
Energy-Aware Path Planning for Skid-Steer Robots Operating on Hilly Terrain
This paper presents an optimized approach to planning energy-aware paths for skid-steer vehicles during elevation changes. Specifically, this work expands upon a previously presented power model by including the effect of elevation changes on the energy usage of the robot. The total power needed to travel to a goal location is then combined with an instantaneous center of rotation (ICR) kinematic model to plan energy-aware paths using a Sampling Based Model Predictive Optimization (SBMPO) algorithm. This method is demonstrated using a simulated environment with a wide range of varying scenarios representative of real-world usages. The results show that, in some hilly cases, it is more energy efficient to take a longer path when operating skid-steer robots on mixed terrain. These results are intended to improve the accuracy of energy consumption models for robotics.
© None IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Files
Metadata
Work Title | Energy-Aware Path Planning for Skid-Steer Robots Operating on Hilly Terrain |
---|---|
Access | |
Creators |
|
License | In Copyright (Rights Reserved) |
Work Type | Article |
Publisher |
|
Publication Date | July 2020 |
Publisher Identifier (DOI) |
|
Source |
|
Deposited | September 09, 2021 |
Versions
Analytics
Collections
This resource is currently not in any collection.