ(z∗ ) = z∗. Now for any z > z∗, we have z > z∗ = λ(z∗ ) ≥ λ(z) because z∗ maximizes λ and so for any z > z∗,

λ′(z) = λ(z)(λ(z) − z) < 0

Thus, z∗ is the unique maximizer of λ. �

Lemma 5. For all z, λ′(z) < 1.

Proof. Recall that

λ′ = λ(λ − z)

For all z ≥ z∗, λ′(z) ≤ 0 and so the condition trivially holds.
Now suppose, by contradiction, that there exists an z < z∗ such that λ′(z) ≥ 1. Now notice that

λ′′(z) = λ′(z)(λ(z) − z) + λ(z)(λ′(z) − 1)

= λ(z)(λ(z) − z)2 + λ(z)(λ′(z) − 1)

Thus, we have that at any z < z∗ such that λ′(z) ≥ 1 it is the case that

λ′′(z) > 0

and so λ′ is increasing. This implies that if there is an z < z∗ such that λ′(z) ≥ 1, then λ′(z∗ ) > 1 which is a
contradiction. �

Lemma 6. For all z < z′ < z∗ or z∗ < z < z′

1

λ(z) − z
<

1

λ(z′ ) − z′

Moreover, 1
λ(z)−z

→ ∞ as z ↑ z∗ and 1
λ(z)−z

→ −∞ as z ↓ −∞.

Proof. The derivative of the given function is

− λ′(z) − 1

(λ(z) − z)2 > 0

because λ′(z) < 1. �

Recall that for θ < θ ∗, the normalized trigger zθ = ln aθ −μM

θ
> z∗ is chosen to satisfy

0 = L′
θ

(
μM
)

= 1

θ

δφ(zθ )

1 − δ�(zθ )
− �′

1

(
μM
)

πM − πN

= 1

θ
λ(zθ ) − �′

1

(
μM
)

πM − πN
(A1)

Lemma 7. Suppose zθ is the normalized trigger as defined in (A1). Then,

lim
θ→0

zθ = ∞ and lim
θ→0

(θzθ ) = 0

Proof. From (A1) it must be that as θ → 0, λ(zθ ) → 0 or equivalently, that zθ → ∞.
Differentiating (A1) with respect to θ , we get

dzθ

dθ
= 1

θ

λ(zθ )

λ′(zθ )

= 1

θ

1

λ(zθ ) − zθ

< 0 (A2)
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because zθ > z∗. Using L’Hospital’s rule,

lim
θ→0

(θzθ ) = lim
θ→0

(
dzθ
dθ

d
dθ

(
1
θ

)) = lim
θ→0

1
θ

1
λ(zθ )−zθ

− 1
θ2

= lim
θ→0

(
θ

zθ − λ(zθ )

)
= 0

because λ(zθ ) → 0 and zθ → ∞. �

� Properties of Lθ . This section contains results on various properties of the function Lθ (m) in the region μM ≤ m ≤
μB. Thus, it studies the incentives of a firm to deviate to prices p1 which represent small price cuts from the monopoly
price pM . The first lemma shows that the incentive to deviate in such a manner falls as the variability of the aggregate,
measured by θ , decreases.

Lemma 8. For all m ∈ (μM , μB],

dLθ (m)

dθ
< 0

Proof. Because

Lθ (m) = 1 − δ�
(

ln aθ −m
θ

)
1 − δ�

(
ln aθ −μM

θ

) − �1(m) − πN

πM − πN

differentiating this with respect to θ shows that the sign of dLθ (m)
dθ

is the same as the sign of

δφ
(

ln aθ −μM

θ

)
1 − δ�

(
ln aθ −μM

θ

) θ d ln aθ

dθ
− (ln aθ − μM

)
θ 2

− δφ
(

ln aθ −m
θ

)
1 − δ�

(
ln aθ −m

θ

) θ d ln aθ

dθ
− (ln aθ − m)

θ 2

Writing z = ln aθ −m
θ

and recalling that zθ = ln aθ −μM

θ
, the expression above becomes

δφ(zθ )

1 − δ�(zθ )

θ d ln aθ

dθ
− (ln aθ − μM

)
θ 2

− δφ(z)

1 − δ�(z)

θ d ln aθ

dθ
− (ln aθ − m)

θ 2

which can be rewritten as

λ(zθ )
1

θ

(
d ln aθ

dθ
− zθ

)
− λ(z)

1

θ

(
d ln aθ

dθ
− z

)
But we have shown that (see (A2))

dzθ

dθ
= 1

θ

1

λ(zθ ) − zθ

Equivalently,

d
(

ln aθ −μM

θ

)
dθ

= θ d ln aθ

dθ
− (ln aθ − μM

)
θ 2

= 1

θ

(
d ln aθ

dθ
− zθ

)
and so

d ln aθ

dθ
= 1

λ(zθ ) − zθ

+ zθ

Substituting in the expression above, we obtain that the sign of dLθ (m)
dθ

is the same as the sign of

λ(zθ )

(
1

λ(zθ ) − zθ

)
− λ(z)

(
1

λ(zθ ) − zθ

+ zθ − z

)
For zθ > z∗, define

J (z) = λ(zθ )

λ(zθ ) − zθ

− λ(z)

(
1

λ(zθ ) − zθ

+ zθ − z

)
Observe that

J (zθ ) = 0
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The monotonicity of Lθ (m) in θ is implied by the statement that J (z) < J (zθ ) for all z.
First, note that

lim
|z|→∞

J (z) = λ(zθ )

λ(zθ ) − zθ

< 0

because both λ(z) and zλ(z) converge to 0 as |z| → ∞.
For any z �= z∗, we can write

J ′(z) = λ′(z)

(
1

λ(z) − z
+ z − 1

λ(zθ ) − zθ

− zθ

)
because λ′(z) = λ(z)(λ(z) − z).

Case 1: z < z∗.
For z < z∗, λ′(z) > 0 and so the sign of J ′(z) is the same as that of

1

λ(z) − z
+ z − 1

λ(zθ ) − zθ

− zθ

Lemma 6 shows that the function 1
λ(z)−z

+ z is increasing over (−∞, z∗ ) and is onto the whole real line. This
means that (i) for small z (a large negative number), J ′(z) < 0, (ii) for some z0 < z∗, J ′(z0 ) = 0, and (iii) for all
z ∈ (z0, z∗ ), J ′(z) > 0.

Case 2: z∗ < z < zθ .
For z ∈ (z∗, zθ ), J ′(z) > 0 because λ′(z) < 0 but

1

λ(z) − z
+ z − 1

λ(zθ ) − zθ

− zθ < 0

Case 3: z > zθ .
Finally, for z > zθ we have that J ′(z) < 0.
Thus the behavior of the function J (z) is as follows:

J ′(z) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
< 0 z < (−∞, z0 )
= 0 z = z0

>0 z ∈ (z0, zθ )
= 0 z = zθ

< 0 z > zθ

Combined with the fact that

lim
|z|→∞

J (z) = λ(zθ )

λ(zθ ) − zθ

< 0

this means that J is maximized at z = zθ and hence for all z �= zθ ,

J (z) < J (zθ ) = 0

�

The next result establishes the pointwise convergence of the function Lθ to its perfect monitoring counterpart L0.

Lemma 9. For all m ∈ (μM , μB],

lim
θ→0

Lθ (m) = L0(m)

Proof. Using the definitions of the two functions, for m ∈ (μM , μB]

L0(m) − Lθ (m) = 1

1 − δ
− 1 − δ�

(
ln aθ −m

θ

)
1 − δ�

(
ln aθ −μM

θ

) (A3)

From Lemma 7 above, zθ = ln aθ −μM

θ
→ ∞ as θ → 0 and this implies that

�

(
ln aθ − μM

θ

)
→ 1

Also, from Lemma 7 θzθ = (ln aθ − μM ) → 0 as θ → 0. Now fix any m ∈ (μM , μB]. For small enough θ , ln aθ <

m and so as θ → 0,

lim
θ→0

(
ln aθ − m

θ

)
= lim

θ→0

(
μM − m

θ

)
= −∞
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and hence

�

(
ln aθ − m

θ

)
→ 0

Using these in (A3) completes the proof. �

Although the previous lemma established the pointwise convergence of Lθ to L0, recall that L0 is discontinuous at
μM . This is because with perfect monitoring arbitrarily small price cuts can be detected although no matter how small θ

is, there is a small enough price cut that is detected only with small probability. The next two lemmas study the limiting
behavior of Lθ in the vicinity of μM , that is, precisely where L0 is discontinuous.

Lemma 10. Let m̂θ be the maximizer of Lθ in the interval [μM , μB]. For all ε > 0, there exists a θ (ε) such that for all
θ < θ (ε), (i) m̂θ − μM < ε; and (ii) δ

1−δ
− Lθ (m̂θ ) < ε.

Proof. (i) Suppose to the contrary that there exists a sequence θ (n) ↓ 0 such that lim m̂θ (n) = m′ > μM . By Lemma 8,
Lθ (n) is increasing in n, and thus the sequence Lθ (n) (m̂θ (n) ) is also increasing and so converges. We also know from that for
all n, Lθ (n) (m̂θ (n) ) < L0(m̂θ (n) ) and so as n → ∞,

lim Lθ (n)

(
m̂θ (n)

) ≤ lim L0

(
m̂θ (n)

)
= L0(m′ )

Let m′′ ∈ (μM , m′ ). Then because L0 is decreasing, we have

lim Lθ (n)

(
m̂θ (n)

)
< L0(m′′ )

But because Lθ (n) (m′′ ) → L0(m′′ ), for large n we have Lθ (n) (m′′ ) > Lθ (n) (m̂θ (n) ). This contradicts the fact that m̂θ (n) maxi-
mizes Lθ (n).

(ii) Again, suppose to the contrary that

Lθ (m̂θ ) ↑ K <
δ

1 − δ

Thus, there exists m̃ > μM such that L0(m̃) > K. By pointwise convergence Lemma 9, lim Lθ (m̃) = L0(m̃) > K. Thus for
small enough θ , we have a contradiction to the fact that m̂(θ ) maximized Lθ . �

Lemma 11.

lim
θ→0

Lθ (ln aθ ) = 1

2

δ

1 − δ

Proof. By definition,

Lθ (ln aθ ) = 1 − δ�(0)

1 − δ�
(

ln aθ −μM

θ

) − �1(ln aθ ) − πN

πM − πN

Now as θ → 0, ln aθ → μM and ln aθ −μM

θ
= zθ → ∞ (see Appendix A). This implies that

lim Lθ (ln aθ ) = 1 − 1
2
δ

1 − δ�(∞)
− 1

= 1

2

δ

1 − δ

�

Appendix B: Discrete choice example

The main result of this article relies on the fact that when firms’ sales are negatively correlated, aggregate sales carry
more information about deviations than do individual sales. The log-normal specification then allows us to calculate the
information content of aggregate sales explicitly and to bound the information content of individual sales.16 A drawback

16 Recall that we measure the information content via the total variation metric.
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of the log-normal specification is that the term “aggregate” refers to the arithmetic mean of log sales or equivalently, the
geometric mean of actual sales.

In this appendix we study a different model of demand than in the body of the article. This is the familiar discrete
choice model in which the stochastic nature of firms’ sales arises from the random choices of the consumers. In the
discrete choice model (see Anderson, de Palma, and Thisse, 1992), outlined below, we compare two situations: one in
which firms know only their own sales and the other, in which aggregate sales (now the sum of individual firms’ sales)
is publicly announced. Unlike the log-normal model in the body of the article, the discrete choice model does not allow
an explicit comparison of the information content of aggregate sales versus individual sales. Here we do not carry out a
complete equilibrium analysis but only compare the information contents of the two scenarios.

Specifically, there are three firms (labelled 1, 2, and 3) that produce differentiated (indivisible) products and four
consumers (labelled 0, 1, 2, and 3). Each consumer i has a privately known reservation value vi for the product and so will
not purchase a product whose price exceeds this value. For consumer 0, v0 is either vL or vH with probabilities 1 − ε and
ε, respectively. For consumer i = 1, 2, 3, vi is again either vL or vH but now with probabilities ε and 1 − ε, respectively.
Define

hi(p) =
{

exp (−p) if p < vi

0 otherwise

The probability that consumer 0 will purchase firm j’s product is given by the familiar “logit” form

r0
j (p) = h0

(−pj

)
h0(−pi ) + h0(−pi+1 ) + h0(−pi+2 )

We will use the convention that 0
0

= 0 so that if all three prices are above v0, then for all j, r0
j (p) = 0.

For i = 1, 2, 3, consumer i has a special affinity for the product of firm i. Given prices p = (p1, p2, p3 ), the proba-
bility that consumer i = 1, 2, 3 will purchase firm j’s product is

ri
j (p) =

{ bhi (−pi )
bhi (−pi )+hi (−pi+1 )+hi (−pi+2 )

if j = i
hi(−p j )

bhi (−pi )+hi (−pi+1 )+hi (−pi+2 )
otherwise

where b > 1 and i + k is understood to be mod 3. Again, if all three prices are above vi, then for all j, ri
j (p) = 0. Thus,

consumer i is biased in favor of firm i’s product and b > 1 is a measure of the bias.
Here, as in the body of the article, firms’ sales are negatively correlated and total sales are stochastic.
Consider a case where ε is small and 4

3
vL < vH ≤ 2vL. Because selling to three customers at a price of vH is more

profitable than selling to four customers at a price of vL, the monopoly price is

pM = vH

and it is easily verified that firm 1’s myopic best response when the other firms charge pM is

pB = vL

At the monopoly price, with high probability, only customers 1, 2, and 3 buy the product, with customer i favoring
firm i’s product. What happens when firm 1, say, cuts its price to pB? There are two effects. It sells to customers 2 and 3
with higher probability but more important, now also sells to customer 0 (with high probability).

When ε is small and the bias b is large, a price cut by firm 1 affects the marginal distributions of firm 2 or 3’s sales
only slightly. Formally, the total variation distance between the marginal distributions at monopoly prices and when firm
1 cuts its price is small. Thus, the individual sales data are rather uninformative about price cuts. The same is true of the
joint distribution of the sales of firm 2 and firm 3.

In this same situation, total sales are quite informative. At monopoly prices total sales are 3 with high probability
and if firm 1 cuts its price, they are 4 with high probability. The total variation distance between the two distributions of
total sales is large.

� Numerical example. Consider the following numerical example. Specifically, suppose that vL = 1 and vH = 2.
For simplicity, we suppose that ε = 0. Further, suppose that b = 10.

If all firms charge the monopoly price pM = 2, the marginal distribution of an individual firm’s sales Yj =
0, 1, 2, 3, 4 is

f j

(
Yj | pM

) = 0 1 2 3 4
0.140 0.726 0.128 0.006 0

and note that with high probability a firm’s sales are 1
Now suppose firm 1, say, cuts its price to pB. At prices (pB, pM , pM ), the marginal distribution of sales Yj of firm

j = 2, 3 is

f j

(
Yj | pB, pM

−1

) = 0 1 2 3 4
0.243 0.680 0.075 0.002 0
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The total variation distance between the two distributions is∥∥ f j

(
Yj | pM

)− f j

(
Yj | pB, pM

−1

)∥∥
TV

= 0.103

A similar calculation, omitted here, shows that the TV distance between the joint distributions of firm 2’s and 3’s
sales ∥∥ f2,3

(
Y2,Y3 | pM

)− f2,3

(
Y2,Y3 | pB, pM

−1

)∥∥
TV

= 0.204

The distributions of total sales are trivial. At monopoly prices pM , the total sales are 3 and if firm 1 cuts its price to
pB, then the total sales are 4. The total variation distance between the two distributions is 1.

Thus, in this example, the distribution of total sales is substantially more responsive to a price cut than the distri-
bution of individual sales or the joint distribution of other firms’ sales.

More generally, as b increases, the TV distance between the joint (or marginal) distributions of individual sales
goes to 0. For small ε, the TV distance between the distributions of total sales is close to 1.
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