
Nanocomposite of halloysite nanotubes/multi-walled carbon nanotubes for methyl parathion electrochemical sensor application
We report a simple and highly efficient preparation of nanocomposite of halloysite (Hal) nanotubes/multi-walled carbon nanotubes (Hal-MWCNTs) and its electrochemical sensor application for the determination of methyl parathion (MP). The phase structure and surface morphology of the Hal-MWCNTs nanocomposite were confirmed by X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared (FTIR) spectra. According to the electrochemical tests, the fabricated glassy carbon electrode (GCE) sensor with Hal and multi-walled carbon nanotubes showed excellent MP determination performance because of the synergistic effect of Hal and multi-walled carbon nanotubes. The Hal-MWCNTs/GCE sensor exhibited a relatively low detection limit of 0.034 μM in the linear range of 0.5–11 μM. When used for the determination of MP in real samples, the Hal-MWCNTs/GCE sensor showed good detection effect with satisfactory relative standard deviation (RSD) of 2.46 to 3.08% and recoveries of 98.8 of 101.8%. This work indicated that the nanocomposite of Hal-MWCNTs when coated on GCE is useful for the fabrication of high-performance MP electrochemical sensor.
Files
Metadata
Work Title | Nanocomposite of halloysite nanotubes/multi-walled carbon nanotubes for methyl parathion electrochemical sensor application |
---|---|
Access | |
Creators |
|
License | In Copyright (Rights Reserved) |
Work Type | Article |
Publisher |
|
Publication Date | January 1, 2021 |
Publisher Identifier (DOI) |
|
Deposited | November 18, 2021 |
Versions
Analytics
Collections
This resource is currently not in any collection.