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ABSTRACT5

In this paper, general methods for the analysis of deployment of n-strut cylindrical Class-1 and6

Class-2 tensegrity booms are developed. Investigation of the geometries of cylindrical Class-17

and Class-2 tensegrity booms leads to comprehensive procedures for the deployment of cylindrical8

tensegrity booms with an arbitrary number (n) of struts in each stage. For Class-1 tensegrity9

booms, equilibrium surfaces that show the collection of feasible azimuth and declination angle pairs10

corresponding to self-equilibrated geometries are obtained numerically. Deployment is achieved by11

varying the azimuth and declination angle parameters while remaining on this equilibrium surface.12

For Class-2 tensegrity booms, two deployment strategies, one with constant-length reinforcing13

cables and another with actively controlled reinforcing cables, are considered, and deployment is14

achieved by varying the length of certain cables. Deployment is studied in detail for tensegrity15

booms with four struts in each stage and the results are presented. The developed generalization16

procedures for analyzing the geometry and deployment of n-strut cylindrical tensegrity booms17

makes it possible to address design concerns such as packaging efficiency, stiffness and stiffness-18

to-mass ratio.19
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INTRODUCTION20

Tensegrity structures have received attention from several applicationfields such as the aerospace21

industry, civil engineering, and biology since their conception in the 1950s for architectural pur-22

poses. They are pre-stressed, pin-jointed structural frameworks that consist solely of axial load-23

carrying members, namely cables and struts. Connections between elements are via frictionless24

ball joints, and self-equilibrium of the structure is satisfied by the pre-stress.25

In the aerospace engineering field, tensegrity structures are considered to be good candidates for26

deployable space structures (Furuya 1992; Motro 2003). They have reduced complexity compared27

to alternative deployable structure concepts since complicated joints between members are not28

present (Sultan and Skelton 1998). Furthermore, they are lightweight and ideally, bending loads29

are not experienced by individual members. Therefore, tensegrity structures fail mainly by cable30

yielding or strut buckling (Skelton and de Oliveira 2009).31

Tensegrity structures are classified based on the maximum number of struts connected to each32

other at a single node (Skelton and de Oliveira 2009). If there is no direct connection between33

struts in a tensegrity structure, then it is called a Class-1 tensegrity, the “classical” version. On34

the other hand, if the maximum number of struts connected to each other at a single node is k,35

then the structure is called a Class-k tensegrity structure. Class-1 and Class-k tensegrity structures36

offer different advantages and disadvantages. Most importantly, Class-1 tensegrity structures have37

better packaging capabilities, however, they exhibit lower stiffness. On the other hand, Class-k38

tensegrity structures are superior to Class-1 tensegrity structures in terms of stiffness, yet have39

inferior packaging capabilities (Masic et al. 2006; Dalilsafaei et al. 2012).40

Deployment of a space boom can be defined as longitudinal extension of a boom from a compact41

stowed state to a longer operational state. The first study on deployment of tensegrity structures was42

reported by Furuya (Furuya 1992). Furuya conceptually investigated the deployment of tensegrity43

structures which were built by assembling small tensegrity units with connected struts. Double-44

layer tensegrity grids were considered by Hanaor (Hanaor 1993) as two-dimensional deployable45

space structures. Sultan and Skelton (Sultan and Skelton 1998; Sultan and Skelton 2003) studied46
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deployment of Class-1 tensegrity booms using cable actuation with no strut-to-strut connection.47

Similar tensegrity booms were studied by Tibert and Pellegrino (Tibert and Pellegrino 2003) by48

employing the idea of strut folding, and controlling the rate of deployment with a telescopic strut.49

They also distinguished between cable and strut actuation deployment modes, and pointed out the50

advantages of each.51

The tensegrity boom studied by Furuya was also studied by Pinaud et al. (Pinaud et al. 2004)52

with an attempt to improve stiffness using constant-length reinforcing cables. The reinforcing cables53

were introduced to the structure which serve the purpose of locking the infinitesimal mechanisms54

that are present in the structure. The reinforcing cables have constant length as they are not55

actively controlled, and therefore the number of actuators is not increased. However, the use of56

constant-length reinforcing cables limits the achievable deployment range.57

Michelletti and Williams (Micheletti and Williams 2007) developed a marching procedure for58

the form-finding problem for tensegrity structures which also can be used to study deployment59

and/or reconfiguration of tensegrity structures. Other interesting works devoted to deployment of60

tensegrity structures include inflatable tensegrity structures applications by Murata et al. (Murata61

et al. 2005) and Russell and Tibert (Russell and Tibert 2008) and footbridge applications for62

pedestrians by Rhode-Barbarigos et al. (Rhode-Barbarigos et al. 2010). Rhode-Barbarigos et al.63

parametrically designed tensegrity footbridges that consist of ring-moduleswith different number of64

struts, conducted structural analyses and made a comparison based on a structural efficiency index65

defined by Vu et al. (Vu et al. 2006) which takes design loads, self-weight, span and maximum66

deflection into account. In a following paper (Rhode-Barbarigos et al. 2012), deployment of67

pentagonal ring modules for tensegrity footbridge application was studied. The deployment was68

achieved by actively adjusting cable lengths and a deployment path which requires fewer actuators69

was also presented. In the proposed deployment strategy, they also took advantage of continuous70

“x” cables to reduce the number of actuators even further. Another work by Sychterz and Smith71

(Sychterz and Smith 2017) evaluated the influence of friction in the deployment of the tensegrity72

footbridge and developed a modified dynamic relaxation method to include these effects. Their73
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work revealed the significance of the friction and identified its most important trigger mechanism74

as the cable angle.75

Sultan discussed the relation between the deployment time and energy loss during deployment76

which results from kinetic tendon damping (Sultan 2014). Sultan argued that damping is thermo-77

dynamically irreversible and may result in undesirable thermal effects such as damaging cables.78

He proposed that a deployment method is possible which exploits the infinitesimal mechanisms79

found in the structure. In this way, the energy loss becomes zero while the deployment path is80

tangent to the directions of infinitesimal mechanisms. As a result, it is possible to minimize the81

energy loss while eliminating the dependence on quasi-static deployment. Recently, Gonzalez et al.82

investigated the asymmetric reconfiguration of a three-strut cylindrical tensegrity structure along83

the directions of infinitesimal mechanisms (González et al. 2019).84

The studies devoted to deployment of cylindrical tensegrity structures for deployable boom85

applications are mostly limited to cases having three struts in each stage. However, increasing86

the number of struts in each stage may yield advantages such as improved stiffness in particular87

directions (Yildiz and Lesieutre 2019). Yildiz and Lesieutre investigated two-stage cylindrical88

Class-2 tensegrity booms and showed that for fixed prestress forces in the struts, the maximum89

bending and shear rigidities for the boomswere obtainedwith four struts in each stage. Furthermore,90

the axial rigidity was found to be maximum with three struts in each stage while the torsional91

rigidity increased with increasing number of struts. Therefore, in this paper generalization methods92

to design and deploy cylindrical Class-1 and Class-2 tensegrity booms are addressed. The number93

of struts in each stage can be selected arbitrarily (n ≥ 3) and deployment using cable actuation can94

be simulated with the assumption of quasi-static motion, which allows velocity and acceleration95

effects to be neglected in the analysis (Sultan and Skelton 2003; Rhode-Barbarigos et al. 2012).96

The present research primarily aims to extend the work of Sultan and Skelton (Sultan and Skelton97

1998; Sultan and Skelton 2003), and Pinaud et al. (Pinaud et al. 2004) in terms of deployment98

performance.99

The mechanical performance of tensegrity structures depends not only on the axial stiffnesses100
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of individual members but also the level of prestress forces. The prestress forces present in the101

structure introduce geometric nonlinearity to tensegrity structures and contribute to the mechanical102

performance of the structure. Therefore, to account for the prestress and its effects, nonlinear103

models are widely used (Kebiche et al. 1999; Murakami 2001; Guest 2011). However, detailed104

analyses using these nonlinear models are usually expensive in terms of computational power and105

time. To avoid these expensive computational methods, continuum beam modeling techniques that106

allow for rapid approximation of the global behavior and comparison of stiffness were developed107

(Kebiche et al. 2008; Yildiz and Lesieutre 2019; Liu et al. 2019). Thus, to design tensegrity108

structures and evaluate their mechanical performance thoroughly, structural optimization (sizing109

and prestress) should be addressed. However, these are beyond the scope of this paper, and the110

focus is given to generalization of deployment.111

This paper is organized as follows: First, general cylindrical tensegrity structures are briefly112

reviewed, and Class-1 and Class-2 tensegrity booms are examined. Then, deployment of cylindrical113

Class-1 and Class-2 tensegrity booms is addressed. The generalization of deployment of cylindrical114

tensegrity booms with n struts in each stage is achieved by identifying a pattern for nodal locations115

and defining a connectivity chart that includes member types. Finally, examples of deployment of116

Class-1 and Class-2 tensegrity booms are provided.117

CYLINDRICAL TENSEGRITY STRUCTURES118

Cylindrical tensegrity structures are special kinds of tensegrity structures that resemble a119

cylinder. Generally speaking, they have horizontal top and bottom planes, and the nodes lie at a120

constant radius from the axis centerline. Cylindrical tensegrity structures consisting of only one unit121

are named after the number of struts as n-plex tensegrity units. Therefore, a cylindrical tensegrity122

structure with three struts is a triplex, one with four struts is a quadruplex, and another with five123

struts is a pentaplex, etc. Typically, tensegrity booms are constructed by stacking cylindrical124

tensegrity units on top of each other.125

A single cylindrical tensegrity unit (one stage of a cylindrical tensegrity boom) comprises of126

n struts and 3n cables. The horizontal planes are created by n top and n bottom cables. These127
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two horizontal planes are connected to each other with n “vertical cables” and n struts. This is128

the minimum number of elements required to generate a self-equilibrated cylindrical tensegrity129

unit, called as minimal regular tensegrity prism by Skelton and Oliveira (Skelton and de Oliveira130

2009). The total number of nodes found in a cylindrical tensegrity unit is then 2n, which are evenly131

spaced along the edges of the horizontal top and bottom planes. The nodes in each plane generate132

a regular polygon with n corners and the structure exhibits rotational symmetry. In order to satisfy133

prestressability conditions, the relative angle between the top and bottom planes should have a134

specific value, called the twist angle which is α = π/2 − π/n (Connelly and Terrell 1995; Masic135

and Skelton 2003; Estrada 2007). A cylindrical tensegrity unit with six struts, called a hexaplex, is136

shown in Fig. 1.137

Cylindrical tensegrity units have been investigated by other researchers for specific numbers of138

struts, n, and cataloged. Analytical solutions and numerical calculations of the formfinding problem139

and self-equilibrium equations are available in the literature (Pugh 1976; Murakami and Nishimura140

2001; Estrada 2007). The focus of this paper, however, is the generalization of cylindrical Class-1141

and Class-2 tensegrity booms constructed with cylindrical tensegrity units, their deployment, and142

qualitative comparison.143

Class-1 Tensegrity Booms144

Cylindrical Class-1 tensegrity booms can be constructed by stacking cylindrical tensegrity units145

on top of each other without creating a direct connection between struts. In a two-stage example,146

the top plane of the upper stage is the same regular polygon as the bottom plane of the lower stage,147

rotated 180° around the longitudinal axis. The bottom ends of the top-stage struts are located at the148

mid points of the horizontal cables of the top of the bottom stage, and the top ends of the bottom-149

stage struts are located at the mid points of the horizontal cables of the bottom of the top stage. The150

horizontal cables are thus combined, divided by struts, and they become saddle cables (Murakami151

and Nishimura 2001). Saddle cables generate a regular polygon with 2n corners in the xy plane.152

Additionally, diagonal cables are introduced to the structure in order to satisfy the requirements for153

a self-equilibrated geometry (Murakami and Nishimura 2001). A two-stage, three-strut cylindrical154
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Class-1 tensegrity boom is shown in Fig. 2.155

In Fig. 2, in order to distinguish between different types of elements, they are shown with156

different colored lines. Black, blue, magenta, teal, and thick red lines represent top and bottom,157

vertical, saddle, diagonal cables, and struts, respectively.158

Fig. 2(a) shows the regular polygons created by top, bottom, and saddle cables. Since the159

structure has three struts in each stage, equilateral triangles are formed in the top and bottom160

planes, and a regular hexagon is formed in the intersection level. Fig. 2(b) shows the four different161

levels in the structure: top, bottom, lower intersection, and upper intersection levels. The vertical162

distance between the intersection levels are known as the overlap, and a non-zero value is required163

to satisfy the prestressability conditions, as described in the next sections.164

Class-2 Tensegrity Booms165

Cylindrical Class-2 tensegrity booms can be constructed by stacking cylindrical tensegrity units166

on top of each other in such a way that struts are connected at nodes. In a two-stage example, the167

top plane of the upper stage is the same regular polygon as the bottom plane of the lower stage.168

Generally speaking, the same cylindrical tensegrity units are placed in an alternating clockwise and169

anticlockwise sense in order to maintain symmetry in the xy plane and minimize global extension-170

torsion coupling. The horizontal cables are combined at the intersection of two units and they are171

called saddle cables. Saddle cables generate the same regular polygon as in the top and bottom172

levels, rotated around the longitudinal axis by a twist angle that depends on the number of struts.173

Furthermore, optional reinforcing cables can be introduced to the structure which may serve two174

purposes: increasing stiffness and increasing design flexibility (Pinaud et al. 2004).175

The addition of extra members achieves the former by locking the infinitesimal mechanisms (or176

soft modes) which are normally only stiffened to some extent by the introduced prestress (Nishimura177

2000). These mechanisms or soft modes can be completely eliminated by the addition of extra178

elements and as a result, the structure yields higher stiffness. The latter is obtained by allowing a179

feasible range for twist angle, rather than a fixed value (Pinaud et al. 2004). Then, the twist angle180

can be treated as a design variable in optimization problems (Yildiz 2018). A two-stage, three-strut181
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cylindrical Class-2 tensegrity boom is shown in Fig. 3.182

In Fig. 3, in order to distinguish between different types of elements, they are shown with183

different colored lines. Black, blue, magenta, dashed orange, and thick red lines represent top and184

bottom, vertical, saddle, reinforcing (optional) cables, and struts, respectively. Reinforcing cables185

between different levels connect nodes in a circumferential direction opposite to that of the vertical186

cables, as shown in Fig. 3(a).187

Fig. 3(a) shows the regular polygons created by the top, bottom, and saddle cables. Since the188

structure has three struts in each stage, equilateral triangles are formed at each level. Fig. 3(b)189

shows the three different levels in the structure: top, bottom, and intermediate levels.190

DEPLOYMENT OF CYLINDRICAL CLASS-1 TENSEGRITY BOOMS191

Deployment of two-stage cylindrical Class-1 tensegrity booms with three struts in each stage192

was studied analytically by Sultan and Skelton (Sultan and Skelton 2003). They realized that193

the geometry of symmetrical cylindrical two-stage Class-1 tensegrity booms, also known as SVD194

(“Saddle-Vertical-Diagonal”) tensegrity booms, can be represented by three independent parame-195

ters: azimuth angle, declination angle, and overlap (the vertical distance between the nodes at the196

intersection of two units, for instance the vertical distance between nodes 5 and 11 in Fig. 2(b)).197

Then, the equilibrium matrix of the structure can be represented in terms of these parameters,198

and the prestressability conditions can be written as follows:199

A(α, δ, h)T = 0 (1)200

where α, δ, and h are the azimuth angle, the declination angle, and the overlap, respectively. The201

existing rotational symmetry within the structure imposes the azimuth angles to differ by 60° in202

the three-strut case, while the declination angle is the same for all struts. In Equation 1, T is the203

normalized force vector of the saddle, vertical, and diagonal cables. The equilibrium matrix, A, is204

defined by Sultan and Skelton (Sultan and Skelton 2003) as follows:205

8 Yildiz, February 28, 2020



A =



∂S
∂α

∂V
∂α

∂D
∂α

∂S
∂δ

∂V
∂δ

∂D
∂δ

∂S
∂h

∂V
∂h

∂D
∂h


(2)206

where S,V , and D are the lengths of saddle, vertical, and diagonal cables, respectively. Expressions207

for S, V , and D are given by Sultan and Skelton (Sultan and Skelton 2003) for the three-strut case,208

and omitted here for conciseness. The non-trivial solution to the prestressability condition can be209

obtained from210

det(A(α, δ, h)) = 0 (3)211

The solution to Equation 3 yields the overlap value as a function of azimuth and declination212

angles. Further, the normalized force vector, T, can also be obtained from Equation 3 as explained213

by Sultan and Skelton (Sultan and Skelton 2003). The solutions can be represented by equilibrium214

surfaces with respect to overlap and total height of the structures, generated by feasible pairs of215

azimuth and declination angles that satisfy the prestressability conditions. Then, deployment–that216

is, vertical extension of the boom–can be achieved by selecting appropriate initial and final points217

on the equilibrium surface, typically assuming a linear path of sequential equilibrium states between218

them, and varying the parameters correspondingly. As the azimuth and declination angles vary,219

the overlap, total height and force values in each element can be determined at each position, and220

deployment can be simulated.221

For a cylindrical Class-1 tensegrity structure with more than three struts in each stage, a similar222

procedure can be repeated to study the deployment. However, it is more difficult, even impossible,223

to determine the lengths of the saddle, vertical and diagonal cables to create the equilibrium matrix224

and obtain the non-trivial solutions analytically. Therefore, in order to study deployment of n-strut225

cylindrical Class-1 tensegrity booms, a generalization procedure is developed. Rather than seeking226

pure analytical solutions, numerical approaches in combination with symbolic manipulation are227
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used to address the deployment of generalized versions of n-strut cylindrical Class-1 tensegrity228

booms. The generalization procedure is achieved by defining nodal locations and connectivity in229

terms of a few parameters. The nodal coordinates and connectivity are found to follow a regular230

pattern and, accordingly, n-strut cylindrical Class-1 tensegrity booms can be constructed to study231

their deployment.232

The nodal locations can be defined in terms of the length of struts, the overlap, the radii of233

circumscribing circles for the top and bottom levels, and the azimuth and declination angles. A key234

initial observation is that these nodes lie at a constant radius from the centerline on the xy plane,235

evenly spaced. For a two-stage example, on the z axis, the nodes are located on four different levels,236

as mentioned earlier. The pattern for defining the nodal locations is given in Table 1 and it is valid237

for all two-stage n-strut cylindrical Class-1 tensegrity booms.238

Two-stage cylindrical Class-1 tensegrity booms have 4n nodes (n nodes in each level) and 10n239

elements. rbase is the radius of the circumscribing circles for the top and bottom levels, α1 is the240

azimuth angle of the strut between nodes 1 and n+1, δ is the declination angle, lb is the strut length,241

and h is the overlap. The azimuth angle of only one strut is sufficient to fully define the nodal242

locations as the orientations of struts are dependent on each other. Additionally, the angle γ is243

γ = 2π/n.244

Connectivity information for an n-strut cylindrical Class-1 tensegrity boom is also required to245

fully define its configuration. A pattern is found to describe the connectivity between the nodes246

and, for clarity, a connectivity chart is generated as shown in Fig. 4.247

In Fig. 4, each circle represents a node and the edge color of each circle defines the level the248

nodes belong to. Bottom, top, lower intersection, and upper intersection levels are indicated with249

black, blue, magenta, and red circles, respectively. Furthermore, the double-headed arrows indicate250

a connection between the associated nodes as well as the element type. Black, blue, magenta, teal,251

and red arrows represent top and bottom, vertical, saddle, diagonal cables, and struts, respectively.252

In order to avoid overlapping arrows in the connectivity chart, the first nodes of the bottom and253

top levels, i.e. 1 and 2n+1, are located at the upper points of the corresponding layers while the254
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intersection layer is rotated approximately 60° in the counter-clockwise direction.255

After defining the nodal locations and the connectivity information, the equilibrium matrix in256

Equation 2 can be generated using symbolic software. Since the nodal locations and element types257

are defined, the lengths of the saddle, vertical, and diagonal cables can be determined symbolically258

in terms of the parameters given in Table 1. The required derivatives can be taken, the equilibrium259

matrix can be formed and the determinant can be evaluated symbolically.260

Non-trivial solutions to the prestressability conditions, Equation 3, are quadratic in overlap, h,261

and therefore, two solutions exist. These solutions can be evaluated for given values of rbase and262

lb and they will depend only on α1 and δ. These solutions are then evaluated for (α1, δ) pairs and263

the overlap values are computed. For the obtained geometries, a force-finding method, developed264

by Tran and Lee (Tran and Lee 2010) is employed to determine the force densities carried by265

individual elements and to ensure that unilateral element behavior is satisfied, meaning that cables266

carry tension and struts carry compression. The (α1, δ) pairs that satisfy unilateral element behavior267

are stored along with the corresponding overlap value (h). Finally, the collection of these points268

yields two equilibrium surfaces with respect to overlap and height, respectively. Then, deployment269

(increase of total height) can be achieved by varying the azimuth and declination angles while270

remaining on the equilibrium surface.271

Cylindrical Class-1 tensegrity booms with more than two stages have been studied by several272

researchers (Nishimura 2000; Murakami and Nishimura 2001; Sultan and Skelton 2003). The273

form-finding problem for this type of structure is characterized by consistency equations for the274

intermediate and end stages separately, as a function of the number of struts, n, in each stage275

(Micheletti 2003). However, these consistency equations do not provide a general, straightforward276

deployment procedure similar to the approach using equilibrium surfaces described in this paper.277

The generalized deployment method presented here can be used for hybrid Class-1 and Class-2278

tensegrity booms that are constructed by placing two cylindrical units of Class-1 tensegrity booms279

on top of another, creating a connection between struts at the nodes.280
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DEPLOYMENT OF CYLINDRICAL CLASS-2 TENSEGRITY BOOMS281

Deployment of cylindrical Class-2 tensegrity booms is investigated by following two distinct282

deployment strategies. The first strategy involves the use of constant-length reinforcing cables283

while the second one utilizes variable-length reinforcing cables (or no reinforcing cables at all).284

The addition of reinforcing cables is optional and, when they are introduced to the structure, the285

overall stiffness of the structure will be improved and the twist angle will have a feasible range rather286

than a single value (Pinaud et al. 2004). The first strategy takes some advantage of the reinforcing287

cables without increasing the number of actuated cables.288

Pinaud et al. (Pinaud et al. 2004) noted that the prestressability conditions for a three-strut289

cylindrical Class-2 tensegrity boom are satisfied if and only if the twist angle, α, between the two290

stacked tensegrity units is α = π/6. Instead, the addition of reinforcing cables yields a feasible291

twist angle range of α = (π/6, π/2). The overall stiffness of the structure is also affected by the292

selection of the twist angle, which can be treated as a design variable for optimization purposes293

(Yildiz 2018).294

The generalization of cylindrical Class-2 tensegrity booms is achieved in a way similar to the295

one used for the Class-1 case, by defining the nodal locations and determining the connections296

between the nodes. Similar patterns are identified for the nodal locations and connectivity, and297

these are again generalized using a table and a connectivity chart, which are valid for both of the298

aforementioned deployment strategies.299

The nodal locations in this case can be defined in terms of the radii of the circumscribing circles300

for the bottom and top levels, the radius of the circumscribing circle for the intermediate level, the301

twist angle, the strut length, and the height of one stage. A key initial observation is that the nodes302

are evenly spaced along the edge of a circle in the xy plane at each level. For a two-stage example,303

on the z axis, the nodes are located on three different levels. The pattern for defining nodal locations304

is given in Table 2 and it is valid for two-stage, n-strut cylindrical Class-2 tensegrity booms.305

Two-stage cylindrical Class-2 tensegrity booms have 3n nodes (n nodes in each level) and,306

depending on the incorporation of reinforcing cables, 7n or 9n elements. rbase is the radius of the307
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circumscribing circles for the top and bottom levels, r is the radius of the circumscribing circle308

for the intermediate level, α is the twist angle, lb is the strut length, and h is the height of one309

stage. Without reinforcing cables, the twist angle must be α = π/2 − π/n; however, the addition of310

reinforcing cables defines a feasible range for the twist angle, α = (π/2 − π/n, π/2). Additionally,311

the angle γ is γ = 2π/n.312

Connectivity information for an n-strut cylindrical Class-2 tensegrity boom is also required to313

fully define its geometry. The pattern describing this is given with a connectivity chart and it is314

shown in Fig. 5.315

In Fig. 5, each circle represents a node and the edge color of each circle defines the level the316

nodes belong to. Bottom, top, and intermediate levels are indicated with black, blue, and magenta317

circles. Furthermore, the double-headed arrows indicate a connection between the associated318

nodes and the element type. Black, blue, magenta, dashed orange, and red arrows represent top and319

bottom, vertical, saddle, reinforcing cables, and struts, respectively. In order to avoid overlapping320

arrows in the connectivity chart, the first nodes of the bottom and top levels, i.e. 1 and 2n+1,321

are located at the upper point of the corresponding layer while the intermediate layer is rotated322

approximately 60° in the counter-clockwise direction.323

In the following subsections, the deployment strategies are explained in further detail by using324

the nodal locations table and the connectivity chart.325

Deployment with Constant Reinforcing Cables326

This deployment strategy was studied by Pinaud et al. (Pinaud et al. 2004) for a triplex in an327

attempt to achieve deployment with improved stiffness by incorporating constant-length reinforcing328

cables. Since the lengths of the reinforcing cables were kept the same throughout the deployment,329

the required number of actuators does not increase. Themain parameter controlling this deployment330

strategy is the twist angle, α, and it is varied to achieve deployment which involves a simultaneous331

rotation with extension. During deployment, as the structure extends rbase remains constant and r332

decreases.333

Pinaud et al. (Pinaud et al. 2004) obtained expressions for the lengths of the saddle, vertical,334
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and reinforcing cables by calculating the distances between the associated nodes in the three-strut335

case. An expression for the length of the reinforcing cables can be obtained from the distance336

between nodes 2 and n+2, using the nodal locations defined in Table 2, as follows:337

R =

√(
r cos(α) − rbase cos(γ)

)2
+

(
r sin(α) − rbase sin(γ)

)2
+ h2 (4)338

Furthermore, a relationship between r and h can be formed as shown in Fig. 6, a perspective339

view of a strut, where a and b are two end nodes.340

l2
b − h2 = r2

base + r2 − 2rrbase cos(γ + α) (5)341

Equation 4 can be solved, and solutions for r obtained as follows:342

r = rbase cos(γ + α) ±
√

r2
base cos2(γ + α) + l2

b − h2 − r2
base (6)343

Selection of the positive solution for r and its substitution into Equation 4, yields an expression344

for R, which is independent of the radius of the circumscribing circle for the intermediate level.345

Assuming a constant length for the reinforcing cables, R, a direct relationship between α and h can346

be formed.347

Then, for given values of rbase and lb, this relationship can be solved by using a Newton-Raphson348

Method for constant reinforcing cable length. The results can be represented by solution curves349

which represent how height of one stage varies with increasing twist angle in the feasible range. An350

issue encountered by Pinaud et al. with this deployment strategy is the potential collision of struts351

which takes place in the defined feasible range of the twist angle in the three-strut case. However,352

for tensegrity structures with more than three struts in each stage, this issue disappears (Yildiz353

2018).354

This deployment strategy is limited by the constant lengths of the reinforcing cables, and each355

solution curve has an inevitable upper limit. Increasing the twist angle beyond a certain value, the356

intermediate plane of the structure only rotates without achieving further deployment, a behavior357
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also observed by Pinaud et al. (Pinaud et al. 2004). Longer reinforcing cables allow longer booms358

to be designed, but the minimum height of the structure in the undeployed (stowed) configuration359

will also be greater.360

Deployment with Variable Reinforcing Cables361

The second deployment strategy for cylindrical Class-2 tensegrity booms can be used with or362

without reinforcing cables. In this deployment strategy, if reinforcing cables are not introduced,363

the twist angle must be set to α = π/2 − π/n in order to satisfy the prestressability condition.364

Alternatively, with variable-length reinforcing cables, the twist angle can be selected within the365

feasible range defined previously to pursue different goals, such as increased stiffness.366

In this deployment strategy, the height of one stage, h, can be found by calculating the distance367

between two nodes, a and b, connected by a strut, as368

h =
√

l2
b − (xa − xb)

2 − (ya − yb)
2 (7)369

As the deployment proceeds, the height of one stage increases, affecting the node positions in370

the intermediate level. Since the x and y components of these nodes depend on each other through371

the radius of the circumscribing circle of the intermediate level, r can be determined from Equation372

7 and Table 2. For any node located at the intermediate level, the x and y components can be373

related to r as follows:374

xi = r cos(βi) yi = r sin(βi) (8)375

where βi is the angle of each node measured counterclockwise from the x axis and it does not376

change during deployment.377

In this way, it is possible to determine the position of each node at any instant during deployment378

by calculating the radius of the circumscribing circle of the intermediate level. For example, the379

strut between nodes 1 and n+3 (see Table 2) can be considered and the nodal locations can be used380

to establish a relationship between r and h through Equations 7 and 8.381
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In the next section, the strategies described here are applied to n-strut cylindrical Class-2382

tensegrity booms to achieve deployment. Despite the increased number of actuators, the latter383

deployment strategy with reinforcing cables leads to better results since its use is not limited by384

the constant-length reinforcing cables and the stiffness is increased. Furthermore, the range of the385

first deployment strategy is limited by the constant-length reinforcing cables, and the maximum386

possible deployed heights cannot be reached.387

DEPLOYMENT SIMULATIONS388

In this section, the generalized deployment methods described above are used to simulate de-389

ployment of cylindrical Class-1 and Class-2 tensegrity booms. For demonstration and comparison390

purposes, the number of struts in each case is chosen as four (n = 4). In the deployment simulations,391

the bottom nodes are fixed while the others change their positions as the deployment proceeds.392

The cable-length and force-density (force per unit length) variations (found using the force-finding393

method (Tran and Lee 2010)) are tracked during deployment, and the results are presented.394

In each deployment example, the radii of the circumscribing circles of the top and bottom levels,395

rbase, and the lengths of struts, lb, are chosen to be rbase = 0.156 m and lb = 0.4 m (consistent with396

the values used in (Sultan and Skelton 2003)).397

Four-Strut Cylindrical Class-1 Tensegrity Boom398

In this example, deployment of a two-stage four-strut cylindrical Class-1 tensegrity boom is399

simulated. For the given strut length and radii of the circumscribing circles and using the approach400

described in the preceding section, equilibrium surfaces are generated with respect to overlap and401

total height. These equilibrium surfaces are shown in Fig. 7.402

For deployment simulation, the initial and final azimuth and declination angles are selected as403

α1,i = 230°, δi = 85°, α1, f = 210°, and δ f = 55°. A linear deployment path is visualized with404

orange circles on the equilibrium surface with respect to total height, as shown in Fig. 7. Then, the405

deployment sequence is shown in Fig. 8. Furthermore, the force densities in each type of member406

are tracked by the force-finding method as the deployment proceeds. Fig. 9 shows the variations of407
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the lengths of the elements and the relative force densities in the elements, respectively. The force408

density in the top and bottom cables is held constant for comparison purposes.409

Fig. 9(a) shows that the lengths of the top and bottom cables, as well as the struts, are constant410

while the lengths of all of the other elements (cables) are actively controlled. The vertical and411

diagonal cables are lengthened and the saddle cables are shortened to achieve deployment. Fig.412

9(b) reveals that the cables are always in tension and the struts are in compression, satisfying413

unilateral element behavior throughout.414

Four-Strut Cylindrical Class-2 Tensegrity Boom - Constant Reinforcing Cables415

In this example, deployment of a two-stage four-strut cylindrical Class-2 tensegrity boom with416

constant-length reinforcing cables is simulated. Nodal locations are defined based on Table 2.417

Additionally, the full geometry of the structure is generated based on the connectivity chart given418

in Fig. 5.419

Following these steps, the length of the reinforcing cables can be calculated symbolically using420

the nodal locations with Equation 4. Then, a similar relationship between the height of one stage421

and the radius of the circumscribing circle of the intermediate level is formed by Equation 5.422

The solutions to Equation 5 are found and the positive solution for r is substituted back into the423

expression for the reinforcing cable length obtained for four-strut cylindrical Class-2 tensegrity424

booms to establish a direct relationship between α and h. For constant R values, solution curves425

are obtained for the given rbase and lb. These solution curves are shown in Fig. 10.426

Then, the constant reinforcing cable length is selected as R = 0.19 m as it yields the maximum427

difference between the initial and final heights of one stage within the feasible twist angle range.428

The deployment is simulated by varying the twist angle between αi = 48° and α f = 81°. The429

sequence of deployment can be seen in Fig. 11.430

During the deployment, the lengths of each type of member and the force densities carried by431

these members are tracked. The variations of lengths and force densities are shown in Fig. 12. Fig.432

12(a) shows that with the use of constant reinforcing cables, the deployment range is limited as the433

deployment continues with almost no extension in the total height during the final phase. This is434
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mainly due to the fact that as the deployment proceeds, the intermediate plane rotates and limits435

the achievable maximum height of one stage for a constant reinforcing cable length. Fig. 12(b)436

also shows that the cables carry tension, and the struts carry compression during deployment.437

Four-Strut Cylindrical Class-2 Tensegrity Boom - Controlled Reinforcing Cables438

In this example, deployment of a four-strut cylindrical Class-2 tensegrity boom is studied.439

For illustration purposes, reinforcing cables are introduced and they are actively controlled. As440

a result, there is no limitation on the deployment range of the structure since all cables including441

reinforcing ones are actively controlled. Nevertheless, the deployment range is practically limited442

by the decreasing radius of the circumscribing circle of the intermediate level.443

The nodal locations and element connectivity are defined based on Table 2 and Fig. 5, respec-444

tively. The twist angle selection has a direct influence on the stiffness of the structure, as shown by445

Yildiz (Yildiz 2018), and can be determined based on different requirements. In this example, it is446

set to α = 3π/8, which is in the feasible range of (π/4, π/2). The height of one stage is related to the447

strut length and the radius of the circumscribing circle of the intermediate level through Equations448

7 and 8.449

The initial and final heights of one stage are selected as hi = 0.03 m and h f = 0.26 m,450

and the deployment is simulated. With this selected final deployed height, the tensegrity boom451

has a uniform cross-section in the fully-deployed configuration, which is not achievable using452

constant-length reinforcing cables. The deployment sequence is shown in Fig. 13.453

Similarly, the lengths of each member are tracked and the force densities are calculated using454

the force finding method during deployment. Fig. 14 shows the variations of member lengths and455

force densities.456

The results show that the deployment range is limited only by the radius of the circumscribing457

circle for the intermediate level. As the height of the structure increases, the radius of the interme-458

diate level decreases to a nominal limit matching that of the top and bottom levels. Additionally,459

the force densities in the cables and struts are always positive and negative, respectively, meaning460

that unilateral element behavior is preserved during deployment.461
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CONCLUSIONS462

This paper developed a general procedure for addressing deployment of n-strut cylindrical Class-463

1 and Class-2 tensegrity booms. The geometry and deployment behavior of three-strut cylindrical464

Class-1 and Class-2 tensegrity booms were described as a starting point. Generalization procedures465

were developed to investigate the deployment of cylindrical Class-1 and Class-2 tensegrity booms466

with more than three struts in each stage, a result not previously available in the literature. The467

generalization procedures start with defining the nodal locations in terms of a few parameters.468

Rotational symmetry and the regular polygons generated by the cylindrical tensegrity units enable469

the definition of nodal locations in terms of a few parameters, most importantly, the number of470

struts in each stage. In order to completely define the configurations, connectivity charts describing471

the connectivity between the nodes were developed.472

For Class-1 tensegrity booms, a mixed symbolic-numerical approach was adopted to form the473

equilibriummatrix symbolically and obtain solutions to the prestressability conditions numerically.474

For Class-2 tensegrity booms, two different deployment strategies were investigated: one with475

constant-length reinforcing cables and another with variable-length reinforcing cables. The first476

deployment strategy involves a direct relationship between the height of one stage and the twist477

angle, and this relationship was numerically solved to yield solution curves. On the other hand, the478

second deployment strategy involves a relationship between the height of one stage and the radius479

of the circumscribing circle for the intermediate level.480

Example deployment simulations for Class-1 and Class-2 tensegrity booms with four struts in481

each stage were examined. For comparison purposes, the radius of the top and bottom plane and482

the strut length were kept the same in all cases. During deployment, the lengths of each type of483

element were calculated and their variation was shown. Furthermore, the force-finding method was484

employed to track the force densities carried by different types of elements during deployment.485

The simulations showed thatClass-1 tensegrity structures can have very low initial heights, while486

thatmay be impractical for Class-2 tensegrity boomswith constant-length reinforcing cables. On the487

other hand, both Class-1 tensegrity structures and Class-2 tensegrity structures with variable-length488
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reinforcing cables can be fully deployed to achieve a uniform boom cross-section. However, while489

Class-2 tensegrity booms with constant-length reinforcing cables have fewer actuators than Class-490

2 tensegrity booms with variable-length reinforcing cables, their deployment range is relatively491

limited.492

The generalization procedures developed in this paper enable more straightforward design493

of deployable cylindrical Class-1 and Class-2 tensegrity booms. The number of struts can be494

increased arbitrarily for different purposes such as the pursuit of increased stiffness or stiffness-495

to-mass ratio. As a result, by varying the number of struts in each stage, the optimal design of496

tensegrity booms can be evaluated for potential use in future space missions. Other potential497

benefits of the generalization procedure may include increases in deployment/packaging efficiency498

and/or stiffness during deployment.499
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TABLE 1. Locations of the nodes in a two-stage n-strut cylindrical Class-1 tensegrity boom
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TABLE 2. Locations of the nodes in a two-stage n-strut cylindrical Class-2 tensegrity boom

Node x y z

Bottom
Level

1 rbase 0 0
2 rbase cos(γ) rbase sin(γ) 0
3 rbase cos(2γ) rbase sin(2γ) 0
· · · · · · · · · 0
n-1 rbase cos((n − 2)γ) rbase sin((n − 2)γ) 0
n rbase cos((n − 1)γ) rbase sin((n − 1)γ) 0

Intermediate
Level

n+1 r cos(α − γ) r sin(α − γ) h
n+2 r cos(α) r sin(α) h
n+3 r cos(α + γ) r sin(α + γ) h
· · · · · · · · · h
2n-1 r cos(α + (n − 3)γ) r sin(α + (n − 3)γ) h
2n r cos(α + (n − 2)γ) r sin(α + (n − 2)γ) h

Top
Level

2n+1 rbase 0 2h
2n+2 rbase cos(γ) rbase sin(γ) 2h
2n+3 rbase cos(2γ) rbase sin(2γ) 2h
· · · · · · · · · 2h
3n-1 rbase cos((n − 2)γ) rbase sin((n − 2)γ) 2h
3n rbase cos((n − 1)γ) rbase sin((n − 1)γ) 2h
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Fig. 2. Two-stage three-strut cylindrical Class-1 tensegrity boom (a) perspective, (b) top, and (c)
side views
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side views
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varying reinforcing cables
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