High-energy all-in-one stretchable micro-supercapacitor arrays based on 3D laser-induced graphene foams decorated with mesoporous ZnP nanosheets for self-powered stretchable systems

Micro-supercapacitors are promising energy storage devices that can complement or even replace lithium-ion batteries in wearable and stretchable microelectronics. However, they often possess a relatively low energy density and limited mechanical stretchability. Here, we report an all-in-one planar micro-supercapacitor arrays (MSCAs) based on hybrid electrodes with ultrathin ZnP nanosheets anchored on 3D laser-induced graphene foams (ZnP@LIG) arranged in island-bridge device architecture. The hybrid electrodes with a large specific surface area demonstrate excellent ionic and electrical conductivities, impressive gravimetric (areal) capacitance of 1425 F g−1 (7.125 F cm−2) at 1 A g−1, and long-term stability. In addition to high energy (245 m Wh cm−2) and power (12.50 mW kg−1 at 145 m Wh cm−2) densities, the MSCAs with excellent cycling stability also showcase adjustable voltage and current outputs through serial and parallel connections of MSC cells in the island-bridge design, which also allows the system to be reversibly stretched up to 100%. Meanwhile, theoretical calculations validated by UV–vis absorption spectra partially suggest that the enhanced capacitance and rate capability may result from the improved electrical conductivity and number of adsorbed charged ions (Na+ in Na2SO4 aqueous electrolyte and K+ in PVA/KCl gel electrolyte) on the pseudocapacitive non-layered ultrathin ZnP nanosheets. The integration of the all-in-one stretchable MSCAs with a crumpled Au-based triboelectric nanogenerator and stretchable crumpled graphene-based strain sensor demonstrates a self-powered stretchable system. The coupled design principle of electronic materials and device architecture provides a promising method to develop high-performance wearable/stretchable energy storage devices and self-powered stretchable systems for future bio-integrated electronics.

Files

Metadata

Work Title High-energy all-in-one stretchable micro-supercapacitor arrays based on 3D laser-induced graphene foams decorated with mesoporous ZnP nanosheets for self-powered stretchable systems
Access
Penn State
Creators
  1. Larry Cheng
Keyword
  1. Micro-supercapacitor arrays
  2. 3D laser-induced graphene foams
  3. Mesoporous non-layered ZnP nanosheets
  4. Improved ionic/electrical conductivities
  5. Stretchable device architecture
License In Copyright (Rights Reserved)
Work Type Article
Publication Date November 17, 2020
Deposited February 23, 2021

Versions

Analytics

Collections

This resource is currently not in any collection.

Work History

Version 1
published

  • Created
  • Added Creator Larry Cheng
  • Added 88. self-powered stretchable systems-Nano Energy.pdf
  • Updated License Show Changes
    License
    • https://rightsstatements.org/page/InC/1.0/
  • Published
  • Updated
  • Updated