Ecosystem-Level Biomimicry for the Built Environment: Adopting Systems Ecology Principles for the Control of Heterogeneous Energy Systems

This paper presents, to our knowledge, the first system-level engineering study to bio-mimic the cybernetics and flow dynamics of energy resources in natural ecosystems for the control of heterogeneous energy infrastructures in the built environment. To this end, we introduce a novel Biomimetic Pulsing State (BPS) control that functionally mimics mature ecosystems. A preliminary Modelica-based case study features a single-family residential building with electrical and HVAC subsystems. The BPS control objective is to minimize the energy exchange between the building and the grid for the purposes of future self-supporting buildings and grid stability. The building contains PV, a wind turbine, a battery storage system, and a fan coil/heat pump HVAC system served by an ambient district energy network. Evaluating the control performance (BPS vs. constant setpoint) over several renewable energy scenarios (net importer, net zero, net exporter), simulation results show how the building’s HVAC system can dynamically adjust its electrical load and temperatures to the electrical system’s net energy status in real-time with BPS control. As a net importer, the heat pump consumed 29% less energy and its peak power reduced by 15% with BPS control compared to the constant setpoint case, with the zone air temperature 1°C lower on average. As a net exporter, the heat pump effectively consumed the same energy, but the peak power increased by 34% with BPS control, while the zone air temperature was 1°C higher when renewable energy was abundant, preheating the home. BPS and constant setpoint control produced comparable results under a net zero scenario. While further evaluation is essential, BPS control may help communities meet their sustainability and resiliency targets as they transition towards fully distributed and renewable energy grids.

Proceedings of the 5th International Conference on Building Energy and Environment (COBEE 2022)

Files

Metadata

Work Title Ecosystem-Level Biomimicry for the Built Environment: Adopting Systems Ecology Principles for the Control of Heterogeneous Energy Systems
Access
Open Access
Creators
  1. Kathryn Hinkelman
  2. Wangda Zuo
  3. Jing Wang
  4. Sen Huang
  5. Michael Wetter
Keyword
  1. Biomimicry
  2. Building controls
  3. Interconnected energy systems
  4. Modelica
  5. Resiliency
License In Copyright (Rights Reserved)
Work Type Conference Proceeding
Publication Date September 5, 2023
Publisher Identifier (DOI)
  1. https://doi.org/10.1007/978-981-19-9822-5_284
Deposited May 10, 2024

Versions

Analytics

Collections

This resource is currently not in any collection.

Work History

Version 1
published

  • Created
  • Added KHinkelman_COBEE2022-Final.pdf
  • Added Creator Kathryn Hinkelman
  • Added Creator Wangda Zuo
  • Added Creator Jing Wang
  • Added Creator Sen Huang
  • Added Creator Michael Wetter
  • Published
  • Updated
  • Updated Keyword, Description, Publication Date Show Changes
    Keyword
    • Biomimicry, Building controls, Interconnected energy systems, Modelica, Resiliency
    Description
    • <p>This paper presents, to our knowledge, the first system-level engineering study to bio-mimic the cybernetics and flow dynamics of energy resources in natural ecosystems for the control of heterogeneous energy infrastructures in the built environment. To this end, we introduce a novel Biomimetic Pulsing State (BPS) control that functionally mimics mature ecosystems. A preliminary Modelica-based case study features a single-family residential building with electrical and HVAC subsystems. The BPS control objective is to minimize the energy exchange between the building and the grid for the purposes of future self-supporting buildings and grid stability. The building contains PV, a wind turbine, a battery storage system, and a fan coil/heat pump HVAC system served by an ambient district energy network. Evaluating the control performance (BPS vs. constant setpoint) over several renewable energy scenarios (net importer, net zero, net exporter), simulation results show how the building’s HVAC system can dynamically adjust its electrical load and temperatures to the electrical system’s net energy status in real-time with BPS control. As a net importer, the heat pump consumed 29% less energy and its peak power reduced by 15% with BPS control compared to the constant setpoint case, with the zone air temperature 1°C lower on average. As a net exporter, the heat pump effectively consumed the same energy, but the peak power increased by 34% with BPS control, while the zone air temperature was 1°C higher when renewable energy was abundant, preheating the home. BPS and constant setpoint control produced comparable results under a net zero scenario. While further evaluation is essential, BPS control may help communities meet their sustainability and resiliency targets as they transition towards fully distributed and renewable energy grids.</p>
    • <p>This paper presents, to our knowledge, the first system-level engineering study to bio-mimic the cybernetics and flow dynamics of energy resources in natural ecosystems for the control of heterogeneous energy infrastructures in the built environment. To this end, we introduce a novel Biomimetic Pulsing State (BPS) control that functionally mimics mature ecosystems. A preliminary Modelica-based case study features a single-family residential building with electrical and HVAC subsystems. The BPS control objective is to minimize the energy exchange between the building and the grid for the purposes of future self-supporting buildings and grid stability. The building contains PV, a wind turbine, a battery storage system, and a fan coil/heat pump HVAC system served by an ambient district energy network. Evaluating the control performance (BPS vs. constant setpoint) over several renewable energy scenarios (net importer, net zero, net exporter), simulation results show how the building’s HVAC system can dynamically adjust its electrical load and temperatures to the electrical system’s net energy status in real-time with BPS control. As a net importer, the heat pump consumed 29% less energy and its peak power reduced by 15% with BPS control compared to the constant setpoint case, with the zone air temperature 1°C lower on average. As a net exporter, the heat pump effectively consumed the same energy, but the peak power increased by 34% with BPS control, while the zone air temperature was 1°C higher when renewable energy was abundant, preheating the home. BPS and constant setpoint control produced comparable results under a net zero scenario. While further evaluation is essential, BPS control may help communities meet their sustainability and resiliency targets as they transition towards fully distributed and renewable energy grids.</p>
    • Proceedings of the 5th International Conference on Building Energy and Environment (COBEE 2022)
    Publication Date
    • 2023-01-01
    • 2023-09-05