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ABSTRACT
Background: Human milk is thought to reduce infant atopy risk. The
biologic mechanism for this protective effect is not fully understood.
Objectives: We tested the hypothesis that infant consumption of
4 microRNAs (miR-146b-5p, miR-148b-3p, miR-21–5p, and miR-
375–3p) in human milk would be associated with reduced atopy
risk.
Methods: The Breast Milk Influence of the Microtranscriptome
Profile on Atopy in Children over Time (IMPACT) study involved
a cohort of mother-infant dyads who planned to breastfeed beyond 4
mo. Infant consumption of the 4 human milk microRNAs (miRNAs)
in the first 6 mo was calculated as the product of milk miRNA
concentration and the number of human milk feeds, across 3 lactation
stages: early milk (0–4 wk), transitional milk (4–16 wk), and mature
milk (16–24 wk). The primary outcome was infant atopy in the first
year, defined as atopic dermatitis (AD), food allergies, or wheezing.
The final analysis included 432 human milk samples and 7824 wk of
longitudinal health data from 163 dyads.
Results: Seventy-three infants developed atopy. Forty-one were
diagnosed with AD (25%), 33 developed food allergy (20%), and 10
had wheezing (6%). Eleven developed >1 condition (7%). Infants
who did not develop atopy consumed higher concentrations of miR-
375–3p (d = 0.18, P = 0.022, adj P = 0.044) and miR-148b-3p
(d = 0.23, P = 0.007, adj P = 0.028). The consumption of miR-
375–3p (X2 = 5.7, P = 0.017, OR: 0.92, 95% CI: 0.86, 0.99) was
associated with reduced atopy risk. Concentrations of miR-375–3p
increased throughout lactation (r = 0.46, F = 132.3, P = 8.4 × 10−34)
and were inversely associated with maternal body mass (r = –0.11, t
= –2.1, P = 0.032).
Conclusions: This study provides evidence that infant consump-
tion of miR-375–3p may reduce atopy risk. Am J Clin Nutr
2022;116:1654–1662.
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Introduction
Atopic conditions, such as atopic dermatitis (AD), food

allergies, and asthma, occur in approximately one-third of
children (1). Atopy results from inappropriate activation of the

immune response to benign environmental exposures (2). The
developmental origins of atopy are not fully understood (3).

Infants who breastfeed beyond 3 mo may have a lower
risk of certain atopic conditions (4–6). Human milk contains
numerous immunomodulatory components that could convey
atopy protection (7, 8). Bioactive factors in human milk, called
microRNAs (miRNAs), may play a role (9). miRNAs are
small, noncoding molecules that regulate gene expression across
multiple tissues (10). There are nearly 1000 different miRNAs
in human milk (11). The majority are found in the lipid or
cellular fractions of milk (12), and evidence suggests that they
regulate immune pathways (10, 13). Although human milk
miRNA composition can vary based on maternal weight, diet,
or genetics (14–17), human milk reliably contains miRNAs,
whereas formula does not (15).

miRNAs are often packaged within protective vesicles (16),
making them stable in human milk and transferable to the infant
gut, where they may be absorbed and functionally incorporated
by epithelial and immunologic cells in the oropharynx (17–
22). For example, milk exosomes have been shown to induce
immunomodulatory effects through regulation of Forkhead box
P3 (FOXP3), a transcription factor critical to T cell regulation
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(23). Animal studies suggest nutritional miRNA influences
development of the immune system (18, 19), and this may
occur through modulation of T cell populations that are
implicated in atopic conditions (24, 25). This illustrates one
important mechanism through which exposure to milk miRNAs
in microvesicles may mitigate infant risk of atopic disease (26).

Circulating miRNA concentrations are dysregulated in atopic
conditions (20–35). For example, concentrations of miR-21 are
elevated in the skin of patients with AD and in the bronchial
cells of patients with asthma (20). Upregulation of miR-375
may prevent inflammatory pathways associated with allergic
rhinitis (22). Increases in miR-146 are associated with reduced
inflammation in airway smooth muscle, and protection from
asthma and AD (22, 27). Polymorphisms targeting miR-148 have
also been implicated in asthma (28). Notably, all of these miRNAs
have a robust presence in human milk (29).

This study, Breast Milk IMPACT (Influence of the Microtran-
scriptome Profile on Atopy in Children over Time), followed 221
mother-infant dyads from birth to 12 mo to test the hypothesis
that infant consumption of 4 miRNAs (miR-146b-5p, miR-148b-
3p, miR-21–5p, and miR-375–3p) in human milk would be
associated with reduced atopy risk. These miRNAs were selected
based on their biologic relation with atopic conditions (20–22,
27) and their bioavailability in breastmilk (29). To our knowledge,
this is the first large-scale, prospective cohort study investigating
the relation between longitudinal milk miRNA consumption and
infant atopy (30).

Methods
This study was approved by the Independent Review Board

at the Penn State College of Medicine (STUDY00008657).
Written informed consent was obtained from all participants
at enrollment. The study was registered at clinicaltrials.gov as
NCT04017520, and the study’s hypothesis was published on 19
July, 2019 (prior to miRNA analysis).

Participants

This longitudinal cohort study involved a convenience sample
of 221 mother-infant dyads followed from the age of 1 wk to
12 mo. This sample size was determined by a priori power
analysis estimating that ∼33% of infants (n = 73) would develop
atopy (31), providing >80% power to detect a 1.5-fold difference
in miRNA consumption across atopy and nonatopy groups on
Mann–Whitney U-testing (α = 0.05). Inclusion criteria were
mothers who delivered at term (>35 wk), and intended to
feed their infant human milk beyond 4 mo. The sample was
not enriched for atopic disease predisposition (based on family
history). Exclusion criteria were: 1) Maternal morbidities that
could impact lactation success or influence human milk miRNA
composition (e.g. cancer, drug addiction, HIV infection); 2)
plan for infant adoption; 3) presence of neonatal conditions that
could impact the ability to breastfeed (e.g. cleft lip, metabolic
disease, NICU [Neonatal Intensive Care Unit] admission >7
d); 4) plan for pediatric care outside the medical center, or 5)
non-English speaking. Between April 2018 and October 2020,
research staff screened 2487 potential participants through the
electronic medical record, approached 359 eligible participants

(14%), and enrolled 221 participants (61% of those eligible).
Recruitment occurred at 4 pediatric outpatient clinics affiliated
with the academic medical center. All participants had access to
on-site lactation support for the duration of the study. A total of
163 dyads completed the study (Figure 1). The primary medical
outcome was presence or absence of atopic disease in the first 12
mo, defined by parent report of AD, food allergies, or wheezing
on standardized questionnaires (32–36), and confirmed for all
participants through review of the electronic medical record. This
definition of atopy was developed in accordance with guidelines
from the European Academy of Allergy, Asthma & Immunology
(33). The 3 atopic conditions were chosen to represent a single
allergic phenotype based upon their clinical presentation in the
first year of life (1, 31), their association as part of the “atopic
march” (1), and scientific literature supporting their respective
associations with human milk consumption (4–6).

Survey collection

Medical and demographic characteristics were collected for
all dyads through nurse-administered surveys at enrollment.
Maternal age, tobacco use, BMI, and atopy history were recorded.
Infant sex, gestational age, delivery route, birth weight, and
race were recorded. Infant race was self-reported by mothers
as American Indian or Alaska Native, Asian, Black or African
American, Native Hawaiian or Other Pacific Islander, and White
or Caucasian. The duration of lactation and proportion of feeds
consisting of human milk were assessed at 4, 16, and 24 wk
using the Infant Feeding Practices (IFP)-II survey (34). Infant
AD was assessed by trained research nurses at 4, 16, 24, and 48
wk using the Scoring Atopic Dermatitis (SCORAD) tool (32).
The SCORAD was developed by the European Task Force on
Atopic Dermatitis for rapid utility in outpatient clinics and has
been validated in infants and children. Infant food reactions were
assessed through the IFP-II survey at 4, 16, 24, and 48 wk (34).
Infant wheezing during the first 12 mo was assessed through
administration of a standardized wheezing questionnaire from
the International Study of Asthma and Allergies in Childhood
(ISAAC-WQ) at 48 wk (35). The ISAAC-WQ was developed
to measure the prevalence of recurrent wheezing and related
risk factors in infants during the first 12 mo. Allergens in the
infant environment were reported at 4 wk using a modified
form of the National Survey of Lead and Allergens in Housing
(NSLAH) (36). This survey was developed by the NIEHS to
assess environmental allergens within the home. In order to assess
the relation between human milk miRNAs and maternal diet,
the Dietary Screener Questionnaire (DSQ) was administered at
each milk collection (0, 4, and 16 wk) (37). Missing survey data
(42/2608, 1.6%) was imputed using the mean cohort value for
downstream statistical analysis.

Sample collection

Human milk (5 mL) was manually expressed into RNAse-
free tubes from a sterilized nipple surface, as we have previously
described (14, 38). Foremilk (prefeed) samples were collected
in weeks 0, 4, and 16. These time points were chosen to reflect
important changes in milk miRNA concentrations that occur
during the course of lactation (29), and to capture the period when



1656 Hicks et al.

FIGURE 1 CONSORT diagram. There were 2487 mother–infant dyads screened for eligibility, and 359 eligible dyads were approached. A total of 221
dyads consented to participate, and 163 completed the 12-mo longitudinal study. There were 73 infants who developed atopy – 41 had atopic dermatitis (AD),
33 had food allergy, and 10 had wheezing. Eleven infants had >1 atopic condition. In total, 442 human milk samples were collected from the 163 participants
and underwent RNA sequencing. Ten samples were excluded for insufficient microRNA (miRNA) read counts. This left 190 samples from mothers of infants
with atopy and 242 samples from mothers of infants without atopy. Each mother provided ≤3 samples: at 0 wk (“early milk”), 4 wk (“transitional milk”), and
16 wk (“mature milk”).

atopic benefits attributed to breastfeeding occur (4). To control for
differences between breasts, mothers utilized the same breast for
each collection. Time of collection was recorded for all samples
to ensure that daily variations in milk miRNA concentrations did
not contribute to between-group differences. The 163 mothers
who completed the study contributed 442 human milk samples:
153 “early milk” samples at 0 wk (4 ± 2 d postpartum), 155
“transitional milk” samples at 4 wk (39 ± 11 d postpartum), and
134 “mature milk” samples at 16 wk (128 ± 8 d postpartum).
There were 127 mothers that contributed 3 samples, 25 mothers
that contributed 2 samples, and 11 mothers that contributed 1
sample. Samples were immediately transferred to –20◦C for
storage and placed at –80◦C within 4 wk, undergoing exactly 1
freeze-thaw cycle prior to RNA extraction.

Sample processing

Human milk RNA was purified from the lipid fraction using a
Norgen Circulating and Exosomal RNA Purification Kit (Norgen
Biotech), per manufacturer instructions (14, 29). Lipid fractions
were selected for their robust concentration of immunologic
miRNAs with high potential for maternal–infant transfer (due to
the protective effects of lipid encapsulation and microvesicles)
(11, 12, 14). Samples were processed in batches containing
longitudinal samples from each participant, and matched ratios
of atopic and nonatopic dyads. The yield and quality of RNA
samples were assessed using the Agilent Bioanalyzer (Agilent
Technologies) prior to library construction, which utilized 250 ng
of RNA from each sample. RNA was sequenced at the SUNY
(State University of New York) Molecular Analysis Core using
the Illumina TruSeq Small RNA Prep protocol and a NextSeq500

instrument (Illumina) at a targeted depth of 10 million, 50
base, paired-end reads per sample. RNAseq was selected to
permit estimation of miRNA concentrations as reads per million,
rather than a relative value yielded by PCRs. FASTQ files
were deposited into the Gene Expression Omnibus repository
(GSE192543). Mature miRNA reads were aligned to the hg38
build of the human genome using miRbase 22 in Partek Flow
(Partek), and the Bowtie2 aligner. Samples with raw miRNA
counts <10,000 were excluded (n = 10, 2.2%). Individual
miRNA features with sparse counts (<10 in >10% of samples)
were filtered. Within each sample, the concentration of the 4
miRNAs of interest (miR-146b-5p, miR-148b-3p, miR-21–5p,
miR-375–3p) was determined as reads per million, and mean-
center scaled.

Statistical analysis

The primary exposure for the study was infant miRNA
consumption of miR-146b-5p, miR-148b-3p, miR-21–5p, and
miR-375–3p in the first 6 mo. Consumption, in mg, was
calculated as the product of milk RNA concentration (mg/mL),
infant milk consumption (mL/day), lactation duration (days),
and the proportion of RNA sequencing reads accounted for by
a specific miRNA across 3 lactation stages. For example, the
consumption of miR-375–3p was calculated as follows: [RNAT0]
× VT0 × DT0 × [miR-375T0] + [RNAT4] × VT4 × DT4 × [miR-
375T4] + [RNAT16] × VT16 × DT16 × [miR-375T16]; where T
represents the time period (T0: 0–4 wk, T4: 4–16 wk, T16: 16–
24 wk), RNA represents the small RNA concentration of the
human milk sample (mg/mL), V represents the volume of human
milk consumed (mL/day), D represents the number of days in
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TABLE 1 Participant characteristics

All (n = 163) Atopy (n = 73) No atopy (n = 90) P value (d or X2)

Maternal traits
Maternal age in years, mean (SD) 30 (4) 30 (4) 30 (3) 0.61 (0.5)
Tobacco use, n (%) 19 (11) 7 (9) 12 (13) 0.45 (0.5)
BMI in kg/m2, mean (SD) 27.6 (6) 28.1 (6) 27.2 (6) 0.50 (0.6)
Maternal atopy, n (%) 67 (41) 35 (48) 32 (36) 0.11 (2.5)
Infant traits
Female sex, n (%) 92 (56) 42 (57) 50 (56) 0.80 (0.06)
Gest. age in weeks, mean (SD) 39.0 (1) 39.0 (1) 38.9 (1) 0.50 (0.1)
Vaginal delivery, n (%) 132 (81) 56 (77) 76 (84) 0.21 (1.5)
Birth weight in grams, mean (SD) 3358 (442) 3362 (440) 3355 (447) 0.35 (4.4)
Caucasian, n (%) 131 (80.4) 55 (75) 76 (84) 0.88 (0.1)
African American, n (%) 7 (4.3) 3 (5) 4 (5) 0.96 (0.04)
Asian, n (%) 8 (4.9) 6 (8) 2 (2) 0.089 (1.7)
Biracial, n (%) 8 (4.9) 5 (7) 3 (3) 0.26 (1.1)
Other, n (%) 9 (5.5) 4 (5) 5 (6) 0.88 (0.1)
Atopy in 1st degree relative, n (%) 74 (45) 37 (50) 37 (41) 0.22 (1.4)
Environment
Daycare attendance, n (%) 57 (35) 24 (33) 33 (37) 0.61 (0.2)
Allergen mitigation, n (%) 26 (16) 13 (18) 13 (14) 0.56 (0.3)
Pet(s) in home, n (%) 99 (60) 44 (60) 55 (61) 0.91 (0.01)
Atmospheric pollution, n (%) 56 (34) 24 (33) 32 (36) 0.72 (0.1)
Solid food intro. <6 mo, n (%) 142 (87) 60 (82) 82 (91) 0.091 (2.8)
Breastfeeding ≥6 mo, n (%) 132 (81) 57 (78) 75 (83) 0.39 (0.7)

Maternal atopy includes self-reported atopic dermatitis, food allergies, asthma, or allergic rhinitis. Daycare attendance includes any daycare in the first
12 mo. Presence or absence of allergen mitigation techniques and household pet(s) was self-reported on the National Survey of Lead and Allergens in
Housing. Atmospheric pollution was self-reported on the International Survey of Allergies and Asthma in Children – Wheezing Questionnaire. P values were
determined using chi-square or student’s t tests as appropriate. Gest., Gestational.

which human milk was consumed, and miR-375 represents the
proportion of small RNA reads accounted for by miR-375–3p
(Supplementary Figure 1). There were 24 missing samples (4%
of all samples), due to failure to collect a milk sample (i.e. missed
appointment or COVID-related interruptions). For these samples,
miRNA concentration was imputed for the final analysis using the
mean miRNA value for the specific lactation stage.

The primary medical outcome was the presence or absence of
atopy in the 12 mo after delivery. Medical, demographic, and
environmental characteristics were compared between infants
with atopy and infants without atopy using chi-square or student’s
t tests. Mann–Whitney U-tests were used to assess differences
in breastmilk miRNA consumption between groups. Binomial
regression with an ANOVA omnibus test was used to assess
the contribution of breastmilk miRNA consumption to atopy
risk, while controlling for relevant medical, demographic, and
environmental characteristics. Colinearity was assessed. ORs
with 95% CIs were reported. A Kruskal–Wallis test was used
to investigate differences in milk miRNA consumption between
atopy subgroups (e.g. AD, food allergy, wheezing). Multiple
testing correction was performed using the Benjamini–Hochberg
method.

The following secondary analyses were used to assess
expression patterns for miRNAs associated with atopy risk
reduction: 1) A Friedman repeated measures ANOVA with
posthoc Durbin Conover pairwise comparisons was used to
determine whether the miRNA displayed significant changes
across the 3 stages of lactation; 2) a mixed effects model was

fit by restricted maximum likelihood to examine the impact of
modifiable maternal characteristics (i.e. dietary scores, BMI, and
tobacco use) on milk miRNA concentrations over time. Human
milk miRNA concentration served as the dependent variable,
participant ID was the clustering variable, and maternal charac-
teristics served as covariates. Effects of maternal characteristics
were assessed with fixed effects omnibus tests. Finally, Mann–
Whitney U-tests were performed to compare the consumption
of 85 additional human milk miRNAs (which did not form the
basis for our a priori hypothesis) between atopic and nonatopic
groups. All statistical analyses were performed using Jamovi
v2.2.5 software.

Results

Participants

Participating infants were predominantly female (92/163,
56%), Caucasian (131/163, 80%), and born via vaginal delivery
(132/163, 81%) (Table 1). Nearly half had a history of maternal
atopy (67/163, 41%), or atopy in a first-degree relative (74/163,
45%). Approximately one-third attended daycare (57/163, 35%).
Most families reported pets in the home (99/163, 60%), one-
third reported local atmospheric pollution (56/163, 34%), and
few reported employing allergen mitigation techniques at home
(26/163, 16%). Most infants were introduced to solid foods prior
to the age of 6 mo (142/163, 87%) and consumed human milk for
≥6 mo (132/163, 81%).
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FIGURE 2 Infants with atopy consume lower concentrations of miR-375–3p and miR-148b-3p. Mann–Whitney U-testing revealed that infants without
atopy consumed higher concentrations of miR-375–3p (d = 0.18, P = 0.022, adj P = 0.044) and miR-148b-3p (d = 0.23, P = 0.007, adj P = 0.028). The
boxplots display consumption of human milk miR-375–3p, miR-146b-5p, and miR-21–5p for atopic (n = 73) and nonatopic (n = 90) infants (A). Mean (black
bar) and median (diamond) values are displayed for each group. Across atopy subgroups, there was no difference (adj P > 0.05) in consumption of miR-375–3p,
miR-146b-5p, or miR-21–5p on Kruskal–Wallis testing (B). Subgroups were defined as atopic dermatitis (AD; n = 32), food allergy (FA; n = 24), wheezing
(W; n = 6), or infants with >1 atopic condition (>1; n = 11). miRNA, microRNA.

Atopy characteristics

Seventy-three infants developed atopy. AD was the most
common atopic condition (41/163, 25%), followed by food
allergy (33/163, 20%), and wheezing (10/163, 6%). Eleven
infants (6%) developed >1 atopic condition. The majority of
infants with atopy (42/73, 57%) experienced symptom onset
after the age of 6 mo. There were no differences (P <0.05)
in maternal traits, infant traits, or environmental exposures
between infants with atopy (n = 73) and infants without atopy
(n = 90).

Milk miRNA consumption

Human milk samples collected from mothers of infants with
atopy and mothers of infants without atopy did not differ
(P >0.05) in collection time (12:39 ± 3:33 compared with
12:38 ± 3:07), total RNA counts (6.4 × 106 ± 5.0 × 105

compared with 7.1 × 106 ± 6.0 × 105), or RNA quality
(34.6 ± 0.1 compared with 34.6 ± 0.2). Infants who did not
develop atopy consumed higher concentrations of miR-375–
3p (d = 0.18, P = 0.022, adj P = 0.044) and miR-148b-3p
(d = 0.23, P = 0.007, adj P = 0.028), but not miR-21–5p
(d = 0.15, P = 0.049, adj P = 0.65), or miR-146b-5p (d = 0.11,
P = 0.10, adj P = 0.10) (Figure 2A). Atopy subgroups displayed
no difference in consumption of miR-148b-3p (X2 = 12.2,
P = 0.015, adj P = 0.060), miR-375–3p (X2 = 7.58, P = 0.10, adj
P = 0.20), miR-146b-5p (X2 = 4.59, P = 0.033, adj P = 0.33),
or miR-21–5p (X2 = 5.10, P = 0.27, adj P = 0.36) (Figure
2B). Among the 85 additional miRNAs that did not constitute

our a priori hypothesis, 15 displayed nominal differences in
consumption between infants who developed atopy and peers
who did not (raw P < 0.05), but none withstood multiple testing
correction (Supplementary Table 1).

Modeling atopy risk

The consumption of miR-375–3p in human milk was associ-
ated with reduced atopy risk (X2 = 5.7, P = 0.017, OR: 0.92,
95% CI: 0.86, 0.99) (Figure 3A). Addition of miR-148b-3p
consumption improved the model (X2 = 3.9, P = 0.046), but
miR-148b-3p consumption was not significantly associated with
atopy risk reduction (OR: 0.40, 95% CI: 0.15, 1.03; Figure 3B).
Maternal age (X2 = 4.1, P = 0.047, OR: 1.09, 95% CI: 1.001,
1.20) was the only medical, demographic, or environmental
factor associated with atopy risk (Supplementary Table 2).

Factors impacting miR-375–3p concentrations in human
milk

Concentrations of miR-375–3p in human milk displayed
significant changes over the course of lactation (Figure 4A).
Concentrations of miR-375–3p increased from early milk (4 ± 2
d postpartum) to transitional milk (39 ± 11 d postpartum), and
remained elevated in mature milk (128 ± 8 d postpartum; 0.46,
F = 132.3, P = 8.4 × 10−34). Concentrations of miR-375–3p
also displayed an interaction between lactation stage and atopy
status (F = 6.5, P = 0.002). Concentrations of miR-375–3p were
highest in the mature milk from mothers of infants without atopy,
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FIGURE 3 Consumption of miR-375–3p in human milk is associated with reduced atopy risk. A binomial regression controlling for medical, demographic,
and environmental risk factors related to infant atopy revealed that consumption of miR-375–3p was associated with reduced atopy risk (X2 = 5.7, P = 0.017,
OR: 0.92, 95% CI: 0.86, 0.99) (A). Addition of miR-148b-3p consumption improved the model (X2 = 3.9, P = 0.046), but miR-148b-3p consumption was not
significantly associated with atopy risk reduction (OR: 0.40, 95% CI: 0.15, 1.03; B). This analysis was based on 73 infants with atopy and 90 infants without
atopy. Marginal means plots with 95% CIs are shown.

and lowest in the early milk of mothers of infants with atopy
(mean difference = 1.3 ± 0.15, t = 8.53, P = 0.001).

The relation between miR-375–3p concentrations and modifi-
able maternal characteristics (i.e. tobacco use, diet, BMI) were
assessed with a linear mixed effects models (Supplementary
Table 3). Concentrations of miR-375–3p in human milk were
inversely associated with maternal BMI (r = –0.11, F = 4.7,

t = –2.1, P = 0.032) (Figure 4B). No other modifiable maternal
characteristics were associated with miR-375–3p concentrations.

Discussion
This study is the first to demonstrate that infant consumption

of human milk miRNAs may provide protection against atopic

FIGURE 4 Concentrations of miR-375–3p in human milk are impacted by lactation stage and maternal body mass. A repeated measures ANOVA revealed
a significant effect of lactation stage on miR-375–3p concentrations (F = 132.3, P = 8.4 × 10−34). A scatter plot with linear trend line and 95% CIs are shown
for infants with atopy (gray; n = 73) and infants without atopy (black; n = 90; A). Concentrations of miR-375–3p displayed a significant interaction (F = 6.5,
P = 0.002) between lactation stage and atopy status. Concentrations of miR-375–3p were higher in the mature milk consumed by infants without atopy. Linear
mixed effects models were used to assess the longitudinal relation between miRNA concentrations in 432 human milk samples and modifiable maternal traits.
The scatter plot and trend line display an inverse relation (r = –0.11) between maternal BMI (kg/m2) and milk miR-375–3p concentrations (F = 4.7, t = –2.1,
P = 0.032) on fixed omnibus testing (B). RPM, reads per million.
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disease development. Specifically, the consumption of miR-375–
3p over the first 6 mo was associated with reduced risk of
AD, food allergies, and wheezing in the first year of life. The
consumption of miR-375–3p was more strongly associated with
atopic conditions than oft-cited risk factors, such as family history
and maternal tobacco use (3). This knowledge has important
applications for infant health, including the optimization of
formula to better reflect the biologic characteristics of human
milk.

Currently, infant formula contains no human miRNA (39), and
what little bovine miRNA survives the pasteurization process
is unlikely to have a bioactive impact on the developing infant
(40). The addition of synthetic miR-375–3p to formula might
ameliorate the disparities in atopic outcomes reported between
formula-fed and breastfed infants (4, 8), In contrast to formula,
miR-375–3p is present in over 99% of all human milk samples
and constitutes just under 1% of all miRNA in breastmilk (29).

This study shows that concentrations of miR-375–3p increase
over the course of lactation, which may explain why sustained
breastfeeding has displayed an association with reduced atopic
conditions in some studies (5, 6). Intriguingly, miR-375–3p
concentrations were lower in mothers with elevated BMI. This
could explain previous findings linking maternal weight with
infant AD and wheezing outcomes (41). It could also provide
an opportunity to enhance the atopic benefits associated with
breastfeeding through targeted interventions aimed at increasing
miR-375–3p concentrations via maternal weight control (42).

A growing body of literature suggests that orally administered
exosomal miRNAs survive digestion, impact immunologic re-
sponses in local mucosa, and are readily absorbed into circulation
(9, 17, 22, 38, 43). These foundational investigations have
predominantly relied on cell culture, animal models, or bovine
milk consumption. The current study adds to this body of
evidence by demonstrating that consumption of miR-375–3p in
human milk is associated with reduced atopy risk.

Several prior studies have established the importance of miR-
375 in atopy pathophysiology (22, 44–51). A study of cultured
esophageal tissue from children with eosinophilic esophagitis
found that miR-375 concentrations were repressed by IL-13,
and that miR-375 was inversely related to the concentration
of eosinophils and the expression of mast-cell-specific genes
(44). Another study employing a mouse model of allergic
rhinitis showed that miR-375 expression was decreased in nasal
mucosa, but administration of miR-375 could prevent epithelial
inflammation by inhibiting IL-6 (22).

A number of studies have examined the mechanism of action
for miR-375, and collectively, these studies provide compelling
evidence for miR-375 as a regulator of the developing immune
system. For example, miR-375 binds directly to Janus kinase 2
(JAK2) (52) and represses translation, which has been implicated
in atopy-associated signal transduction by human thymic stromal
lymphopoietin receptors (53, 54), and asthma-related signal
transduction by platelet-derived growth factors (55). In addition,
pharmacologic manipulation of the miR-375/JAK2 interaction
has been shown to impact inflammatory signaling and gastroin-
testinal pathology (56–58). In fact, inhibition of JAK pathways
is a novel approach being explored for treatment of AD (59).
The results of this study suggest that nutritional miR-375 may
provide some of the same protective benefits to developing
infants. We note that infants without atopy also consumed higher

concentrations of miR-148b-3p. Given that tolerance acquisition
in children with allergies is related to epigenetic control of
FOXP3 (60), and miR-148b-3p is known to target forkhead box
transcripts and DNA methyltransferase 1, this milk miRNA may
also play an important role in atopy protection.

To our knowledge, only one prior study has investigated the
relation between human milk miRNAs and child atopy (45). A
retrospective study by Simpson and colleagues (2015) used RNA
sequencing to measure miRNA concentrations in mature milk
from 54 females, and found no association with infant AD at
the age of 2 y. However, this important study established that
atopy-related miRNAs (e.g. miR-375–3p) were highly present
in human milk and formed the basis for our hypothesis-driven
investigation. Our ability to detect a relation between milk
miRNAs and infant atopy outcomes may be attributed to a larger
sample size, longitudinal collection of milk samples at various
lactation stages, inclusion of multiple atopic conditions, or a
novel approach to control for total milk consumption in the first 6
mo. This approach controls for changes in miRNA concentration
over the course of lactation, the small RNA concentration within
each milk sample, and the quantity of milk consumed during
each lactation stage. However, it assumes that the proportion of
miRNAs within the small RNA fraction is stable across samples
and does not assess the influence of total miRNA quantity.
Both assumptions may introduce variability to the calculation of
miRNA consumption.

There are several additional limitations of the study design.
We did not include allergic rhinitis in the definition of atopy
due to the limited prevalence of this condition among infants.
Impacts of miR-375–3p on allergic rhinitis or atopic outcomes
beyond 12 mo cannot be inferred. The study’s drop-out rate
(24%) was exacerbated by the COVID-19 pandemic and
may have contributed attrition bias. Missing data (4%) was
imputed using mean values from the entire cohort. Such an
approach may enhance the likelihood of false-negative results
by regressing group differences toward the mean. Despite the
importance of exosomes in miRNA transport (39, 46), we did
not specifically isolate exosomal RNA. However, we note that
the majority of miRNAs in human milk are contained within
exosomes (40) and that lipid fractions are likely to contain
additional sources of encapsulated miRNAs that may survive the
digestive tract.

In conclusion, this study demonstrates that infant consumption
of miR-375–3p in human milk is associated with reduced atopy
risk in the first year of life. Increases in miR-375–3p over the
course of lactation support the idea that sustained breastfeeding
enhances atopy protection. An indirect relation between milk
miR-375 concentrations and maternal BMI suggests that ma-
ternal weight reduction could potentially enhance the protective
influence of human milk on infant atopy. Additional studies are
necessary to confirm this important relation and determine if oral
administration of synthetic miR-375 conveys atopy protection in
translational models.
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