Sodium dodecyl sulfate modulates the structure and rheological properties of Pluronic F108-poly(acrylic acid) coacervates)

Micelles formed within coacervate phases can impart functional properties, but it is unclear if this micellization provides mechanical reinforcement of the coacervate whereby the micelles act as high functionality crosslinkers. Here, we examine how sodium dodecyl sulfate (SDS) influences the structure and properties of Pluronic F108-polyacrylic acid (PAA) coacervates as SDS is known to decrease the aggregation number of Pluronic micelles. Increasing the SDS concentration leads to larger water content in the coacervate and an increase in the relative concentration of PAA to the other solids. Rheological characterization with small angle oscillatory shear (SAOS) demonstrates that these coacervates are viscoelastic liquids with the moduli decreasing with the addition of the SDS. The loss factor (tan δ) initially increases linearly with the addition of SDS, but a step function increase in the loss factor occurs near the reported CMC of SDS. However, this change in rheological properties does not appear to be correlated with any large scale structural differences in the coacervate as determined by small angle X-ray scattering (SAXS) with no signature of Pluronic micelles in the coacervate when SDS concentration is >4 mM during formation of the coacervate, which is less than that observed (6 mM SDS) in initial Pluronic F108 solution despite the higher polymer concentration in the coacervate. These results suggest that the mechanical properties of polyelectrolyte-non-ionic surfactant coacervates are driven by the efficicacy of binding between the complexing species driving the coacervate, which can be disrupted by competitive binding of the SDS to the Pluronic.

Files

Metadata

Work Title Sodium dodecyl sulfate modulates the structure and rheological properties of Pluronic F108-poly(acrylic acid) coacervates)
Access
Open Access
Creators
  1. Ziyuan Gong
  2. Nicole S. Zacharia
  3. Bryan D. Vogt
License In Copyright (Rights Reserved)
Work Type Article
Publisher
  1. Soft Matter
Publication Date December 2, 2021
Publisher Identifier (DOI)
  1. https://doi.org/10.1039/d1sm01273h
Deposited July 19, 2022

Versions

Analytics

Collections

This resource is currently not in any collection.

Work History

Version 1
published

  • Created
  • Added SDS_coacervate_accepted.pdf
  • Added Creator Ziyuan Gong
  • Added Creator Nicole S. Zacharia
  • Added Creator Bryan D. Vogt
  • Published
  • Updated Description, Publication Date Show Changes
    Description
    • <p>Micelles formed within coacervate phases can impart functional properties, but it is unclear if this micellization provides mechanical reinforcement of the coacervate whereby the micelles act as high functionality crosslinkers. Here, we examine how sodium dodecyl sulfate (SDS) influences the structure and properties of Pluronic F108-polyacrylic acid (PAA) coacervates as SDS is known to decrease the aggregation number of Pluronic micelles. Increasing the SDS concentration leads to larger water content in the coacervate and an increase in the relative concentration of PAA to the other solids. Rheological characterization with small angle oscillatory shear (SAOS) demonstrates that these coacervates are viscoelastic liquids with the moduli decreasing with the addition of the SDS. The loss factor (tan δ) initially increases linearly with the addition of SDS, but a step function increase in the loss factor occurs near the reported CMC of SDS. However, this change in rheological properties does not appear to be correlated with any large scale structural differences in the coacervate as determined by small angle X-ray scattering (SAXS) with no signature of Pluronic micelles in the coacervate when SDS concentration is &gt;4 mM during formation of the coacervate, which is less than that observed (6 mM SDS) in initial Pluronic F108 solution despite the higher polymer concentration in the coacervate. These results suggest that the mechanical properties of polyelectrolyte-non-ionic surfactant coacervates are driven by the efficicacy of binding between the complexing species driving the coacervate, which can be disrupted by competitive binding of the SDS to the Pluronic. This journal is </p>
    • Micelles formed within coacervate phases can impart functional properties, but it is unclear if this micellization provides mechanical reinforcement of the coacervate whereby the micelles act as high functionality crosslinkers. Here, we examine how sodium dodecyl sulfate (SDS) influences the structure and properties of Pluronic F108-polyacrylic acid (PAA) coacervates as SDS is known to decrease the aggregation number of Pluronic micelles. Increasing the SDS concentration leads to larger water content in the coacervate and an increase in the relative concentration of PAA to the other solids. Rheological characterization with small angle oscillatory shear (SAOS) demonstrates that these coacervates are viscoelastic liquids with the moduli decreasing with the addition of the SDS. The loss factor (tan δ) initially increases linearly with the addition of SDS, but a step function increase in the loss factor occurs near the reported CMC of SDS. However, this change in rheological properties does not appear to be correlated with any large scale structural differences in the coacervate as determined by small angle X-ray scattering (SAXS) with no signature of Pluronic micelles in the coacervate when SDS concentration is &gt;4 mM during formation of the coacervate, which is less than that observed (6 mM SDS) in initial Pluronic F108 solution despite the higher polymer concentration in the coacervate. These results suggest that the mechanical properties of polyelectrolyte-non-ionic surfactant coacervates are driven by the efficicacy of binding between the complexing species driving the coacervate, which can be disrupted by competitive binding of the SDS to the Pluronic.
    Publication Date
    • 2022-01-14
    • 2021-12-02
  • Updated