Daily power demand prediction for buildings at a large scale using a hybrid of physics-based model and generative adversarial network

Power demand prediction for buildings at a large scale is required for power grid operation. The bottom-up prediction method using physics-based models is popular, but has some limitations such as a heavy workload on model creation and long computing time. Top-down methods based on data driven models are fast, but less accurate. Considering the similarity of power demand patterns of single buildings and the superiority of Generative Adversarial Network (GAN), this paper proposes a new method (E-GAN), which combines a physics-based model (EnergyPlus) and a data-driven model (GAN), to predict the daily power demand for buildings at a large scale. The new E-GAN method selects a small number of typical buildings and utilizes EnergyPlus models to predict their power demands. Utilizing the prediction for those typical buildings, the GAN then is adopted to forecast the power demands of a large number of buildings. To verify the proposed method, the E-GAN is used to predict 24-hour power demands for a set of residential buildings. The results show that (1) 4.3% of physics-based models in each building category are required to ensure the prediction accuracy; (2) compared with the physics-based model, the E-GAN can predict power demand accurately with only 5% error (measured by Mean Absolute Percentage Error, MAPE) while using only approximately 9% of the computing time; and (3) compared with data-driven models (e.g., Support Vector Regression, Extreme Learning Machine, and polynomial regression model), E-GAN demonstrates at least 60% reduction in prediction error measured by MAPE.

Files

Metadata

Work Title Daily power demand prediction for buildings at a large scale using a hybrid of physics-based model and generative adversarial network
Access
Open Access
Creators
  1. Chenlu Tian
  2. Yunyang Ye
  3. Yingli Lou
  4. Wangda Zuo
  5. Guiqing Zhang
  6. Chengdong Li
Keyword
  1. Large-scale simulation
  2. Power demand
  3. Generative adversarial networks
  4. Building energy model
License In Copyright (Rights Reserved)
Work Type Article
Publisher
  1. Building Simulation
Publication Date February 4, 2022
Publisher Identifier (DOI)
  1. https://doi.org/10.1007/s12273-022-0887-y
Deposited August 19, 2022

Versions

Analytics

Collections

This resource is currently not in any collection.

Work History

Version 1
published

  • Created
  • Added J57_Daily_Power_Demand_Prediction_for_Buildings_at_a_Large_Scale_Using_a_Hybrid_of_Physics-based_Model_and_Generative_Adversarial_Network.pdf
  • Added Creator Chenlu Tian
  • Added Creator Yunyang Ye
  • Added Creator Yingli Lou
  • Added Creator Wangda Zuo
  • Added Creator Guiqing Zhang
  • Added Creator Chengdong Li
  • Published
  • Updated Keyword, Publication Date Show Changes
    Keyword
    • Large-scale simulation, Power demand, Generative adversarial networks, Building energy model
    Publication Date
    • 2022-01-01
    • 2022-02-04
  • Updated