Interfacial origin of dielectric constant enhancement in high-temperature polymer dilute nanocomposites
The origin of dielectric constant enhancement in high-temperature (high glass transition temperature Tg) polymer dilute nanocomposites is investigated via Infrared (IR) Spectroscopy applied through Atomic Force Microscope (AFM) and density functional theory (DFT) calculations. The dielectric constant can be greatly enhanced by trace nanofiller loadings (<0.5 vol. %) in a broad class of high-temperature polymers without affecting or even with a positive influence on breakdown strength and dielectric loss. This avenue provides attractive polymer systems for high-performance polymer-based capacitive energy storage in a wide temperature range. In the dilute nanocomposites, the interface regions between the polymers and trace nanofillers are the key to the observed dielectric constant enhancement. This Letter employs AFM-IR to study chain packing in the interface regions of polyetherimide (PEI) dilute nanocomposites. The experimental results and DFT calculations indicate that flexible linkages, i.e., ether groups in PEI, play a crucial role in inducing heterogeneous morphologies in the interface regions. These results are confirmed by studies of PI(PDMA/ODA) and other dilute polymer nanocomposites in the literature as well as by lack of dielectric constant enhancement in PI(Matrimid® 5218) that does not contain flexible linkages.
This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in [Interfacial origin of dielectric constant enhancement in high-temperature polymer dilute nanocomposites. Applied Physics Letters 122, 21 (2023)] and may be found at https://doi.org/10.1063/5.0143938.
Files
Metadata
Work Title | Interfacial origin of dielectric constant enhancement in high-temperature polymer dilute nanocomposites |
---|---|
Access | |
Creators |
|
License | In Copyright (Rights Reserved) |
Work Type | Article |
Publisher |
|
Publication Date | March 31, 2023 |
Publisher Identifier (DOI) |
|
Deposited | March 10, 2024 |
Versions
Analytics
Collections
This resource is currently not in any collection.