Three-Dimensional Trampolinelike Behavior in an Ultralight Elastic Metamaterial

Elastic metamaterials possess band gaps, or frequency ranges that are forbidden to wave propagation. Existing solutions for impeding three-dimensional (3D) wave propagation largely rest on high-volume fractions of mass inclusions that induce and tailor negative effective density-based local resonances. This study introduces a class of elastic metamaterials that achieve low-frequency band gaps with a volume fraction as low as 3% (mass density as low as 0.034g/cm3). The working of the proposed design hinges on a 3D trampolinelike mode behavior that gives rise to wide, omnidirectional, and low-frequency band gaps for elastic waves despite very low-mass densities. Such a 3D trampoline effect is derived from a network of overhanging nodal microarchitectures that act as locally resonating elements, which give rise to band gaps at low frequencies. The dynamic effective properties of the metamaterial are numerically examined, which reveal that the band gap associated with the trampoline effect is resulted from a negative effective modulus coupled with a near-zero yet positive effective density. The experimental characterization is then made possible by fabricating the metamaterial via a light-based printing system that is capable of realizing microarchitectures with overhanging microfeatures. This design strategy could be useful to applications where simultaneous light weight and vibration control is desired.



Work Title Three-Dimensional Trampolinelike Behavior in an Ultralight Elastic Metamaterial
Open Access
  1. Nikhil J.R.K. Gerard
  2. Mourad Oudich
  3. Zhenpeng Xu
  4. Desheng Yao
  5. Huachen Cui
  6. Christina J. Naify
  7. Alec Ikei
  8. Charles A. Rohde
  9. Xiaoyu Rayne Zheng
  10. Yun Jing
License In Copyright (Rights Reserved)
Work Type Article
  1. Physical Review Applied
Publication Date August 9, 2021
Publisher Identifier (DOI)
Deposited July 19, 2022




This resource is currently not in any collection.

Work History

Version 1

  • Created
  • Added PhysRevApplied.16.024015.pdf
  • Added Creator Nikhil J.R.K. Gerard
  • Added Creator Mourad Oudich
  • Added Creator Zhenpeng Xu
  • Added Creator Desheng Yao
  • Added Creator Huachen Cui
  • Added Creator Christina J. Naify
  • Added Creator Alec Ikei
  • Added Creator Charles A. Rohde
  • Added Creator Xiaoyu Rayne Zheng
  • Added Creator Yun Jing
  • Published
  • Updated Publication Date Show Changes
    Publication Date
    • 2021-08-01
    • 2021-08-09
  • Updated