Modeling of Cube Array Roughness: RANS, LES, and DNS
Flow over arrays of cubes is an extensively studied model problem for rough wall turbulent boundary layers. While considerable research has been performed in computationally investigating these topologies using DNS and LES, the ability of sublayer-resolved RANS to predict the bulk flow phenomena of these systems is relatively unexplored, especially at low and high packing densities. Here, RANS simulations are conducted on six different packing densities of cubes in aligned and staggered configurations. The packing densities investigated span from what would classically be defined as isolated, up to those in the d-type roughness regime, filling in the gap in the present literature. Three different sublayer-resolved turbulence closure models were tested for each case; a low Reynolds number k-ε model, the Menter k-ω SST model, and a full Reynolds stress model. Comparisons of the velocity fields, secondary flow features, and drag coefficients are made between the RANS results and existing LES and DNS results. There is a significant degree of variability in the performance of the various RANS models across all comparison metrics. However, the Reynolds stress model demonstrated the best accuracy in terms of the mean velocity profile as well as drag partition across the range of packing densities.
© 2021, ASME. Originally published in ASME 2021 Fluids Engineering Division Summer Meeting.
Files
Metadata
Work Title | Modeling of Cube Array Roughness: RANS, LES, and DNS |
---|---|
Access | |
Creators |
|
License | CC BY 4.0 (Attribution) |
Work Type | Article |
Publisher |
|
Publication Date | August 10, 2021 |
Publisher Identifier (DOI) |
|
Source |
|
Deposited | April 25, 2022 |
Versions
Analytics
Collections
This resource is currently not in any collection.