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ABSTRACT 

 
Molecular self-assembly is a powerful technique for controlling and manipulating 

interfacial chemistry.  Self-assembled monolayers are one-molecule thick molecular layers 

supported by substrates.  Understanding the underlying features of the formation of such 

monolayers provides insight leading to the design of more complex assemblies. Assembly 

structures and function defined by the geometries of the molecular subunits, the interactions 

between the adsorbates and substrate, and intermolecular interactions between adsorbates.  

Electrochemical analysis can provide insight into each of these interactions and structures.   

Specifically, intermolecular hydrogen-bonding within 1ATC9 SAMs has dramatic effects on the 

properties, physical and electrochemical, of their assemblies.  Rather than a simple one-electron 

reduction of the Au-S bond, 1ATC9 desorption is a two-step process, which can be interrupted.  

The first step converts the well-ordered monolayer into a distinctive striped assembly.  Cyclic 

voltammetry was also used to reveal how dipole-dipole interactions between three adsorbed 

carboranethiol isomers altered their electrochemistry on Au{111}.  Adsorbate-substrate 

interactions are a critically important feature to control and to understand as new substrate 

materials are used for self-assembly.  Germanium is an exciting material for the extension of 

self-assembly.  Due to the stronger bond between sulfur and Ge, C12 desorbs at much higher 

potentials than it does on Au{111}.   
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Chapter 1. Electrochemistry and Self-Assembly 
 

1.1 Introduction into Electrochemistry 

The fundamental process in electrochemistry is the transfer of electrons between the 

electrode surface (metal or semiconductor) and the molecules in a solution at the electrode 

surface.  Electrochemistry can be used to obtain thermodynamic details of reactions by relating 

the potential change of a reaction to the free energy change, to generate an unstable intermediate, 

or to analyze a chemical system for trace amounts of metal ions or organic species.
1
 

The standard electrode potentials (E) are measured with respect to the standard hydrogen 

electrode (SHE), which undergoes the reaction: 

 

     
                                (1) 

 

This half-cell reaction is given an E value of 0 V; every other electrochemical reaction is 

measured with respect to this standardization. Two independent half-cell reactions make up the 

overall chemical reaction.  In most cases, the interest lies on only one of these half reactions and 

its corresponding electrode, the working electrode.  In general, the standard working electrode is 

comprised of electrochemically stable materials (i.e., Pt, Au, Hg, and C).  The other half-reaction 

occurs at the auxiliary electrode (or counter electrode). For example, hydrolysis under basic 

conditions involves two half-cell reactions: 

 

                      E = 0.83 V  (2) 

                    E = 0.40 V  (3) 

 

Reaction 2 occurs at the working electrode and Reaction 3 occurs at the auxiliary 

electrode.  The purpose of the auxiliary electrode is to balance the redox reaction.  An 

electrochemically inert material is used for this purpose as well.  The third electrode, the 

reference electrode, is added to standardize the electrochemical measurements.  This electrode is 

comprised of multiple, coexisting phases.  For example Ag/AgCl electrode is a commonly used 

electrode, consisting of silver and silver chloride in a saturated aqueous solution of potassium 

chloride (Ag/AgCl/KCl(sat)).  This design allows the electrode to produce a well-known, fixed 

potential.  This is desirable for an electrochemical experiment because any measured change in 

overall cell potential must then come from the working electrode; all measurements are made 

with respect to the reference electrode.  The SHE is the internationally accepted reference 

electrode, but others are commonly used experimentally for their ease of use and stability, 

especially the saturated calomel electrode (SCE) or the Ag/AgCl electrode.
2
 

 

1.2 Electrochemical System 

A custom-built electrochemical cell is used with a BASi Epsilon potentiostat 

(Bioanalytical Systems Inc, West Lafayette, IN) (Figure 1.1).  The area of the working electrode 

is ~0.5 cm
2
, defined by a perfluoroelastomer O-ring from McMaster Carr (Cleveland, OH), 

mounted on top of the substrate inside the electrochemical cell, and electrochemically 

determined using the Randles-Sevcik equation.  The electrochemical cell potential is applied to a 

modified working electrode and a Pt wire counter electrode, with a KCl saturated Ag/AgCl 

reference electrode.   Electrochemical equipment is shown in Figure 1.2. 



2 
 

 
 

Figure 1.1. (A) BASi C3 cell stand and Teflon electrochemical cell. (B) 

Shows detailed view with connections to working (1), reference (2), and 

auxiliary (3) electrodes. 

 

 
 

Figure 1.2. Teflon Electrochemical Cell (A and B) with working (A), 

reference (C), and counter (D) electrodes. 

 

 

 



3 
 

1.3 Self-Assembled Monolayers of Organic Thiols on Au 

 A self-assembled monolayer (SAM) is a single molecular layer that spontaneously 

assembles on metal substrates due to the balance between adsorbate-substrate attractions and 

intermolecular interactions.  The SAM structure is dependent on the molecular shape of the 

adsorbate and the van der Waals interaction strength (see Figure 1.3 for n-alkanethiolate SAM 

assembled on Au{111}).
3,4

 Thiol adsorbates form strong sulfur-gold bonds (~168 kJ/mol).  The 

structure of the monolayer can be influenced by van der Waals forces, dipole-dipole interactions, 

and hydrogen bonding in the thiol backbone.  These factors are affected by shape, length, 

functional group, and dipole moment in the adsorbate molecules.  Changing any of these 

molecular characteristics alters the chemical, physical, and electrical properties of the material.  

 
Figure 1.3. Schematic of n-alkanethiolate SAM structure on 

Au{111} showing well-ordered, close-packed structure as a result 

of van der Waals interactions between neighboring linear alkyl 

chains. Reproduced from reference 22, with permission.  

 

The self-assembly of organic molecules offers a methodology to control interfacial 

wetting and adhesion,
3-5

 nanoscale chemical patterning,
3-5

 corrosion resistance,
6
 sensitization for 

photon harvesting,
7
 biocompatibility,

3-5,8
 and molecular recognition for sensor applications.

8
  

Manipulating and controlling the SAM structure diversifies and simplifies the engineering 

strategy to construct low-cost and sustainably produced thin films.  Thus, it is critical to design 

and to study molecules at the nano-scale, so that we can anticipate their interfacial behaviors to 

fabricate nanoscale electronics and other devices with better performance.  For nano- or micro-

electromechanical systems, these techniques can engender smaller devices using less material 

and resulting in smaller environmental impact.   Self-assembled monolayers also offer a simple 

manufacturing process due to their spontaneous assembly.  In essence, they construct 

themselves, and do not require external forces.  Organic thiolate SAMs are also inexpensive
5
 and 

versatile, with a large variety of available functional groups available for their exposed interface.  

Depending on the specific application and the final manufacturing process, the smaller amounts 

of raw materials combined with the self-assembly construction of the SAMs can contribute to a 

less expensive manufacturing process that requires less external energy to drive.  The inherent 

efficiencies in this manufacturing process could lead to a smaller negative environmental impact 

and hence a more sustainable system. 

 

1.3.1 Self-Assembly on Au{111} 

The single crystal Au{111}surface is widely used as substrates for organic thiolate 

monolayers due to the ease of its preparation and the high-quality SAMs it supports.  It is 
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relatively chemically and electrochemically inert making it useful for both self-assembly and 

electrochemistry.  Further, these characteristics contribute to gold‟s biocompatibility.
3
  While the 

adsorbate-substrate interaction is suitably strong to form stable monolayers, the complex formed 

between the gold and thiol is suitably mobile to allow diffusion during self-assembly to create 

well-ordered, stable structures.  Due to this high affinity between gold and thiols and the 

diffusion of molecules on surfaces to improve order, a high-quality SAM can last for periods of 

days to weeks when in ambient conditions.
3
  

 

1.3.2 n-Alkanethiols vs. Cage Thiols 

In nature, self-assembly of molecules results in supramolecular structures.
9
 Self-

assembled monolayers offer an opportunity to understand the mechanisms and factors that affect 

self-assembly processes at large.
8-10

  Tailoring the molecular structure influences the 

intermolecular interactions within monolayers; therefore, by changing the head group of the 

molecule or the substrate, the molecule–substrate interactions and molecular geometric factors 

alter the structural features of the film.  Other factors, such as solvent and temperature, can also 

influence the interactions between molecules and the mechanism of assembly (or disassembly).  

Understanding the assembly process in SAMs can advance the use of these systems in several 

practical applications in nanoscale science, manufacturing, biology, and engineering.
3-5

 

The simplest of the thiol based self-assembled monolayers are n-alkanethiols and are 

most commonly studied.
10-14

 With a linear chain structure and n number of carbon atoms in the 

chain, it forms well-ordered, close-packed structures on Au{111} due to the interacting forces 

between the sulfur and gold and between alkyl chains.  These high-quality monolayers of 

alkanethiols are straightforwardly prepared through solution and vapor depositions in ethanolic 

solutions for 12-24 hours.
3,10-14

  Longer deposition times produce fewer defect sites. 

Alkanethiolates on Au{111} form a hexagonal (√3  √3)R30° with respect to the underlying 

substrate.  Molecules align themselves with 30° tilts from the normal to optimize intermolecular 

interactions.
15-17

  Increasing the number of atoms in alkanethiols increases the van der Waals 

forces, and decreasing the number has the opposite effect. 

    Rigid, three-dimensional cage molecule SAMs provide a stark contrast to the linear 

n-alkanethiolates.
18-22

  Adamantanethiol, a thiol derivative of a simple diamondoid, is one 

commonly used cage molecule (Figure 1.4).  Changes in surface morphology are due to the 

bulky size of the cage molecule compared to the slender, linear chain of n-alkanethiol.  The thiol 

position on the cage causes different tilt angles, which also changes the SAM surface structure.  

1-Adamantanethiol (1AD) forms well-ordered, closely-packed structures without defects 

associated with molecular tilt. 2-adamantanethiol (2AD) adopts a tilted orientation on a Au{111} 

substrate.  This minor molecular adjustment drastically changes the SAM surface morphology. 

 

 

 

 

 

 

 

 

Figure 1.4. (A) 1-Adamantanethiol and (B) 2-adamantanethiol  

molecules. 
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 Cage molecule surface coverage is lower than for n-alkanethiols (1.8 times fewer 

molecules per unit surface area) due to the larger size of the adamantane cage relative to the 

alkanethiols.  The significantly higher intermolecular interactions in n-alkanethiols are due to 

larger contact areas between linear alkyl chains.  Adamantanethiol has weaker interactions 

between neighboring molecules due to the low number of neighboring atoms.  The weak 

interactions between adamantanethiolates have been exploited for chemical patterning 

techniques, specifically microdisplacement printing.
18,22

  The adamantanethiolate monolayer is 

used as a protective layer, and is readily displaced by n-alkanethiols. It also provides lateral 

diffusion barriers for mobile ink molecules to create high-resolution patterns. 

 A second class of cage molecules is the carboranes (icosahedral dicarba-closo-

dodecaboranes, C2B10H12), composed of carbon, boron, and hydrogen.  The positions of the 

carbon atoms can be altered, by design, by one or two boron atoms (Figure 1.5).  Altering the 

position of these carbon atoms changes the dipole moment orientation and magnitude, thereby 

offering additional tunability in the form of electronic structure.  Varying the electronic structure 

changes the molecule‟s dipole moment in orientation and intensity.
22-24

 

 

 
 

Figure 1.5: o-1-carboranethiol (O1) (a member of the ortho-

carboanes with a thiol functionalization on the 1 position), 

m-1-carboranethiol (M1), and m-9-carboranethiol (M9) isomers 

shown here. Thiol positioning is noted numerically beginning with 

one of the carbon atoms.
22

 

 

1.4 Electrochemistry of Organic Thiolate SAMs  

A Au working electrode modified with a thiolated monolayer can be characterized 

electrochemically to determine the organization of molecules in a single-layer film, including 

surface coverage, molecular order, and the intermolecular interaction strengths.
11,25-28

  Reductive 

desorption of thiolated species with applied cathodic potential is a one-electron reaction: 

 

                    .     (4) 

 

Electrolytic techniques are used to analyze thiolated working electrodes by applying 

voltage and monitoring current. Cyclic voltammetry (CV), a widely used electrolytic technique 

for studying thiolated SAMs,
10-13,28-34

 applies a triangle potential waveform across the working 

and auxiliary electrodes and monitors the resulting current, shown in Figure 1.6.  Peaks in 

current indicate chemical reactions (oxidation and reduction).  Reduction of thiolated SAMs can 

be obtained using Equation 4.
35
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Figure 1.6. (A) The waveform of potential applied across the 

electrochemical cell over time, where the slope is the scan rate.  

Current is monitored as a function of potential to produce the 

generic cyclic voltammogram (B).  Here, Epc and ipc are the 

cathodic peak potential and current, respectively and Epa and ipa are 

the anodic peak potential and current, respectively. 

 

 

 The peak potential gives insight into intermolecular interactions between similar 

molecules.  The bonds between the gold and thiolated molecules are generally identical across 

varying molecular geometries, so the higher the potential needed to desorb the monolayer, the 

stronger the interactions between molecules in the SAM.  Information about the ordering of the 

molecules on the substrate is provided by measuring the current full-width at half-maximum 

(fwhm).  A narrow fwhm suggests a close-packed molecular structure.  This is a result of 

molecules desorbing simultaneously due to increased intermolecular interactions from closer 

molecules.
11

 

A 

B 
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1.5 Thesis Overview 

Understanding the adsorbate-substrate and intermolecular interactions within organic 

thiolates monolayers enable us to control and manipulate interfaces in electronic device 

applications.  In this work, I have characterized the SAMs of three organic thiol molecules, 

namely, 3-mercapto-N-nonylpropionamide, m-1-carboranethiol, and m-9-carboranethiol, using 

electrochemical methods.  Further, to study the effects of thiolate monolayers on a 

semiconducting germanium substrate, I have developed the methods for studying the 

electrochemistry of 1-dodecanethiolate films on Ge(111). 

In order to benefit materials applications, self-assembly systems require a deeper 

fundamental understanding and further characterization.   In conducting the experimental work 

discussed here, safety and environmental concerns were a large consideration.  To uphold these 

environmental, safety, and ethical duties, preparations were made according to the 

Environmental Health and Safety at the Pennsylvania State University to ensure that the 

hazardous waste used in the following experiments is properly disposed of and that proper 

procedures were used in handling the material.
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Chapter 2: Self-Assembled Monolayers of Amide-Containing Alkanethiols on 

Au{111} 
2.1 Self-Assembled Monolayers of 1ATC9 

Self-assembled monolayers of amide-containing alkanethiolates are highly stable due to 

their inter-chain hydrogen-bonding interactions.
1
   Previous studies

36-40
 have shown that these 

molecules exhibit a slightly more complicated structure due to the interplay between the 

hydrogen-bonding network and van der Waals interactions in the hydrocarbon region.   In this 

chapter, the electrochemical reduction of 3-mercapto-N-nonylpropioamide (1ATC9) in an 

alkaline aqueous solution will be discussed to differentiate between the hydrogen-bonding 

interactions within amide group and the inter-chain interactions that affect the structure and 

properties of the monolayer.  

 

2.1.1 Self-Assembly of 1ATC9 

All 1ATC9 SAMs are prepared by submersing hydrogen-flame-annealed thin films of 

Au{111} on mica substrates (Agilent Technologies, Tempe, AZ) in a 1 mM ethanolic 1ATC9 

solution.   Clean substrates are placed in solution at room temperature or at 70 °C for 24 h.  

Following deposition, each sample is removed from solution, rinsed with ethanol (200 proof, 

Pharmaco, Brookfield, CT), and blown dry with nitrogen gas.  The rinse/dry cycles are repeated 

three times.   The samples are immediately used for scanning tunneling microscopic (STM) 

imaging and electrochemical measurements.  

 

2.1.2 Hydrogen-Bonding Orientation in 1ATC9 Monolayers  

The 1ATC9 prepared at room temperature (RT) has two domains.  These domains differ 

in height by about ~1 Å, attributed to a difference in the molecular orientation and directionality 

of hydrogen bonding within the monolayer.  The 1ATC9 sample prepared at the 70 °C shows 

only one phase in scanning tunneling microscopy (STM) images (Figure 2.1A).  At this 

temperature the domain size increases and the number of defect sites decreases.
41,42

 

It is postulated that at room temperature, the 1ATC9 molecules are trapped in either a 

less stable, upright and more protruding domain with non-linear hydrogen bonding (phase A) or 

in the more stable, tilted and less protruding domain (phase B) with linear hydrogen 

bonding.
40,43

  At the higher temperature, 70 ºC the SAMs favor the more stable B phase to obtain 

more effective hydrogen-bonding interactions with linear orientation between amide groups. 

 

2.2 Voltammetric Reductive Desorption 

Cyclic voltammetry on 1ATC9 SAMs allow us to probe intermolecular interactions, 

specifically the hydrogen-bonding interations from the amide group.  We expect the extra 

intermolecular interactions from the hydrogen-bonding networks in the amide group to increase 

molecular interaction strengths within the monolayers over those present in linear alkanethiol 

SAMs.  However, cyclic voltammograms indicate that the amide group also increases the 

complexity of the system.  
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Figure 2.1. Scanning tunneling microscopy images of 3-mercapto-N-nonyl-

propionamide (1ATC9) monolayers assembled at 70 °C (A) and  RT (B).  (All 

scale bars represent 100 Å).  High temperature self-assembly (Figure 2.1A) 

provides enough diffusion energy to eliminate the non-linear hydrogen-bonding 

phase (domain A in Figure 2.1B), resulting in one phase.  The spots in Figure 

2.1A correspond to depressions (dark) and protrusions (light) in the gold surface.  

The insets in A and B show the different molecular orientations.
44

 

 

 

 

 

2.2.1 Cyclic Voltammetry on 1ATC9 SAMs. 

Using the equipment described in section 1.2, an electrochemical cell potential is applied 

with a Ag/AgCl saturated KCl reference electrode and a Pt wire counter electrode.   The 

supporting electrolyte, an aqueous solution of 0.5 M KOH (99.99% Sigma-Aldrich, St Louis, 

MO), is prepared with deionized water (18.2M, Millipore Corp. Billerica, MA) and sparged with 

ultrahigh purity N2 for 20 min. Cyclic voltammetry is performed at reductive potentials of -200 

to -1300 mV with a scan rate of 20 mV/s.  Baseline correction of voltammograms are done using 

GRAMS (Thermo Scientific, Location).
18,45

  Seven representative cyclic voltammograms are 

selected to calculate the peak areas and standard deviations for the first peak at 70 °C, 20 for 

room temperature (RT).  Nineteen representative cyclic voltammograms are selected for the 

second peak at 70 °C, and thirteen representative cyclic voltammograms at RT. 

B A 
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2.2.2 Reductive Desorption of 1ATC9 SAMs 

Figure 2.2A shows representative cyclic voltammograms of single-component 1ATC9 on 

Au{111} deposited in solution at room temperature (blue trace) and at 70 °C (red trace) for 24 

hours, analyzed in aqueous 0.5 M KOH solution.  The voltammogram shows two reductive 

peaks, rather than the single peak observed in a one-electron desorption of short alkanethiolate 

SAMs depicted in Figure 2.2B.
35

  

The presence of two peaks for RT and 70 °C 1ATC9 SAMs (Figure 9A) suggests that the 

number of phases and the number of cathodic peaks are unconnected.  The presence of the 

double peak may originate from two different adsorption sites, or from differences in adsorption 

states.
11

  As shown in Table 2.1, the first peak is centered on -920 mV and -943 mV for 1ATC9 

SAMs formed at RT and 70 °C, respectively. Both SAMs assembled at 70 °C and RT show 

similar narrow fwhm and equivalent peak areas.  This indicates that both monolayers are well-

ordered and close-packed, so relative order is not responsible for the anomalous peak.  The 

higher desorption potential for the 70 °C SAM area is a result of increased intermolecular 

interactions due to linear hydrogen bonding.  

The second reductive peak is centered around -1100 mV for both SAMs likely originates 

from the desorption of all thiols left after the first reduction.  This peak for both SAMs is 

substantially wider than the first reductive peak, indicating a decrease in packing order and 

density (Table 2.2).  Peak areas also prove less-ordered 1ATC9 SAM structures after the first 

reduction, showing a substantial difference in desorbed thiols between 1ATC9 SAMs and C12.  

 

Table 2.1: First reduction peak using cyclic voltammetry. Tables of tabulated values obtained. 

Thiol Reduction 
Average Peak 

Potential (mV) 
Average Peak  

fwhm (mV) 
Average  Peak 

Current (μA) 
Average Peak  

Area (μC) 

3-mercapto-N-

nonylpropionamide (1ATC9)   

70 ⁰C 

-943 ± 6   39.7 ± 9.1 1.7 ± 0.5 3.4 ± 1.1 

3-mercapto-N-

nonylpropionamide (1ATC9)   

Room Temperature 

-920 ± 6 39.3± 2.5 1.8 ± 0.3 3.4 ± 1.1 

 

 

Table 2.2: Second reduction peak, corresponding to thiol desorption using cyclic voltammetry 

compared to C12 reduction peak. Tables of tabulated values obtained. 

 

Thiol Reduction 
Average Peak 

Potential (mV) 
Average Peak  

fwhm (mV) 
Average  Peak 

Current (μA) 
Average Peak  

Area (μC) 
3-mercapto-N-

nonylpropionamide (1ATC9)   

70 ⁰C 
-1111 ± 6   86.9 ± 25.9 1.5 ± 0.6 6.5 ± 3.4 

3-mercapto-N-

nonylpropionamide (1ATC9)   

Room Temperature 

-1105 ± 5 106 ± 27 2.1 ± 0.6 11.0 ± 4.2 

n-dodecanethiolate (C12) -1098 ± 12 74 ± 11 5.3 ± 1.3 20.2 ± 4.9 

 



11 
 

 
Figure 2.2. Cyclic voltammograms of 1ATC9 (70 ºC and RT) (A) and C12 

(B) SAMs on Au{111} with 0.5 M KOH aqueous solution. 

  

2.3 Electrochemically Driven Surface Reconstruction 

In order to understand the structural change after the first reductive desorption on 1ATC9 

SAMs, we have conducted controlled potential electrolysis (CPE) on 1ATC9 SAMs.  A CPE 

experiment involves the application of a constant potential, and the current response is measured 

as a function of time. A reductive potential of -960 mV is applied to 1ATC9 70 °C SAMs for 

120 s.  To prevent KOH deposition, the samples are rinsed with a 50:50 deionized water/ethanol 

solution, followed by a rinse with ethanol, and finally blown dry with N2.  The SAMs were 

immediately imaged with the STM. 

 

2.3.1 Controlled Potential Electrolysis on 1ATC9 SAMs 

Figure 2.3 shows representative CPE graph of 1ATC9 SAMs.  The figure shows an 

exponential decrease in current in response to an applied reductive potential of -960 mV.  This 

correlates with a decrease in the reduction reaction rate.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3. CPE graph of 1ATC9 SAMs. A reductive potential of -

960 mV was applied for 120 seconds and the current response was 

measured. 
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2.3.2 Electrochemical Structural Manipulation on 1ATC9 Monolayers  

Cyclic voltammetric results and Equation 4 suggest partial thiol desorption at an average 

of -943 ± 6 mV for 70 °C 1ATC9 SAMs (Table 2.1).   This partial desorption creates vacancies, 

allowing the remaining molecules to reorganize.   Controlled potential electrolysis is conducted 

at -960 mV for 120 s to drive the first reduction reaction, observed in the cyclic voltammograms 

in Figure 9A.   The STM images in Figure 2.4 support this interpretation, showing the 1ATC9 

monolayer structure is transformed into a stripped pattern.   The protrusions indicate entire alkyl 

chains are physically bound to the Au surface, the lengths of which appear consistent with the 

average annealed 1ATC9 domain size (depicted in Figure 2.4 A).   Depressions in between 

molecules on the SAM surface represent bare Au.   The stripe patterns are oriented in three 

directions rotated by 120º with respect to each other. This reflects the 3-fold symmetry of the 

Au{111} surface.   The high-resolution STM image in Figure 2.4 B shows the presence of the 

remaining, structurally reorganized 1ATC9 molecules and the bare gold surface. 

Due to the presence of multiple reductive desorption peaks (Figure 9) of 1ATC9 SAMs, 

applying slightly higher voltage of the first desorption partially desorbs some weakly bound 

1ATC9 molecules.  The first reductive reaction changes the entire monolayer structures to 

compensate for the loss of molecules in the SAM.  This controlled electrolysis on amide-

containing alkanethiolate SAMs provides a straightforward means to fabricate nanoscale patterns 

on metal surfaces.  In comparison to linear alkanethiolate SAMs, the second pseudo stable 

nanoscale structure is only possible in this 1ATC9 molecule, or at least amide-containing 

organic thiols that can form strong hydrogen-bonding interactions.  This strong hydrogen 

bonding-network enables molecules to transform the structure spontaneously while maintaining 

hydrogen bonding interactions.  

  

 
 

Figure 2.4. Scanning tunneling microscopy images of electrochemically processed 

1ATC9 SAMs on Au{111}. (A) 1000 Å  1000 Å, (B) 500 Å  500 Å, sample 

bias -1.0 V, tunneling current 1.0 pA. All scale bars represent 100 Å. Prior to 

CPE, the 1ATC9 SAM has a single phase structure similar to that in Figure 2.1. 

The round protruding features correspond to Au adatom islands formed during 

self-assembly. Darkened indentations indicate spacing in between 1ATC9 

molecules. As shown in Figure 2.4A, the striped patterns are oriented in three 

directions rotated by 120 with respect to each other.
44
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Chapter 3. Electrochemistry of Carboranethiol Self-Assembled Monolayers 
 

3.1 Self-Assembled Monolayers of Carboranethiol on Au{111} 

Carboranes are boron hydrogen cluster compounds where one or more boron atoms are 

replaced with a carbon atom.  These result in thermally stable, rigid, and nearly icosahedreal (12-

membered cage) compound.  Thiol-functionalized carboranes make excellent molecular 

candidates for studying and extricating the effects of geometry and intermolecular interactions on 

self-assembly.
22,24

  The icosahedral carborane has three positional isomers, ortho, meta, and 

para, depending on the relative position of the carbon atoms (Figure 3.1). 

 The different isomers of meta (M1 and M9) and ortho (O1) carboranethiols have 

different dipole magnitudes and orientations.  These dipole moments impact how the isomers 

assemble on the Au{111} substrate and the stability of the adsorbed monolayer.  These 

differences can be observed electrochemically. 

 

 
 

Figure 3.1: Schematic representation of carboranethiol isomers.  

From left to right, o-1-carboranethiol (O1) m-1-carboranethiol 

(M1), and m-9-carboranethiol (M9) isomers.  The letter 

assignment denotes relative locations of the carbon atoms, and the 

numerical assignment corresponds to the position of the thiol 

relative to the carbon .
22

 

 

Dipole moments in carboranes are typically oriented with the positive charge centered at 

the carbon atoms, with substituent‟s affecting the direction and magnitude.   The O1, M1, and 

M9 carboranethiol isomers (Figure 3.2) have dipole moments of 3.56,
46

 1.06, and 4.08 Debye,
22

 

respectively.   STM images reveal that M1 and M9 (Figure 3.3) form loosely packed structures 

due to relatively weak intermolecular interactions between the carborane cages.  The nearly 

identical geometries of the molecules show no apparent difference in surface morphology 

between a single component M1, M9 SAMs or a dual component M1/M9 SAMs.  This indicates 

that molecular geometry is the dominant factor of the SAM structure, over dipole-dipole 

interactions.   Since the molecular orientation is locked, we can presume that the dipole 

orientation will likewise be fixed, with M1 dipoles aligned laterally, and M9 dipoles aligned 

vertically (Figure 3.1).   Similar to the meta isomers, we expect a similar surface structure in O1 

monolayers due to the nearly identical geometry.  The dipole-dipole interactions of these 

carborane cages on Au{111} surface are characterized by cyclic voltammetry, complementing 

the previous STM and infrared analyses.  The molecular structure of O1 is similar to that of M1; 
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thus, we predict that its molecular dipole is laterally oriented to some degree. In this chapter, I 

attempt to analyze the effects of cage geometry within SAMs qualitatively and quantitatively and 

dipole interactions on their self-assembly using electrochemistry. 

  

 
 

Figure 3.2: (Top) Schematic of M1 assembled on Au{111}.  Dipole moments 

align horizontally along the substrate. (Bottom) Schematic of M9 assembled on 

Au{111}. Dipole moments align normal to the substrate.  

 

 
 

Figure (3.3): (A) STM images of M1, (B) M9, and (C) codeposited M1 and M9 SAMs on 

Au{111}.  All three images show hexagonal molecular packing with identical lattices.
22
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3.2 Self-Assembly of Carboranethiols 

Flame-annealed Au{111} on mica substrates were immersed in 1 mM ethanolic solutions 

of M1, M9, or O1 carboranethiols at room temperature for 24 h.  Assembly times longer than 24 

hours gives higher ordering and stable SAMs.
22

  Each sample was rinsed with ethanol as 

described earlier   The samples were immediately used for electrochemical measurements.  

 

3.2.1 Cyclic Voltammetry on Carboranethiolate SAMs 

Cyclic voltammetry on M1, M9, and O1 SAMs have been conducted as has been 

described in Chapter 1.2.  Figure 3.3 shows the representative cyclic voltammograms of three 

carboranethiolate SAMs.  The cathodic peak potential, areas, and fwhm with their respective 

standard deviations for M1, M9, and O1 SAMs were calculated from an average of eight 

voltammograms and are given in Tables 3.1 and 3.2.  

As shown in Figure 3.3, peak 1 is different for the three carboranethiol isomers.  Peak 1 

for M1 is centered at -574 ± 26 mV, M9 is centered at -635 ± 75 mV, and O1 is centered at -501 

± 26 mV.  An additional peak, peak 2, is seen in O1, not in the other two isomers, and is centered 

at -860 ± 3 mV.  The cause for these cathodic currents is uncertain and requires further 

investigation.  

Peak 3 is centered at -1079 ± 23 mV for M1, -1059 ± 23 mV for M9, and -1056 ± 5 mV 

for O1 (Figure 3.4 and table 3.2).  The cathodic reduction potential required to desorb M1 is on 

average 20 mV stronger than required for M9.  This can be attributed to M1‟s laterally oriented, 

favorable head-to-tail dipolar interactions and M9‟s unfavorable vertically oriented head-to-head 

dipole interactions (Figure 3.1).  The reductive potential for M1 and M9 are significantly smaller 

than the values determined for C12 (-1098 ± 12 mV), which is most likely a product of 

decreased packing density relative to the well-packed linear alkyl chains resulting in smaller van 

der Waals forces. 

Alone, the small average desorption potential of O1 (-1056 ± 5 mV) indicates that the 

dipole orientation and magnitude has given weaker intermolecular interactions than M1 and M9 

when assembled.  The dipole moment of O1 is either oriented vertically or the magnitude is 

negligible.  This determination is complicated by the as yet unexplained appearance of peak 2 in 

O1 CV experiments.  Also, the large fwhm of the three carboranthiols analyzed, M1 

(140 ± 16 mV), M9 (119 ± 28 mV), and O1 (134 ± 24 mV), indicate less well packed structures 

than those for 1-dodecanethiol (74 ± 11 mV), which agrees with published STM images.
24,35
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Figure 3.3: Individual cyclic voltammograms of M1, M9, and O1 SAMs 

on Au{111} showing the first (1), second (2), and third (3) reductive 

current peaks. 
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Table 3.1: Collected values from cyclic voltammograms comparing the first reductive peak‟s 

properties, and O1‟s peak 2. 

 

Average Peak 

Potential (mV) 
Average Peak  

fwhm (mV) 
Average  Peak 

Current (μA) 
Average Peak  

Area (μC) 

Peak 1 
    m-1-carboranethiolate     (M1) -574 ± 26   127± 16 1.7 ± 0.6 9.7 ± 2.8 

m-9-carboranethiolate     (M9) -635 ± 75 114 ± 50 1.9 ± 0.9 8.3 ± 2.5 

o-1-carboranethiolate       (O1) -501 ± 26 134 ± 53 0.7 ± 0.1 5.2 ± 1.4 

Peak 2     

o-1-carboranethiolate       (O1) -860 ± 3 19.4 ± 2.5 5.5 ± 0.4 5.9 ± 1.2 

     

 

 

Table 3.2: Collected values from cyclic voltammograms comparing the last reductive peak‟s 

properties. 

 

Average Peak 

Potential (mV) 
Average Peak  

fwhm (mV) 
Average  Peak 

Current (μA) 
Average Peak  

Area (μC) 
Peak 3 
m-1-carboranethiolate     (M1) -1079 ± 23   140 ± 16 1.5 ± 0.5 10.2 ± 4.2 

m-9-carboranethiolate     (M9) -1059 ± 23 119 ± 28 2.3 ± 1.6 12.4 ± 7.2 

o-1-carboranethiolate       (O1) -1056 ± 5 134 ± 24 1.7 ± 1.4 11.9 ± 10.9 

n-dodecanethiolate        (C12) -1098 ± 12 74 ± 11 5.3 ± 1.3 20.2 ± 4.9 
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From the data presented, it is evident that isomer-specific dipole-dipole interactions cause 

variations in molecular binding strengths.   There are increased dipole-dipole interactions with 

neighboring molecules in M1, creating stronger binding energies.   Isomers M9 and O1 have 

similar reductive potentials implying weaker dipole-dipole interactions between molecules, 

despite their large molecular dipole moments.   Cyclic voltammetry of these molecules indicates 

several reductive reactions occur prior to thiol desorption at potentials higher than -1050 mV.  

All three isomers display the same weak, reductive peak at approximately -650 mV, which 

indicates the same electrochemical reaction that occurs in all carboranethiol molecules.   

Controlled potential electrolysis (discussed in Chapter 2) at -650 mV can be used with Fourier 

transform infrared spectroscopy (FTIR), x-ray photoelectric spectroscopy (XPS), and scanning 

tunneling microscopy (STM) to reveal possible changes in monolayer morphology.   Cyclic 

voltammetry of non-thiolated carboranes can be useful in determining unbound carborane 

electrochemical behavior.   There is a unique reductive reaction centered at -860 mV for O1; this 

is probably a result of carbon placement in the cage.   Further electrochemical analysis of other 

ortho-carboranethiol isomers can be conducted to verify this, alongside further FTIR, XPS, and 

STM methods similar to those described previously.  While results should differ between 

carboranethiols and 1ATC9, employing similar methods to those discussed in Chapter 2 (e.g., 

CPE followed by STM imaging) may reveal insight into different reaction mechanisms.   Further 

characterization of carboranethiolate SAMs can help in understanding how to control the self-

assembly process, which can be beneficial for future nanoscale applications. 
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Chapter 4. Electrochemistry of n-Alkanethiols on Ge(111) 

4.1 Germanium substrates for self-assembly 

Semiconductors are important materials in solid-state devices because of their use in 

integrated circuits (ICs).  Their properties can be easily manipulated by an applied electric field, 

incident light, or the addition of dopants; the addition of n-type or p-type dopants change the 

number and the type of majority charge carriers to electrons or holes, respectively.
47

  

The group IV element Si is the dominant semiconductor for modern semiconductor 

devices.  It is one of the most abundant elements on earth, has moderate electron and hole 

mobilities (     
   

  
 and     

   

  
, respectively), a relatively small band gap (1.12 eV), and an 

industrial infrastructure devoted to its manufacture.
47

  The chemistry of silicon is also ideal for 

semiconductor devices.  Silicon‟s native oxide, SiO2, is an effective insulator and can be grown 

or chemically modified directly.  Germanium is another group IV element that has attracted 

recent interest for high-speed semiconductor applications, especially for its high electron and 

hole mobilities (     
   

  
 and      

   

  
, respectively) and small band gap (0.667 eV), which is 

half that of silicon.
47

 Unfortunately, its native oxide layer is water-soluble, unstable, and is a 

poor insulator, resulting in charge “leaking” outside the bounds restricted by a device.  Thiolated 

organic monolayers on germanium surfaces provide an opportunity to exert control over the 

interfacial chemistry of the germanium interface.
48-53

  These thiol-modified surfaces using 

electrochemical techniques will be discussed in this chapter, which will offer to understand the 

characteristics of organic thiolates SAMs on semiconductor surface. 

The working electrode acts as an electron collector and emitter in an electrochemical cell.  

The standard system requires the electrode to be conductive as well as electrochemically inert.  A 

semiconductor can replace a metal electrode, but the problem lies in interfacing a semiconductor 

into the circuit.  Typical semiconductor-metal interfaces follow the standard Schottky model.
47

  

The contact resistance is related to the electron barrier, or Schottky barrier height (SBH) (ФB), 

which in turn is related to the work function of the metal (ФM) and the electron affinity of the 

semiconductor (χ) by Equation 7.   

 

                  (7) 

 

 

The SBH is the critical factor dictating the observed relationship between current (I) and voltage 

(V) in semiconductor junctions.  A large SBH causes rectifying (or non-linear) behavior at the 

junction, while a small SBH will allow for an ohmic (or linear) I-V relationship.  By measuring 

the I-V response of a junction, a linear response will thus represent an ohmic contact, while a 

nonlinear response signifies a Schottky junction. For electrochemical measurements,  an ohmic 

contact on the working electrode is preferred. 

Many semiconductor interfaces undergo Fermi-level pinning between the valence and the 

conduction band, resulting in a large SBH.  In some cases, like Ge, the Fermi-level pinning is 

considered a result of metal-induced gap states (MIGS) that are created by permeating free 

electron wave functions from the metal.
54

  

Ge undergoes a strong Fermi-level pinning close to the valence band.
55,56

  This property 

makes it very easy to create a low SBH for p-type Ge, but very difficult for n-type Ge.  The 

Schottky model can be applied to create a near-zero SB for p-type Ge by using a metal whose 
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work function is close to that of Ge.  A relatively low SBH can be created on n-type Ge by 

reducing the influence of the free-electron wave function and by using a metal with a small work 

function.  This can be accomplished by inserting an ultra-thin insulating film at the interface, for 

example GeOx.
57,58

  Here, contact resistance is a function of oxide thickness, as shown in Figure 

4.1.  If too thin, the metal‟s free electron wave function penetrates into the semiconductor.   

However, if it is too thick, the electron‟s tunneling resistance increases.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1. Diagram shows the relationship between contact 

resistance and  ultra-thin oxide layer thickness.  Here SiN is used 

as the insulating layer between germanium and an aluminum 

contact.  This diagram is in agreement with the metal-induced gap 

states (MIGS) theory, which results in Fermi level pinning. 

Reproduced with permission from reference 59.  

 

We determine the SBH by first finding the saturation current (Is), which is determined by 

plotting the natural log of I against positive V. From the linear portion of this plot, the y-intercept 

yields Is.
47

  From this value, we can estimate the ФB from the following equation:  

        (
   

 
)   (

     

  
)     (8) 

where,    is the Boltzmann‟s constant,   is temperature,   is the elementary charge, A is the area 

of the semiconductor,    is the Richardson‟s constant (   
 

      for n-type Ge).
59

  Next, we 

investigate the ideality of the device by determining the ideality factor n using the following 

equation: 

 

              (
 

    
)      (9) 

 

The slope of the linear portion of the ln(I) vs. V plot can be used to determine n. An ideality 

factor greater than 1 is an indication of recombination and resistive losses. 
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4.2 Germanium Electrode Characterization 

4.2.1 Procedure 

Current-voltage characteristics are measured using an NI ENET-9219 data acquisition 

device from National Instruments (Austin, Texas) and analyzed using National Instruments‟ 

Labview 2009 SignalExpress. A model 81150A 120 MHz Pulse Function Arbitrary Generator 

from Agilent Technologies, Inc. (Santa Clara, California) is used to generate the current.  

Measurements are taken inside a „black box‟ to ensure minimal light interference.  Single-side-

polished n-type germanium (111) (As-doped) wafers, (3 inch diameter,  375 µm thick, and 

resistivity between 0.005 – 0.002  
 

  
 ) are purchased from Silicon Quest International, Inc. 

(Santa Clara, California), and indium, for ohmic contacts is purchased from Sigma-Aldrich Co. 

(St. Louis, Missouri) 

Au ( M ≈ 5.1 eV)
60

 and In ( M ≈ 4.09 eV)
61

 contacts are used for taking I-V 

measurements; the Au is in contact with the Ge(111) ( S  ≈ 4.8 eV)
62

 interface, while indium is 

soldered on at 275 °C in two opposite locations on the same surface.  Seven samples are used to 

determine the average value of the Schottky barrier heights. 

4.2.2 Germanium I-V Characteristics 

Figure 4.2 shows the current-voltage relationship of n-type germanium with an oxide 

passivation layer in contact with Au.  It shows minimal current response at reverse bias, which is 

in the region of interest for electrochemical studies for thiol-modified electrodes and a turn-on 

voltage of approximately 200 mV.  Therefore, it is necessary to have ohmic characteristics for 

voltages below this turn-on voltage.  By adding indium contacts to the GeOx-Ge interface, an 

ohmic junction can be formed (Figure 4.3).  A SBH of 0.61 ± 0.01 eV with an ideality factor of 

70.43 ± 5.05 was estimated using Equations 8 and 9, respectively.  The SBH is substantially 

higher than desired, because using similar contacts can produce a SBH of 0.37 eV.
57

  This larger 

SBH and very high ideality factor are most likely a result of improper contact formation, 

resulting in higher contact resistance. 

 
 

Figure 4.2. Current-voltage relationship of Au−GeOx−Ge interface.  

Shows rectifying behavior with an approximate turn on voltage at 

200 mV.  
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Figure 4.3. Current-voltage relationship of In−GeOx−Ge interface, 

showing ohmic behavior, ideal for reverse bias applications. 

 

 

 

4.3: Thiol-Modified Germanium Electrode 

It is difficult to grow an insulating oxide similar to SiO2 in Si devices. GeO2 and GeO are 

not suitable for high-k gate oxides in metal-oxide semiconductor field effect transistors 

(MOSFETs).  Removal of GeO2/GeO alone cannot produce sufficient electrical properties.  

Surface passivation is required to keep GeOx from reforming, and to act as an interfacial layer 

for another high-k dielectric. Thiolated SAMs on Ge can act as such a surface passivation layer.  

Cyclic voltammetry can be used to provide quantitative analysis about film uniformity and 

adsorbate-substrate and adsorbate-adsorbate interaction strengths. 

A stronger reductive desorption potential is expected for thiolated SAMs on Ge(111) due 

to stronger Ge-S binding energy (~251 kJ/mol)
49

 compared to the Au-S bond (~168 kJ/mol).
3
  

However, weaker adsorbate-adsorbate interactions have the opposite effect because of non-

uniform Ge substrates; the molecular lattice with respect to the Ge surface has not been 

analytically determined, but other structural features have been determined.
48-50

  Cyclic 

voltammetry may give insight on the molecular order, the extent of intermolecular interactions, 

and packing density.  Figure 4.4 shows an example of a thiol-modified Ge(111)-In electrode. 
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Figure 4.4. Proposed structure of thiol-modified germanium 

electrodes, suitable for electrochemical analysis. Indium is in 

contact with the ultra-thin oxide layer next to n-type Ge(111).  

 

4.3.1 Self-Assembly of Organic Thiols on Ge (111) 

Ge(111) substrates are prepared by soldering an In contact to the unpolished side.  

Samples of n-dodecanethiolate SAMs are prepared by immersing the Ge(111) substrate in a 

0.5 mM solution of C12 in a 1:1 ratio of deionized water and ethanol.  Clean substrates are 

placed in solution at room temperature for 24 h.  Following deposition, each sample is cleaned in 

the same way as described earlier.  The samples are used immediately for electrochemical 

measurements.
63

  

Using the equipment described in Section 1.2, an electrochemical cell potential is applied 

with a Ag/AgCl saturated KCl reference electrode and a Pt wire counter electrode.   The 

supporting electrolyte, an aqueous solution of  20 mM H2SO4 (95-98% A.C.S. [grade], Sigma-

Aldrich, St Louis, MO), is prepared with deionized water (18.2 M, Millipore Corp. Billerica, 

MA) and purged with ultrahigh purity N2 for 30 min.  Cyclic voltammetry is performed at 

reductive potentials of +200 to -2500 mV with a scan rate of 40 mV/s.  Baseline correction of 

voltammograms are done using the previously described method in Section 2.3.1.  Eight 

representative cyclic voltammograms are selected to calculate the peak positions, peak areas, and 

peak fwhm‟s with their respective standard deviations for C12 on n-type Ge (111). 

 

4.3.2  Voltammetric Desorption of Thiolated Ge  

Cyclic voltammograms of C12-modified Ge(111) electrodes show a reductive potential 

peak centered at -2044 ± 175 mV, much higher than for thiol desorption potentials on Au{111} 

substrates (Figure 4.5).  This higher reductive potential is primarily a result of increased 

substrate-adsorbate interactions.  A large fwhm may indicate poor molecular ordering.  The large 

peak current (89 ± 16  μA), nearly 18 times larger than that of Au{111}) and a large standard 

deviation makes it difficult to have substantial conclusions. 
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The large peak current can be attributed to current generation from solvent breakdown, 

which normally occurs on Ge at -880 mV.  This effect does not occur before thiol reduction 

because the SAM acts as a potential barrier.  The insulating monolayer prevents solvent–Ge 

interactions. Due to a poorly ordered SAM structure, supported by a large fwhm (198 ± 52 mV), 

C12 thiols do not necessarily desorb together because of the lack of stabilizing intermolecular 

interactions.  When a thiol is removed from the substrate it opens new reaction sites where water 

hydrolysis can occur, a process that accelerates as more thiolates desorb.  This effect gives rise to 

a large increase in current.  The substantially large standard deviation implies substantial 

inconsistencies in reductive desorption.  Further, inconsistencies in the soldering of the In 

contacts induces further variability in these measurements. 

 

 
Figure 4.5. Reductive desorption of n-dodecanethiolate from Ge(111) in 

20mM H2SO4 at room temperature. The cause for the oxidative peaks is 

unknown.  

 

 

 

Table 4.1: Collected values from cyclic voltammograms comparing the reductive peak properties 

of n-dodecanethiolate on Ge(111) and Au{111} 

  
Average Peak 

Potential (mV) 
Average Peak  

fwhm (mV) 
Average  Peak 

Current (μA) 
Average Peak  

Area (μC) 

n-dodecanethiolate 

(C12) on Ge(111) 
-2044 ± 175 198 ± 52 89 ± 16 416 ± 125 

n-dodecanethiolate 

(C12) on Au{111} 
-1098 ± 12 74 ± 11 5.3 ± 1.3 20.2 ± 4.9 
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Results show that thiolate SAMs alter the Ge surface chemistry.  The high reductive 

desorption potential is consistent with the high bond energy of S-Ge relative S-Au.  However, 

many variables remain to be addressed before we can make concrete claims about the 

correlations between cyclic voltammetric analysis of SAMs supported on Au and Ge.  The wide 

range of reductive peak potentials observed for SAMs on Ge means several experimental 

changes need to be made.  Critical variables include contact formation, SAM deposition, and 

solvent environment.  Consistent, reliable contacts can be formed on p-type Ge by chemical 

vapor deposition, which will help eliminate variability from differences in contact resistance.  

Second, changes in sample to sample SAM quality remain a challenge; a next step would be 

deposition at a higher temperature to improve overall SAM quality and consistency.  Other 

methods for SAM deposition on Ge can be used and compared to our preparation method, with a 

focus on strategies to limit surface roughness.  Finally, choosing a solvent with a breakdown 

voltage larger than the thiol desorption potential can eliminate the observed excess current.  

Refining the experiment and interpreting the results will firmly establish electrochemical 

analyses as a principal method for the analysis of semiconducting germanium interfaces. 

 

  



26 
 

Chapter 5: Conclusions and Future Prospects 
 

Electrochemistry on self-assembled monolayers of amide-containing alkanethiols and 

cage thiols on Au{111} allows us to evaluate the role of hydrogen-bonding interactions and 

dipole-dipole interactions within a monolayer.  The buried amide functional group incorporated 

into the alkyl backbone strongly influences molecular interactions within the monolayer, with 

interactions dominated by hydrogen-bonding.  In general, relatively large cage thiols have lower 

van der Waals interactions, but carboranethiols introduce strong dipole-dipole interactions in 

different dipole orientations depending on the positions of carbon and boron atoms in the cage.  

Also, electrochemical characterization of alkanethiolate (C12) monolayers on Ge(111) shows the 

effect of stronger adsorbate-substrate interactions.  

Networked hydrogen-bonds within 1ATC9 monolayers give larger reductive potentials 

than n-alkanethiolate SAMs.  When more thermal energy was provided during assembly (by 

elevating solution temperature) individual molecules align into the most favorable orientations, 

linear hydrogen bonding networks, maximizing intermolecular interactions.  The presence of a 

double peak in 1ATC9 cyclic voltammograms was further investigated using controlled potential 

electrolysis and STM imaging.  Applying potentials slightly more negative than the first 

reduction causes monolayer reorganization, resulting in the formation of an unusual 

nanostructure.  Detailed studies on amide-containing alkanethiolate monolayers with various 

number and position of amides should be considered in order to extend our understanding of the 

hydrogen-bonding networks within monolayers. 

The higher reductive potential of M1 compared to both the M9 and O1 isomers is due to 

the stronger and more favorable dipole-dipole interactions.  The dipole moment of M1 is 

positioned parallel to the substrate, while the dipole moment of M9 is oriented vertically, with 

the positive end away from the substrate.  Based on the calculated result of M1 and M9, we 

predict that the dipole moment of O1 is oriented nearly normal, with the positive pole close to 

the substrate.  The presence of a sharp peak at -860 mV in the O1 voltammograms can be 

explained by this dipole orientation.  When the reductive potential increases, higher negative 

charge builds up on the Au electrode, resulting in an increasingly favorable dipole arrangement 

in O1 until monolayer desorption, unlike M1 or M9.   

 The high desorption potential for C12 on a Ge(111) substrate is a result of the strong 

substrate-adsorbate bond, which is higher than that for the gold-sulfur bond.  Quantitative 

analysis was difficult due to the large current generation and variability between reductive 

potentials.  Future research needs to be conducted to minimize both the extra current generation 

and to improve consistency in Ge SAM reductive potentials. 

 Electrochemistry on organic thiolate monolayer systems on Au and Ge substrates 

provides insight into the interactions beyond van der Waals forces, specifically the hydrogen-

bonding and dipole-dipole, and adsorbate-substrate interactions that control the structure and 

properties of SAMs.  My studies on these factors on organic-metal interfaces will help in the 

development of a strategy on how to tune these interactions to gain better control over tailored 

molecular nanostructures. 
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