Composite score analysis for unsupervised comparison and network visualization of metabolomics data

Metabolomics-based approaches are becoming increasingly popular to interrogate the chemical basis for phenotypic differences in biological systems. Successful metabolomics studies employ multivariate data analysis to compare large and highly complex datasets. A primary tool for unsupervised statistical analyses, principal component analysis (PCA), relies on the selection of a subsection of a maximum of three components from a larger model to visually represent similarity. The use of only three principal components limits the comprehensiveness of the model and can mask discrimination between samples. We have developed a new statistical metric, the composite score (CS), as a univariate statistic that incorporates multiple principal components to calculate a correlation matrix that enables quantitative comparisons of sample similarity between samples within one dataset based upon measured metabolome profiles. Composite score values were tabulated using profiles of complex extracts of dietary supplements from the plant Hydrastis canadensis (goldenseal) as a case study. Several outliers were unambiguously identified, and a PCA composite score network was developed to provide a graphical representation of the composite score matrix. Comparison with visualization using PCA score plots or dendrograms from hierarchical clustering analysis (HCA) demonstrates the utility of the composite score to as a tool for metabolomics studies that seek to quantify similarity among samples. An R-script for the calculation of composite score has been made available.

© This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/

Files

Metadata

Work Title Composite score analysis for unsupervised comparison and network visualization of metabolomics data
Access
Open Access
Creators
  1. Joshua J. Kellogg
  2. Olav M. Kvalheim
  3. Nadja B. Cech
License CC BY-NC-ND 4.0 (Attribution-NonCommercial-NoDerivatives)
Work Type Article
Publisher
  1. Elsevier BV
Publication Date January 2020
Publisher Identifier (DOI)
  1. 10.1016/j.aca.2019.10.029
Source
  1. Analytica Chimica Acta
Deposited September 09, 2021

Versions

Analytics

Collections

This resource is currently not in any collection.

Work History

Version 1
published

  • Created
  • Added J Kellogg - Composite Score and.docx
  • Added Creator Joshua J. Kellogg
  • Added Creator Olav M. Kvalheim
  • Added Creator Nadja B. Cech
  • Published
  • Updated
  • Updated
  • Updated

Version 2
published

  • Created
  • Deleted J Kellogg - Composite Score and.docx
  • Added Kellogg, Kvalheim, Cech - 2020 - Composite score analysis for unsupervised comparison and network visualization of metabolomics data.pdf
  • Updated
  • Published
  • Updated