Computational Investigation of the Interaction of Multifunctionalized Porous Aromatic Frameworks with SO2

The adsorption of pure SO2, a sulfur-containing acid gas, by porous aromatic frameworks (PAFs) was investigated with a range of computational methods including first-principles density functional theory and grand canonical Monte Carlo calculations. We found that the presence of combinations of functional groups, including the electron-donating groups -CH3, -OH, and -NH2, and the electron-withdrawing groups -CN, -COOH, and -NO2, within the PAF structures was predicted to enhance SO2 uptake at low pressure. In particular, the simulations predicted that the functionalized PAFs, especially double-functionalized PAFs, PAF-(OH)2 and PAF-(COOH)2, as well as mixed-functionalized PAFs, PAF-2-CN-3-NO2 and PAF-3-OH-5-NH2, were able to capture high loadings of SO2 pure gas under a very low pressure at 298 K. The additional functional groups were able to strengthen the interactions between the PAF frameworks and the acid gas molecules. At the same time, introducing two functional groups to PAFs generally decreases the maximum adsorption limit, due to the smaller pore volume available to the gases. In this work, we created a library of various functionalized PAFs, as well as simulated their adsorption isotherms. The results of this work can be used as a guideline for other combinations of functionalized PAFs and their experimental synthesis for maximal acid gas adsorption.

Files

Metadata

Work Title Computational Investigation of the Interaction of Multifunctionalized Porous Aromatic Frameworks with SO2
Access
Open Access
Creators
  1. Yuxiang Wang
  2. Difan Zhang
  3. Susan B. Sinnott
License In Copyright (Rights Reserved)
Work Type Article
Publisher
  1. Journal of Physical Chemistry C
Publication Date September 20, 2022
Publisher Identifier (DOI)
  1. https://doi.org/10.1021/acs.jpcc.2c03403
Deposited July 02, 2024

Versions

Analytics

Collections

This resource is currently not in any collection.

Work History

Version 1
published

  • Created
  • Added Manuscript.Cleaned.Final.pdf
  • Added Supporting_Information.Final.pdf
  • Added Creator Yuxiang Wang
  • Added Creator Difan Zhang
  • Added Creator Susan B. Sinnott
  • Published
  • Updated
  • Updated Work Title Show Changes
    Work Title
    • Computational Investigation of the Interaction of Multifunctionalized Porous Aromatic Frameworks with SO<sub>2</sub>
    • Computational Investigation of the Interaction of Multifunctionalized Porous Aromatic Frameworks with SO2
  • Updated Publication Date Show Changes
    Publication Date
    • 2022-09-29
    • 2022-09-20
  • Deleted Manuscript.Cleaned.Final.pdf
  • Deleted Supporting_Information.Final.pdf
  • Added 2022_Wang_JPCC.pdf