Self-similar generalized Riemann problems for the 1-D isothermal Euler system

We consider self-similar solutions to the 1-dimensional isothermal Euler system for compressible gas dynamics. For eachβ∈ R, the system admits solutions of the form ρ(t,x)=tβΩ(ξ)u(t,x)=U(ξ)ξ=xt,where ρ and u denote the density and velocity fields. The ODEs for Ω and U can be solved implicitly and yield the solution to generalized Riemann problems with initial data ρ(0,x)={Rl|x|βx<0Rrxβx>0u(0,x)={Ulx<0Urx>0,where Rl,Rr>0 and Ul,Ur are arbitrary constants. For β∈ (- 1 , 0) , the data are locally integrable but unbounded at x= 0 , while for β∈ (0 , 1) , the data are locally bounded and continuous but with unbounded gradients at x= 0. Any (finite) degree of smoothness of the data is possible by choosing β> 1 sufficiently large and Ul= Ur. (The case β≤ - 1 is unphysical as the initial density is not locally integrable and is not treated in this work.) The case β= 0 corresponds to standard Riemann problems whose solutions are combinations of backward and forward shocks and rarefaction waves. In contrast, for β∈ (- 1 , ∞) \ { 0 } , we construct the self-similar solution and show that it always contains exactly two shock waves. These are necessarily generated at time 0 + and move apart along straight lines. We provide a physical interpretation of the solution structure and describe the behavior of the solution in the emerging wedge between the shock waves.


  • JLa.pdf

    size: 720 KB | mime_type: application/pdf | date: 2021-08-20


Work Title Self-similar generalized Riemann problems for the 1-D isothermal Euler system
Open Access
  1. Helge Kristian Jenssen
  2. Yushuang Luo
License In Copyright (Rights Reserved)
Work Type Article
  1. Zeitschrift fur Angewandte Mathematik und Physik
Publication Date April 1, 2021
Publisher Identifier (DOI)
Deposited August 20, 2021




This resource is currently not in any collection.

Work History

Version 1

  • Created
  • Added JLa.pdf
  • Added Creator Helge Kristian Jenssen
  • Added Creator Yushuang Luo
  • Published
  • Updated
  • Updated
  • Updated