
Using Markov Decision Process to Model Deception for Robotic and Interactive Game Applications
This paper investigates deception in the context of motion using a simulated mobile robot. We analyze some previously designed deceptive strategies on a mobile robot simulator. We then present a novel approach to adaptively choose target-oriented deceptive trajectories to deceive humans for multiple interactions. Additionally, we propose a new metric to evaluate deception on data collected from the users when interacting with the mobile robot simulator. We performed a user study to test our proposed adaptive deceptive algorithm, which shows that our algorithm deceives humans even for multiple interactions and it is more effective than random choice of deceptive strategies.
© None IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Files
Metadata
Work Title | Using Markov Decision Process to Model Deception for Robotic and Interactive Game Applications |
---|---|
Access | |
Creators |
|
License | In Copyright (Rights Reserved) |
Work Type | Article |
Publisher |
|
Publication Date | January 10, 2021 |
Publisher Identifier (DOI) |
|
Source |
|
Deposited | September 09, 2021 |
Versions
Analytics
Collections
This resource is currently not in any collection.