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Abstract 13 

Building information modeling has demonstrated its advantage to support design 14 

coordination, specifically for automatic clash detection. Detecting clashes helps us 15 

identify problems, but the process for solving these problems is still manual and time-16 

consuming. This paper proposes using network theory to improve clash resolution by 17 

optimizing the clash correction sequence. Building systems are often interdependent of 18 

each other, and the dependency relations between building components propagate the 19 

impacts of clashes. Ignoring the dependency may cause new clashes when solving a 20 

clash or cause iterative adjustments for a single building component. However, a well-21 

organized clash correction sequence can help reduce these issues. Therefore, it is 22 

necessary to holistically discuss the clash correction sequence by considering the 23 

dependence between clashes. This paper analyzes clash dependencies based on building 24 

component dependency relations. We design an optimization algorithm for determining 25 

the optimal sequence based on the clash dependency network to minimize feedback 26 

dependency, which may cause design rework on a project in project practice. The 27 

proposed method is validated on a real building project. After comparing with the 28 

natural sequence detected by commercial software, we find that the optimized sequence 29 

significantly reduces feedback and automatically groups dependent clashes, which 30 

facilitates design coordination.  31 

Keywords: Clash Correction Sequence, Clash Dependency Network, Minimum 32 
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Feedback Arc Set, Heuristic Algorithm  33 

1. Introduction 34 

Design coordination is a problem-solving process, which involved experts from 35 

multiple disciplines iteratively identify and solve problems to make sure that a design 36 

meets its expected functional, economic, and aesthetic requirements [1–3]. With the 37 

increase of building complexity, the design coordination process becomes more 38 

challenging, specifically among mechanical, electrical, and plumbing (MEP) 39 

disciplines. Previous studies argued that the MEP coordination was one of the most 40 

challenging tasks for project delivery because it needs to coordinate the location of a 41 

large number of interrelated components in a limited space to avoid interferences [2–42 

4]. The cost of MEP coordination is significant, and according to some estimates, it 43 

accounts for 6% of MEP cost, while the MEP cost can exceed 50% of the total 44 

construction cost on heavily equipped buildings, such as hospitals and laboratories [2,3]. 45 

Therefore, effective MEP coordination is important for project success.  46 

In a traditional setting, MEP coordination is manually conducted by specialists from 47 

multiple disciplines. They sequentially overlap their transparent 2D drawings on a 48 

lighting table to identify component clashes by vision and discuss clash resolutions [5]. 49 

Because of the limitation of human vision, the clash detection process is time-50 

consuming. With the application of building information modeling (BIM), automatic 51 

clash detection has been widely used in construction projects [6]. BIM can integrate 52 

multi-disciplinary models and compute clashes in a federated model based on 53 

geometric information of building components [7]. After detecting clashes, BIM 54 

coordinators propose these clashes at design coordination meetings for solution 55 

discussion. The coordination process can be conducted sequentially or parallelly among 56 

multiple disciplines depending on how to build and integrate models to detect clashes.  57 

A previous study compared sequential and parallel strategies based on a case study and 58 

argued that the parallel method by simultaneously generating multi-disciplinary models 59 

and detecting clashes after these models were finished, was less efficient for 60 

coordination because clashes were interrelated and simultaneously dealing with many 61 

dependency issues was difficult to control potential ripple effects, which increased 62 

coordination cycles [2]. Sequential developing models and solving clashes seems more 63 

efficient in [2], but the case context focused on building models based on 2D drawings. 64 
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Nowadays, many projects adopt model-oriented design methods or 2D and 3D mixed 65 

methods. Because of the time pressure from the manufacturing or construction 66 

processes, it is difficult to wait for one discipline to fix its model and then develop the 67 

model of another discipline. In addition, the adoption of integrated delivery methods 68 

and fast-track processes also promotes parallel design [8,9]. To fully unleash the BIM 69 

potential, clashes are periodically detected in a federated model that integrates multi-70 

disciplinary models [10–12]. Multi-disciplinary clashes are detected simultaneously. In 71 

this scenario, it is important to know how to identify the dependency relations between 72 

these clashes and how to organize clash correction sequences to control ripple effects 73 

and avoid iterative adjustments. 74 

Previous discussions about BIM-enabled clash correction focused more on the 75 

individual clash level to identify clash responsible trades or clash solutions without 76 

considering the interaction between clashes and their nearby building components 77 

[4,13], which may cause iterative adjustments and increase coordination cycle [2]. 78 

Therefore, instead of discussing clash one-by-one, this paper considers clashes from a 79 

holistic viewpoint by analyzing the dependency between clashes from a component 80 

level and uses the dependency to optimize the clash correction sequence to minimize 81 

iterative adjustments. This paper discusses hard clashes among MEP disciplines 82 

because the definition of hard clash is accurate and unambiguous. The paper is 83 

organized as follows: first, clash dependency scenarios are discussed through analyzing 84 

the spatial relations among building components. Then an algorithm is designed for 85 

optimizing clash corrections. Finally, the proposed method is validated in a real project 86 

and the optimized sequence is compared with the original sequence detected by BIM 87 

commercial software to show the feasibility and benefit of the proposed method.  88 

2. Related works  89 

One important task of design coordination is clash management, which includes clash 90 

detection and clash correction processes [10]. Traditionally, the two processes are 91 

integrated to some degree. Multi-disciplinary specialists detect clashes by sequentially 92 

overlapping their transparent 2D drawings on a lighting table and discuss how to solve 93 

these clashes after detecting them [5]. With the application of BIM, clash detection and 94 

correction processes tend to be separated. BIM coordinators integrate models from 95 

multiple disciplines and detect clashes by BIM software. Then, these clashes are 96 
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proposed in the design coordination meeting and specialists discuss corresponding 97 

solutions. Many studies have been conducted to further improve clash detection 98 

accuracy by reorganizing BIM models [14], improving clash detection algorithms [15], 99 

or using machine learning methods to filter out important clashes [10].   100 

Comparing with the clash detection process, the attention and the automatic level of the 101 

clash correction process are much lower. Several research teams have contributed to 102 

this field. Wang and Leite [13] pointed out that determining responsible trade is a key 103 

issue when correcting clashes. They used machine-learning methods, including 104 

decision tree, a rule-based model, and Bayesian method, to train historical data and 105 

built a model that can automatically determine the responsible trade for one clash by 106 

given required attributes. However, the accuracy of the model (around 70%) still needs 107 

to be improved. Korman et al. [4] discussed how to deal with MEP interference from a 108 

knowledge management perspective. Based on design criteria and intent, construction, 109 

and operations and maintenance knowledge, they used a reasoning structure consisting 110 

of model-based reasoning (MBR) and heuristic reasoning to support decision-making 111 

in dealing with MEP interference. However, they still focused on a single clash and 112 

ignored the dependency between clashes.   113 

Building components are interrelated and the clashes between these components are 114 

not isolated [2,16]. From the information processing perspective, an effective 115 

coordination system needs the matching of the information processing needs and the 116 

information processing abilities, while information needs are generated from 117 

information uncertainty [17]. The dependency among building components and among 118 

clashes adds information uncertainty, which increase information processing needs 119 

[2,17]. Some studies tried to decrease information uncertainty to control information 120 

processing needs. Radke et al. [18] mentioned that existing clashes should be solved 121 

one-by-one, and the adjustment of each clash should be controlled in a “sticky area” to 122 

avoid generate new clashes. Sticky areas were certain locations that objects preferred, 123 

which were manually defined in this paper. However, they did not elaborate on how to 124 

derive these areas and the size of these areas. In addition, they assumed that for any 125 

clashes, the valid space for a clash always existed without impacting nearby objects. 126 

This assumption cannot be supported in real projects. In an MEP intensive area, it may 127 

be difficult to find a valid space. Lee and Kim [2] discussed coordination strategies 128 
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based on a case study, and they argued that sequentially generating MEP models by 129 

system priorities and detecting clashes can control information uncertainty, which 130 

improved coordination efficiency. However, in this sequential strategy, low priority 131 

disciplines (for example, electrical system) were modeled until the models of high 132 

priority disciplines (for example, HVAC system) were completed. In many situations, 133 

the sequential strategy is difficult to conduct because of time pressure. Parallel design 134 

is common in many projects and these projects detect clashes in a federated model that 135 

integrate multi-discipline [7,10–12].  136 

The above research tried to eliminate the impact between dependent clashes in space 137 

by controlling change areas or in time by sequentially coordinating clashes. In their 138 

discussions, the dependency is a concept that lack of specific content and measurements. 139 

Instead of ignoring dependency or viewing dependency as a negative concept, some 140 

studies try to clarify the dependency. Wang and Leite [19] mentioned that clash 141 

management should not only focus on clash attributes, but also need to consider clash 142 

context, for example, the location of a clash, its spatial relations with nearby objects, 143 

and the available space. However, they did not discuss how to represent the information 144 

specifically and how to automatically query the context information. Hu et al. [16] 145 

classified the dependency between building components into three types: connect, clash, 146 

and impact, and discussed how to query this information from models. They used the 147 

dependency relations to improve the clash detection process without discussing how 148 

this information can support the clash resolution process.  149 

Correcting clashes is the process of change management in nature. Mokhtar et al. [20] 150 

depicted a scenario of one space function change. In the scenario, the space change will 151 

cause an HVAC duct size change, a beam size change, a wall finishing change, a 152 

luminaire type change, and so on. These changes were interrelated. Figuring out their 153 

dependency relations and organizing change sequence based on these relations helped 154 

to decrease information uncertainty and avoid applying the same change multiple times. 155 

This work provides hints for our research. Building components are interdependent and 156 

clashes are interrelated through these components. it is imperative to discuss clashes 157 

from a holistic view and decide clash correction sequence based on the dependency 158 

relations between clashes.  159 

In summary, previous research rarely discussed the dependency between clashes, and 160 
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they usually solve clashes one-by-one [4] [13]. For a few studies that have realized that 161 

the dependency between building systems would impact clash management, one group 162 

tried to eliminate the dependency by limiting spatial scopes of clash change [18] or 163 

applying sequential design coordination strategies [2]. These methods are difficult to 164 

implement in construction projects, especially when projects are complex or have tight 165 

schedules. Another group of studies discussed clash context [19] and dependency 166 

relations between building components [16], but they did not elaborate on how to use 167 

the information to facilitate the decision making of solving clashes. This paper fills the 168 

gap and argues that the dependency between clashes should be used to decide the clash 169 

correction sequence to minimize the potential iterative adjustments for single clashes. 170 

We discuss how to define clash dependency and designed algorithms to search for the 171 

optimal correction sequence based on the dependency. This paper proposes a new 172 

perspective to solve clashes and presents how to use the information in BIM to refine 173 

clash management from a holistic perspective.  174 

3. Methodology  175 

The paper aims to analyze the dependency relations between clashes and based on the 176 

dependency structure to optimize clash correction sequence. Network theory is used in 177 

this paper to analyze the dependency relations between clashes because a network 178 

focuses on depicting relationships between objects rather than the properties of a single 179 

object. A network consists of nodes and relations [21]. This paper constructs a clash 180 

dependency network considering every clash as a node and the dependency 181 

relationships between clashes as edges. Dependency structure matrix (DSM) is widely 182 

used to represent dependent activities and analyze their sequence to decrease rework 183 

[22–24]. There are three types of relations between activities: dependent, 184 

interdependent, and independent, as shown in Figure 1. Independent relations are not 185 

discussed in this paper since they do not impact the clash correction sequence. In Figure 186 

1, each red point in the matrix means that correcting the clash located in the row location 187 

of the red point will impact the clash located in the column location of the red point. 188 

Therefore, in the matrix, super-diagonal elements indicate feedforward information and 189 

sub-diagonal elements are feedbacks. Feedforward means pre-activities will impact 190 

post-activities. Since when conducting post-activities, their input information (pre-191 

activities) has been fixed, the information processing needs of project teams will not 192 
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increase because of feedforward dependency. Therefore, it is acceptable in practice. 193 

However, feedbacks usually relate to reworks because it means post-activities will 194 

impact the pre-activities. Since pre-activities have been finished, changing the pre-195 

condition of the activity may cause the rework of it. Therefore, a reasonable sequence 196 

for dependent activities should have as less as sub-diagonal elements/feedbacks in 197 

DSM. For example, in Figure 1, the optimization direction of a sequence of four clashes 198 

is to change from left order (a) to right order (b). Each clash is considered as an activity 199 

in this example. 200 

 

Figure 1. Dependency structure matrix for clash sequence 201 

3.1 Clash Dependency Analysis 202 

The first step for optimizing clash correction sequence consists of identifying the 203 

dependency relations between clashes. Previous studies [16,19] did not fully discuss 204 

how to define clash dependency. If viewing a correcting clash as a design change, the 205 

methods to define change dependency are either manual or automatic. Manual methods 206 

use interviews or questionnaires to involve experts in the process to define change 207 

dependency [25,26]. However, a project can contain hundreds and thousands of clashes 208 

or even more, and the clash coordination time is limited. Therefore, it is difficult to use 209 

these methods to identify clash dependency in reality. Instead of manually detecting 210 

change dependency, previous studies discussed information in BIM models can be used 211 

to analyze component relations and the component relations can represent change 212 

dependency [27,28]. For example, “IfcRelConnectsElements” in Industry Foundation 213 

Classes (IFC) structure can be used to describe connect relations and changing one 214 

component may impact its connected component [28]. A clash is a kind of topology 215 

relation between building components in nature [16]. Lee and Kim [2] also argued that 216 
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clash coordination was complex because moving one building component may affect 217 

other components. Therefore, the clash dependency originates from component 218 

dependency to some degree. This paper decides to use automatic methods to extract 219 

component dependency information from BIM models and based on their relations to 220 

define clash dependency.  221 

Many studies discussed the relations between building components [29–34]. Our 222 

previous study filtered these relations under the clash management context and 223 

classified them into three categories: connection (CO), clash (CL), and impact (IM). 224 

We designed algorithms to automatically query these relations from BIM models and 225 

built a component dependency network (CDN) for improving clash detection [16]. To 226 

improve generality, these algorithms was designed based on IFC format. The elements 227 

in a CDN and the methods for querying the information are listed in Table 1. This paper 228 

used the CDN as a basis to analyze the dependency relations between clashes to 229 

construct the clash dependency network (CLDN) and discussed how the CLDN 230 

supports the clash resolution process and optimizes clash correction sequence. 231 

  232 
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Table 1. Element summary for a component dependency network [16] 233 

Elements Explanation Properties Query Method 

Node 

Each node 

represents a 

building 

component 

GlobalID, IFCType, System Type, 

Boundary Box Coordinates (minX, 

minY, minZ, maxX, maxY, 

maxZ), Component Size Property 

Ifc entities was used to query 

corresponding properties. 

Relations 

Clash 

Relation 

Represent hard 

clashes between 

building 

components 

Minimum move distance of two 

clash components to avoid the 

clash in six directions 

corresponding to the project world 

coordinate system 

(AMoveAxisXP, AMoveAxisYP, 

AMoveAxisZP, AMoveAxisXN, 

AMoveAxisYN, AMoveAxisZN; 

BMoveAxisXP, BMoveAxisYP, 

BMoveAxisZP, BMoveAxisXN, 

BMoveAxisYN, BMoveAxisZN;) 

Clash component id was extracted 

from clash detection software 

(e.g. Navisworks). Distance 

information was calculated by 

using primitive-based geometric 

methods. Bounding volume 

hierarchy (BVH) structure was 

used to improve computational 

performance 

Connect 

Relation 

Represent logical 

connection 

relations between 

building 

components 

No extra properties 

Connect relations was queried by 

using Ifc relationship entity, for 

example:IfcRelConnectsElements, 

IfcRelConnectsPortToElement, 

IfcPort, and IfcRelConnectsPorts 

Impact 

Relation 

Impact relations 

mean that moving 

one component 

along a direction 

in a certain 

distance, it will 

impact another 

component. 

Move direction (one of the six 

directions corresponding to project 

world coordinate system, AxisXP, 

AxisYP，AxisZP，AxisXN，

AxisYN，AxisZN), The minimum 

and maximum distances between 

the impacted component (BLimit, 

ULimit) and the clash component 

in the direction  

Impact relations were calculated 

by using primitive-based 

geometric methods. BVH 

structure was used to improve 

computational performance 

To construct clash dependency, this paper applied two assumptions. First, to solve a 234 
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clash, one should move the component with lower priority (low priority principle) and 235 

the system type is a key attribute to decide component priority [2,5]. For example, if 236 

there is a clash involving an HVAC duct and an electrical conduit, engineers prefer to 237 

move the conduit rather than the HVAC duct. Korman and Tatum [5] analyzed the 238 

system priority in MEP coordination, from high to low as follows: Dry HVAC, wet 239 

HVAC, gravity-driven plumbing system, process piping system, fire protection system, 240 

pressure-driven plumbing system, electrical system, control systems, and 241 

telephone/data communications. In our proposed method, we use this system priority 242 

as the default rank, but also provides users with the flexibility to change the rank based 243 

on their project characteristics.  244 

In addition, the clashing volume is another standard to decide the clash sequence. In 245 

practice, project participants prefer to solve clashes with a larger clashing volume first 246 

rather than some tiny clashes [10]. This paper uses the minimum distance that one 247 

object needs to be moved to avoid a clash in the six directions corresponding to the 248 

project world coordinate system to represent the clashing volume. Figure 2 is the 249 

graphic representation of the clashing volume. For Clash A in this figure, the clashing 250 

volume is “d”. As for the distance calculation, our previous study [16] has elaborated 251 

on the algorithm by using a bounding volume hierarchy structure based on the axis-252 

aligned bounding box. 253 

 254 

Figure 2. Clashing Volume Representation 255 

In fact, deciding clash sequence based on clashing volume has the following advantages:  256 

1) A clash with a large clashing volume usually needs a large space to fix it, which 257 
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may impact a lot of building components and trigger more uncertainties. Therefore, 258 

Solving the clash first facilitates to control uncertainties. 259 

2) Sometimes, solving clashes with a larger volume first can automatically solve 260 

clashes with a smaller volume. For example, in Figure 3, Clash 1 has a larger 261 

clashing volume than Clash 2. If the project team decides to move up the exhaust 262 

air duct to solve Clash 1, then Clash 2 is automatically solved.  263 

Therefore, the clashing volume is used to decide the clash sequence when the two 264 

clashes have the same system priority combination. 265 

 266 

Figure 3. Clashing volume comparison example 267 

Component Dependency Patterns for Two Clashes  268 

We analyze the component dependency patterns by summarizing clash dependency 269 

scenarios and the analysis unit is the relationship between two clashes (for example, 270 

Clash 1 and Clash 2). If the dependency relations between any two clashes are figured 271 

out, the whole dependency network among clashes can be constructed. In order to 272 

exhaustively list these scenarios, the paper divides nodes into two types: clash nodes 273 

(C) and non-clash nodes (NC). Clash nodes refer to clash components and non-clash 274 

nodes refer to other components that have no clash relations in the selected pattern. Two 275 

clashes involve three or four clash nodes1. Non-clash nodes are media for transferring 276 

the impact of clash changes; the number varies from zero to any number. However, 277 

project engineers will not allow change to excessively propagate and will attempt to 278 

localize change in a small scale. This is the common choice for clash correction based 279 

on the constraints from project cost and schedule. This paper analyzes dependency 280 

through one non-clash node. Relation class is denoted as R. Node class is denoted as N. 281 

The relations incident to a node are denoted as RN (The relations that relate a clash node 282 

 
1 There are situations that three or more building components will overlap at the same location. However, 
these situations are rare in practice. Therefore, this paper only discusses clashes that are overlapped by two 
components.  

Return Air Duct Exhaust Air Duct 

Supply Air Duct 
Clash1 

Clash2 

Clashing 

Volume 2 

Clashing 

Volume 1 
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are denoted as RC, and for a non-clash node as RNC). The relation between Node i and 283 

Node j is denoted as 𝑅𝑁𝑖−𝑁𝑗
. The cardinality of relations is denoted as 𝑁𝑢𝑚𝑅 and of 284 

nodes as 𝑁𝑢𝑚𝑁. A valid component dependency pattern needs to meet the following 285 

constraints:  286 

1) 𝑁 ∈ {𝐶, 𝑁𝐶} 287 

2) 𝑅 ∈ {𝐶𝑂, 𝐶𝐿, 𝐼𝑀} 288 

3) 𝑅𝐶 = 𝐶𝐿 ∪ {𝐶𝑂, 𝐼𝑀} 289 

4) 𝑅𝑁𝐶 = {𝐶𝑂, 𝐼𝑀} 290 

5) 𝑁𝑢𝑚𝑅𝑁𝑖−𝑁𝑗
∈ {0,1} 291 

6) 𝑁𝑢𝑚𝑅𝑁𝐶𝑖−𝐶
≥ 2 292 

7) 𝑁𝑢𝑚𝑅𝑁𝐶𝑖−𝐶𝑚
+ 𝑁𝑢𝑚𝑅𝑁𝐶𝑖−𝐶𝑛

< 2       𝑖𝑓 𝑁𝑢𝑚𝑅𝐶𝑛−𝐶𝑚
= 1  293 

Constraint 1 means that nodes have two types: clash nodes (C) and non-clash node 294 

(NC). Constraint 2 represents the three component dependency relations. Constraints 3 295 

and 4 require that a clash node at least has one clash relation in the pattern and a non-296 

clash node can only have connection or impact relations in the pattern. After cleaning 297 

out clashes between connected components [16], the identified three component 298 

relations are exclusive. Therefore, Constraint 5 requires that the number of relations 299 

between a certain node pair should be 1 or 0. Non-clash nodes serve as intermediate 300 

nodes for transferring changes between two clashes. Therefore, a non-clash node at 301 

least needs to link with two clash nodes (Constraint 6). Otherwise, it cannot transfer 302 

changes. In addition, if Node n and Node m are linked by a clash relation, the situation 303 

that one non-clash node connects with the two clash nodes is not considered because 304 

clash nodes have been directly linked (Constraint 7) and do not need other node to 305 

transfer changes between them. Table 2 summarizes all the valid component patterns in 306 

the situation containing three clash nodes, while Table 3 presents all the valid 307 

component patterns in the situation containing four clash nodes. Since Clash 1 and 308 

Clash 2 are interchangeable, the paper just discusses the situation in which Clash 2 309 

depends on Clash 1 or they are interdependent. The situation in which Clash 1 depends 310 

on Clash 2 can be defined by switching the location of them in these standards. 311 

Table 2. Clash dependency scenarios for three clash nodes 312 

Node Type Relation Type Graph Representation 

No. Of 

Clash 

No. Of 

Non-clash 

No. of 

Clashes 

No. of 

Connections 

No. of 

Impacts 

 Clash Node 

 Non-Clash Node 
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Nodes. Nodes. 

3 0 2 0 0 

 3a        

3 0 2 1 0 

 3b  

3 0 2 0 1 

 3c  

3 1 2 2 0 

  3d  

3 1 2 1 1 

 3e1  

 

 

 

 3e2  

3 1 2 0 2 

 3f  

 313 
Table 3. Clash dependency scenarios for four clash nodes 314 

Node Type Relation Type Graph Representation 

No. Of 

Clash 

Nodes. 

No. Of 

Non-clash 

Nodes. 

No. of 

Clashes 

No. of 

Connections 

No. of 

Impacts 

 Clash Node 

 Non-Clash Node 
 

4 0 2 1 0 

4a    

4 0 2 0 1 
4b  

Clash1 Clash2 

Node A Node B Node C 

Clash1 

Connect 

Clash2 

Node A 

Node B 

Node C 

Clash1 

Impact 

Clash2 

Node A 

Node B 

Node C 

Clash1 

Connect 

Clash2 

Node A 

Node B 

Node C 

Node D 

Connect 

Clash1 Clash2 

Node A 

Node B 

Node C 

Node D 

Connect Impact 

Clash1 Clash2 

Node A 

Node B 

Node C 

Node D 

Connect Impact 

Clash1 Clash2 

Node A 

Node B 

Node C 

Node D 

Impact1 Impact2 

Clash1 Connect 

Node A Node B Node C 

Clash2 

Node D 

Clash1 

Node A Node B Node C 

Clash2 

Node D 

Impact 
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4 0 2 2 0 

  

4c1 

 

 

4c2  

4 0 2 1 1 

4d1  

4d2  

4d3  

4d4  

4 0 2 0 2 

4e1  

4e2  

4 0 2 3 or 4 can be simplified into 4 edges 

4 1 2 2 0 

4f  

 

4 1 2 1 1 

4g1 

 

4g2 

 

4 1 2 0 2 

4h  

4 1 2 3-8 can be simplified into 4 edges 

 315 

Clash1 Connect 

Node B Node C 

Clash2 

Node D Node A 

Connect 

Clash1 Connect 

Node B Node C 

Clash2 

Node D Node A 

Connect 

Clash1 

Connect 

Node B Node C 

Clash2 

Node D Node A 

Impact 

Clash1 Connect 

Node B Node C 

Clash2 

Node D Node A 

Impact 

Clash1 

Connect 

Node B Node C 

Clash2 

Node D Node A 

Impact 

Clash1 Connect 

Node B Node C 

Clash2 

Node D Node A 

Impact 

Clash1 

Node B Node C 

Clash2 

Node D Node A 

Impact2 

Impact1 

Clash1 

Node B Node C 

Clash2 

Node D Node A 

Impact2 

Impact1 

Clash1 

Node B Node C 

Clash2 

Node D Node A 

Connect 

Node E 

Connect 

Clash1 

Node B Node C 

Clash2 

Node D Node A Node E 

Impact Connect 

Clash1 

Node B Node C 

Clash2 

Node D Node A Node E 

Impact Connect 

Clash1 

Node B Node C 

Clash2 

Node D Node A Node E 

Impact2 Impact1 
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Clash Dependency Relations based on Component Dependency Patterns 316 

After enumerating the component dependency patterns, the clash dependency relations 317 

are analyzed based on different system priority combinations and the clashing volume 318 

difference. In the last section, 21 component patterns were discussed. In fact, some 319 

complex patterns can be viewed as a combination of some simple patterns, as shown in 320 

Table 4. For example, 3d is the combination of 3a or 3b. If Component A has a higher 321 

priority than Component B, then for Clash 1, changing Component B is a better choice 322 

based on the priority principle, which means Clash 1 and Clash 2 will generate relations 323 

through the shared component (Component B). This is equal to 3a, in which the two 324 

clashes generate relations based on Component B. Otherwise, if Component B has a 325 

higher priority than Component A, the clash dependency is transferred through 326 

connection relations, which is equal to 3b. 327 

Table 4. Equivalent simple component dependency patterns 328 

Complex Component Dependency Pattern Equivalent Simple Component Dependency Pattern 

3d 3a, 3b 

4c2 4a 

4d2 4a, 4b 

4e1, 4e2 4b 

4d2 is the combination of 4a and 4b. 4c2 can be viewed as two 4a. 4e1 and 4e2 are two 329 

4b. In addition, some patterns are the same with regards to system priority combinations 330 

because connected components have the same system priority, as shown in Table 5. 331 

Therefore, 21 patterns are simplified into 6 patterns: 3a, 3b, 3c, 3f, 4b, and 4h   332 

Table 5. Equivalent component dependency pattern pairs 333 

Component Dependency Pattern Equivalent Component Dependency pattern 

4a, 4f 3a 

4c1 3b 

4d1, 3e1,3e2, 4d2, 4d3, 4d4 3c 

4g2, 4g1 4b 

Pattern 3a has two clashes sharing a common component (Node B), and the dependency 334 

relations are shown in Table 6. The priority of Component A larger than the priority of 335 

Component B means that Component A has higher system priority. Taking Situation 5 336 

as an example, in the three objects, Component A has the highest priority and 337 
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Component C has the lowest priority. According to the low priority principle, when 338 

correcting Clash 1, Component B should be changed, which will impact the status of 339 

Clash 2 because the location of Node C will be affected by the location of Node B. 340 

Therefore, Clash 2 depends on Clash 1. When the system priority is not enough to 341 

decide dependency relations, the clashing volume is further used to decide the 342 

dependency. For example, in Situation 2, these components have the same priority. 343 

When the clashing volume of Clash 1 is larger than Clash 2, based on clashing volume 344 

principle, solving Clash 1 and then Clash 2 is a better choice. Therefore, Clash 2 345 

depends on Clash 1.  346 

Table 6. Clash relation analysis-Pattern 3a 347 

Graph 

representation 

 

Priority Component A Component B Component C Clashing Volume  Clash1→Clash2 

Situation 1 

Priority A= Priority B = Priority C 

Clash1=Clash2 Interdependent 

Situation 2 Clash1>Clash2 Dependent 

Situation 3 

Priority A>Priority B && Priority C>Priority B 

Clash1=Clash2 Interdependent 

Situation 4 Clash1>Clash2 Dependent 

Situation 5 
Priority A≥Prority B≥Prority C  

(excluding Situation 1& Situation 2) 

No need to consider 
Dependent 

Situation 6 Others No Need to consider Independent 

Pattern 3b has two clashes sharing a common component (Node B), and the other two 348 

components connected, as shown in Table 7, which is a supplement to Pattern 3a. In 349 

Pattern 3a, if Component B has the highest priority, it belongs to an independent 350 

situation. In fact, the two clashes will impact each other when Component A and 351 

Component C are connected. Since Component A and Component C are connected, 352 

they have the same priority from the system perspective. If the clashing volume of 353 

Clash 1 is larger, Clash 2 depends on Clash 1. If the clashing volume are the same, they 354 

are interdependent.  355 

Table 7. Clash relation analysis- Pattern 3b 356 

Graph 

representation 

 

Priority Component A, B, C Clashing Volume  Clash1→Clash2 

Clash1 Clash2 

Node A Node B Node C 

Clash1 

Connect 

Clash2 

Node A 

Node B 

Node C 
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Situation 1 
Priority A=Priority C<Priority B 

Clash1=Clash2 Interdependent 

Situation 2 Clash1>Clash2 Dependent 

Pattern 3c has two clashes sharing a common component (Node B), and the other two 357 

components impact each other, as shown in Table 8. It is also a supplement to Pattern 358 

3a, similar to Pattern 3b, which discusses the situation when Component B has the 359 

highest system priority. This pattern relates to impact relations. When discussing impact 360 

relations, the moving direction and whether there is enough room for moving in this 361 

direction need be discussed. First, the situation is only considered when the direction 362 

of the impact relations is the most promising direction, which is decided by the clash 363 

relation. This is because if the impact direction is not the most promising one, it will be 364 

hard to find reasons to move in that direction. In this paper, the most promising direction 365 

for a component in a clash is defined as the direction that the component needs to move 366 

the minimum distance to avoid the clash. For example, in Figure 4, the most promising 367 

direction for Component A is the negative Z axis.  368 

 369 

Figure 4. Promising direction for a component 370 

Whether enough room exists is also important for impact relations. Checking enough 371 

room for a component consists of comparing the required distance (d1) for avoiding 372 

clashes and the distance (d2) with its impacted components in the same direction. If d2 373 

is smaller than d1, this paper defined that enough room does not exist. In pattern 3c, if 374 

the most promising direction of Component A is also the opposite promising direction 375 

for Component C (Figure 5a), checking enough room needs to compare the distance 376 

between A and C in the direction and the sum of the distance for Component A moving 377 

along the direction to avoid Clash 1 and Component C moving along the opposite 378 

direction to avoid Clash 2. Otherwise, checking enough room is to compare the distance 379 

between A and C and the distance required for Component A in its most promising 380 

Z_Positive 

Z_Negative 
X_Positive 

X_Negative 

Component A 
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direction (Figure 5b). If enough room exists, the two clashes are independent. 381 

Otherwise, they may impact each other. If the system priority of A and C are the same 382 

and their clashing volumes are the same, they are interdependent. If the system priority 383 

of A is higher than C or the clashing volume of Clash 1 is larger than Clash 2, then 384 

Clash 2 depends on Clash 1.  385 

Table 8. Clash relation analysis-Pattern 3c 386 

Graph 

representation 

 

                

Pre-condition 
Priority B > Priority A && 

Priority B > Priority C 
Enough room Clashing Volume Clash1→Clash2 

Situation 1 
Priority A = Priority C 

No Clash1=Clash2 Interdependent 

Situation 2 No Clash1>Clash2 Dependent 

Situation 3 Priority A > Priority C No 
No need to 

consider 
Dependent 

 387 

  

a b 

Figure 5. Checking for enough room situations 388 

Pattern 3f has two clashes sharing a common component (Node B), while the other two 389 

components impact the same object. It is also a supplement to Pattern 3a; in which 390 

Component A and Component C are independent (when Component B has the highest 391 

priority). In this pattern, the direction of impact relations satisfies two conditions, 392 

otherwise the non-clash component cannot transfer changes between the two clashes:  393 

1) The direction of Impact Relation 1 is the opposite direction of Impact Relation 394 

2. 395 

Clash1 

Impact 

Clash2 

Node A 

Node B 

Node C 
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2) The direction of Impact Relation 1 is the most promising direction for 396 

Component A. 397 

For checking enough room, if the direction of Impact Relation 2 is the most promising 398 

direction for Component C, the required distance for the two clashes are the minimum 399 

distance required by Component A adding the minimum distance required by 400 

Component B. Otherwise, the minimum distance required by Component A compared 401 

with the distance between Component A and Component D in the direction of Impact 402 

1 is used to check enough room. The different situations for pattern 3f are shown in 403 

Table 9. 404 

Table 9. Clash relation analysis-Pattern 3f 405 

Graph 

representation 

 

                

Pre-condition 
Priority B > Priority A && Priority 

B > Priority C 
Enough Room 

Clashing Volume 
Clash1→Clash2 

Situation 1 
Priority A = Priority D = Priority C 

No Clash1=Clash2 Interdependent 

Situation 2 No Clash1>Clash2 Dependent 

Situation 3 
Priority A ≥ Priority D ≥ Priority 

C (excluding Situation 1) 
No 

No need to 

consider 
Dependent 

Situation 4 Priority A > Priority D && Priority 

C> Priority D&& Object C has not 

enough room 

No Clash1=Clash2 Interdependent 

Situation 5 No Clash1>Clash2 Dependent 

Pattern 4b contains two clashes that do not share any components, but they impact each 406 

other. The methods used to check enough room and define the impact direction is equal 407 

to Pattern 3c. The dependency relations are shown in Table 10. 408 

Table 10. Clash relation analysis-Pattern 4b 409 

Graph 

representation 

 

                

Pre-condition Not Enough Room Clashing Volume Clash1→Clash2 

Situation 1 
Priority A= Priority B = Priority C= Priority D 

Clash1=Clash2 Interdependent 

Situation 2 Clash1>Clash2 Dependent 

Situation 3 Priority A>Priority B = Priority C<Priority C  Clash1=Clash2 Interdependent 

Clash1 Clash2 

Node A 

Node B 

Node C 

Node D 

Impact1 Impact2 

Clash1 

Node A Node B Node C 

Clash2 

Node D 

Impact 
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Situation 4 Clash1>Clash2 Dependent 

Situation 5 
Priority A ≥ Priority B ≥ Priority C (excluding 

Situation 1, 2) 
No need to consider Dependent 

Pattern 4h contains two clashes, which impact the same objects. The methods used to 410 

check enough room and defined the impact direction requirements is equal to Pattern 411 

3f. The detailed dependency relations are shown in Table 11.  412 

Table 11. Clash relation analysis- Pattern 4h 413 

Graph 

representation 

 

Priority Object A, B, C, D, E 
Enough 

Room Clashing Volume 
Clash1→Clash2 

Situation 1 
Priority A ≥ Priority B > Priority C 

≥ Priority D 
No 

No need to 

consider 
Dependent 

Situation 2 Priority A ≥ Priority B ≥ Priority 

C& Priority E ≥ Priority D≥

 Priority C 

No Clash1=Clash2 Interdependent 

Situation 3 No Clash1>Clash2 Dependent 

Clash Dependency Relation Query  414 

This paper uses a Neo4j graph database management system to save component 415 

dependency networks because database systems based on a graph data model are 416 

better suited for querying graph data, compared with relational databases [35–37]. 417 

Neo4j version 3.3.5 is used in this project and Cypher is used as the query language to 418 

query the above component dependency patterns. For example, to query pattern 3a, 419 

the following query sentence is used: “Match (n1)-[r1:ClashRelationship]-(n2)-420 

[r2:ClashRelationship]-(n3) Unwind[r1.n2MoveAxisZP, r1.n2MoveAxisXP, 421 

r1.n2MoveAxisYP, r1.n2MoveAxisZN, r1.n2MoveAxisXN, r1.n2MoveAxisYN] AS 422 

clashVolume1 Unwind[r2.n2MoveAxisZP, r2.n2MoveAxisXP, r2.n2MoveAxisYP, 423 

r2.n2MoveAxisZN, r2.n2MoveAxisXN,r2.n2MoveAxisYN] AS clashVolume1 return 424 

n1.SystemPriority, n2.SystemPriority, n3.SystemPriority, r1.ID As ID1, r2.ID As ID2, 425 

min(clashVolume1) as CV1, min(clashVolume2) as CV2”. This query returns the 426 

system priorities of involved three components and the clashing volumes information. 427 

Then the clash dependency relation between the two clashes is decided based 428 

component priorities and clashing volumes as discussed above (Table 6). 429 

3.2 Clash Correction Sequence Optimization 430 

The clash dependency network is built using the above pattern analysis (Table 6-Table 431 

11). This network is transferred to a graph where each clash is viewed as a vertex. If 432 

Clash1 

Node B Node C 

Clash2 

Node D Node A Node E 

Impact2 Impact1 
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two clashes are interdependent, they are connected by bidirectional edges, as shown in 433 

Figure 6a. If they are dependent, they are connected by directional edges, as shown in 434 

Figure 6b. We use the directed clash graph as an input to optimize clash correction 435 

sequence.  436 

a  b  

Figure 6. Clash dependency network unit 437 

Essentially, optimizing the sequence of activities to minimize feedback translates to a 438 

minimum feedback arc set problem (Min-FAS) in graph theory. Min-FAS consists of 439 

deleting a minimum number of edges to make a directed graph acyclic. If a directed 440 

graph is acyclic (Directed Acyclic Graph-DAG), many algorithms, such as Kahn’s 441 

algorithm, can be used to calculate a topological sort for the DAG in linear time [38]. 442 

A topological sort is a linear order of vertices in a DAG to achieve a sorted order such 443 

that for every edge (U, V) from Vertex U to Vertex V, U comes before V in the order, 444 

which means that there is no feedback in this order. Therefore, minimizing feedback is 445 

equal to finding Min-FAS. However, Min-FAS is a non-deterministic polynomial 446 

harness problem (NP-hard), so the computation cost is high. Many studies have 447 

designed algorithms to solve this problem, as summarized in Table 1 of the Appendix. 448 

In the table, V is the number of nodes in the graph, and E is the number of edges. 449 

These algorithms contain three types: approximation methods, heuristic methods, and 450 

exact methods. The best-known approximation ratio cost is proportional to 451 

O(logVloglogV) [39]. The approximation methods are usually the fastest in the three 452 

types, among which the greedy method can finish in linear time and the KwikSort 453 

method has a cost proportional to O(VlogV) (V is the number of nodes in the graph). 454 

However, this method cannot guarantee an optimal solution. In fact, most of the time, 455 

they cannot achieve an optimal solution. Local search methods start from a candidate 456 

solution, iteratively adding perturbations to the solution and moving from this solution 457 

to one of the neighboring solutions and using evaluation function to choose among 458 

neighboring solutions to realize the continuous improvements. The advantage of this 459 

method is that it usually generates an acceptable solution in limited time and the 460 

solution is better than approximation methods because it usually uses approximation 461 

methods to generate the initial solution. However, the optimal solution still cannot be 462 

Clash 1 Clash 2 

Interdependent 

Clash 1 Clash 2 

Dependent 
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guaranteed by using this method. Exact methods require an exhaustive search to some 463 

degree and they usually adopt some methods to prune the search by eliminating non-464 

promising search space in order to expedite the search speed. Therefore, this method 465 

can find an optimal solution, but the computation cost is very high, especially when the 466 

size of the problem is large. 467 

In order to find an approach to acquire an optimal solution and control search time, this 468 

paper combines a greedy method, linear programming and iterative local search 469 

methods to identify min-FAS. Since min-FAS is an NP-hard problem, conducting pre-470 

processing to decrease the size of the problem is important for improving the 471 

performance of the algorithms. First, disjointed sets of the given graph are detected by 472 

the union-find algorithm [40]. In the context of this paper, disjointed sets mean that 473 

there are no dependency relations between these sets, so they can be scheduled in 474 

parallel. For each connected set, strongly connected components (SCC) are calculated 475 

by Korsaraju’s algorithm with O(V+E) complexity [41] (V is the number of nodes in 476 

the graph, and E is the number of edges). Using each SCC as input is the common pre-477 

processing method for the FAS problem [42]. SCC is a directed graph in which every 478 

node is reachable from any other nodes in the graph. If the number of SCCs is equal to 479 

the number of vertices, which means that no circle exists in this set, then Kahn’s 480 

algorithm is used to calculate a topological sort [43]. Otherwise, the algorithm checks 481 

whether the vertices in an SCC are fully connected in both directions. If they are fully 482 

connected, all vertices are equivalent, and randomly choosing a sequence is optimum. 483 

Otherwise, the algorithm runs the min-FAS algorithm in the SCC. After deciding the 484 

optimal sequence for each SCC, these SCCs can be represented as one node, which 485 

makes the whole graph acyclic. The overall procedure is shown in Figure 7. 486 
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  487 

Figure 7. Sequence optimization procedure 488 

The min-FAS algorithm in Figure 7 includes four steps: 489 

Step 1: use a greedy method to generate an initial solution. A feasible solution contains 490 

two parts: 1) a vertex order; 2) a feedback arc set, noted as set E. The greedy method is 491 

organized as: order vertices by the value of its outdegree minus its indegree in 492 

decreasing order, and if the values are the same, order vertices with larger outdegree 493 

first. Add edges that their starting vertices come after their ending node in Set E.  494 

Step 2: when the running time is less than a predefined cut-off time, randomly select an 495 

edge from set E for removal ( removed_edge (U, V) )and select all edges that relate 496 

with Vertex U and Vertex V in a certain distance (the distance of the edges incident to 497 

Vertex U or Vertex V (except edge (U, V) ) is one) from E, add these edges (add-back 498 

edges noted as E_add) back to the graph. For example, in Figure 7, if edge (D, B) is 499 

selected, and the distance is one. Edge (D, C) is a feedback arc and its distance to edge 500 

(D, B) is one. Therefore, edge (D, B) and edge (D, C) are added back to the graph.  501 

Step 3: use vertices from Vertex U to Vertex V to constitute a subgraph Gsub, 502 

recalculate SCCs, and if the number of E_add is less than the number of SCCs with 503 

more than one node, run a linear program to generate the optimal order of nodes in each 504 

SCC of Gsub and calculate sub-removed edge set Esub. We explain the formulation of 505 

Calculate Strongly 

Connected Components 

for each disjointed set  

Detect Disjointed Set 

Calculate Topological 

Sorting by Kahn’s 

algorithm  

Number of 

SCC=number 

of vertex 

No 
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Run min-FAS 

algorithm in each SCC 

to decide sub-sequence 
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Represent each SCC 

into one node 
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the linear program below. If the size of Esub is smaller than the number of E_add, the 506 

algorithm updates the candidate solutions. Otherwise, keep the original solution. To 507 

avoid the algorithm stuck in the subproblem, we set a local cut-off time. If in local cut-508 

off time, no better solution is found, the algorithm also keeps the original solution.  509 

LpsolveDotNet driver for C# was used to solve the linear programming problem [44]. 510 

In Figure 8, if edge (D, B) and edge (D, C) are added back, the subgraph contains Vertex 511 

B, Vertex C, and Vertex D, and edge (B, C), edge (D, C) and edge (D, B).  512 

 513 

Figure 8. Strongly connected component sequence 514 

Step 4: repeat Step 2 and Step 3 until the solution has no improvement more than pre-515 

defined times, increase the perturbance distance, and repeat Step 2 and Step 3. The 516 

algorithm stops when the running time exceeds the pre-defined cut-off time, or the 517 

iteration exceeds the pre-defined steps.  518 

The linear programing problem is constructed as follows: 519 

Objective: min ∑ 𝑏(𝑢, 𝑣)𝑒(𝑢,𝑣)∈𝐺  520 

Constraints:  521 

𝑑𝑖𝑗 ∈ {0,1}, 𝑖, 𝑗 ∈ [1, 𝑉] (1) 

∑ 𝑑𝑖

𝑉

𝑗=1

𝑗 = 1; ∑ 𝑑𝑖

𝑉

𝑖=1

𝑗 = 1 (2) 

∀𝑒(𝑢, 𝑣) ∈ 𝐺, ∑ 𝑗 ∗ 𝑑𝑣𝑗

𝑉

𝑗=1

− ∑ 𝑗 ∗ 𝑑𝑢𝑗

𝑉

𝑗=1

+ 𝑉 ∗ 𝑏(𝑢, 𝑣)  ≥ 0 (3) 

𝑏(𝑢, 𝑣) ∈ {0,1} (4) 

The design assigns to each vertex a number ranging from 1 to V (number of nodes). d𝑖𝑗 522 

represents whether Vertex i is ordered in jth position. ∑ j ∗ d𝑢𝑗V
j=1  represents the order of 523 

Vertex 𝑢. ∑ 𝑑𝑖𝑗V
j=1 = 1 and ∑ 𝑑𝑖𝑗V

i=1 = 1 are used to constrain that each vertex has a 524 

different order. For each edge e (𝑢, 𝑣), if the order of Vertex 𝑣 is smaller than Vertex 525 

𝑢, b(𝑢, 𝑣) should be 1 based on the Constraint (3). The objective is to minimize the 526 

sum of b(𝑢, 𝑣). 527 

The pseudo code for calculating minimum feedback arc set is shown in Appendix 1 528 

(Algorithm 1-Algorithm3). 529 

A B C D E 
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To validate the robustness of the proposed approach, We use the graphs provided 530 

in [45] as the test graphs because these graphs have known min-FAS. The properties 531 

of these graphs are shown in Table 12, and the plots of these graphs are shown in 532 

Appendix 1 (Figure 1-Figure 10). We used a laptop computer with an Intel-core i7-533 

8750H CPU with 2.21 GHz, and 16.0GB RAM as the testing platform. The results in 534 

Table 13 showed that in a given time (the maximum time is 2 seconds), the proposed 535 

approach identified the optimal solution in all test graphs. Even though large 536 

construction projects can have tens of thousands of clashes, normally these clashes 537 

will not belong to the same connected set, and they can be solved set-by-set. For 538 

example, in our validated case, we have 191 clashes, the largest connected set only 539 

contains 22 nodes (the black circle in Figure 11). Therefore, even though we tested 540 

our approach in graphs with up to 109 nodes, it has the capability to calculate the 541 

optimal sequence for a larger clash dependency graph. 542 

Table 12. Basic information of test graphs [45] 543 

ID Nodes Edges SCCs (num of nodes>1) Optimum 

1 10 90 1 45 

2 12 21 1 2 

3 15 35 3 6 

4 19 31 1 6 

5 25 32 1 3 

6 29 37 1 5 

7 30 42 1 3 

8 41 61 1 5 

9 50 79 1 8 

10 109 163 1 12 

 544 

Table 13. Test Results 545 

ID  Cut-off (s) Local-cutoff (s) Calculate_Result Optimal 

1 0.1 0.05 45 Yes 

2 0.1 0.05 2 Yes 

3 0.1 0.05 6 Yes 

4 0.1 0.05 6 Yes 
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5 0.5 0.3 3 Yes 

6 0.5 0.3 5 Yes 

7 1 0.5 3 Yes 

8 2 0.5 5 Yes 

9 2 0.5 8 Yes 

10 2 1 12 Yes 

 546 

4. Case Validation 547 

4.1 Project Introduction 548 

We validated the approach presented so far on an actual construction project. The test 549 

building is a five-story student residence hall covering 4700-square-meter located in a 550 

public university and accommodated 285 beds. The project spanned from Dec 2014 to 551 

Aug 2018. Navisworks was used in this project for design coordination and clash 552 

detection. Navisworks is a 3D design review tool, which is owned by Autodesk [46]. 553 

The proposed method was applied in the coordination of MEP disciplines of the project. 554 

To avoid detecting too many tiny clashes that bother the clash coordination process, the 555 

project set clash tolerance value as 50mm. According to [7] analysis, around 90% 556 

critical clashes have a size larger than 50mm. Under this setting, the project team 557 

detected 221 MEP clashes by using Navisworks in a federated MEP model in the 558 

detailed design phase. Before analyzing clash dependency relations, we preprocessed 559 

the automatically detected clash result by cleaning out irrelevant clashes based on the 560 

four scenarios identified in [16], resulting in 191 relevant clashes.  561 

The system classification for these clashes is shown in Figure 9. C# in visual studio 562 

2017 with .Net framework 4.6.1 was used to extract component dependency 563 

information from IFC files by using xBIM library [47], and the dependency information 564 

(three types of dependency relations: Clash, Connect, Impact relations, listed in Table 565 

1) was saved in a Neo4j database for querying clash dependency relations. Figure 10 566 

displays a screenshot of the user interface to set system priority. System type is 567 

extracted from the properties of building components, which were saved in Neo4j and 568 

the default rank follows previous studies [5]. Users have the flexibility to change the 569 

system priority by selecting and changing the order, and they can also set two systems 570 

to have the same priority (see how two systems in the dropdown boxes are set to the 571 
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same priority in Figure 10). After deciding system priority, the rank information is 572 

saved into the Neo4j database. The “Run sequence algorithm” button implements 573 

querying component patterns from the database, constructs a clash dependency network, 574 

and searches an optimal clash correction sequence. In the validated case, the system 575 

priority was kept using the default order.  576 

   577 

Figure 9. Clash system summary 578 

  579 

Figure 10. User interface for setting system priority 580 

Figure 11 is the clash dependency network built based on the building component 581 

dependency network. In the network, each vertex represents one clash and the vertex 582 

ID is the corresponding order in Navisworks. The color and size of vertices are decided 583 

by outdegree of a node. Green and small represents low outdegree. The network 584 

contains 191 nodes and 281 edges. 58 vertices are isolated. Isolated clashes have no 585 

dependency relations with other clashes which can be solved in parallel. 25 disjointed 586 

sets exist among the remaining 133 connected nodes, which consist of 24 strongly 587 

connected components. These disjointed sets can be scheduled in parallel. These 588 
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dependency relations are reasonable from the project perspective. For example, in the 589 

network, Clash 10 depends on Clash 79 and their geometric representations are shown 590 

in Figure 12a. Clash 10 exists between a return air duct and a lighting panel. Clash 79 591 

consists of the intersection between the return air duct and an exhaust air duct. In 592 

practice, the mechanical system has a higher priority than the electrical system. 593 

Therefore, the location of the lighting panel should be decided after fixing the location 594 

of the return air duct. In the graph, it is shown as an edge from Clash 79 to Clash 10. 595 

Another interdependent example is shown in SCC1 and their geometric representations 596 

are shown in Figure 12b. These clashes exist between a cable tray with an electrical 597 

cabinet. In this model, the cabinet consists of seven sets. Navisworks detected seven 598 

clashes. However, these clashes are equivalent. Therefore, in the graph, they are 599 

interdependent and fully connected. 600 

 

 Figure 11. Clash dependency network for the test case 

 601 
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a b 

Figure12. Dependency relationship example 602 

4.2 Clash Correction Sequence Optimization Result 603 

The clash dependency network was used as the input for investigating an optimal 604 

sequence by using min-FAS algorithm. The algorithm always found an optimal solution 605 

in the test case (the optimum solution was captured by using linear programming 606 

without time constraints) because the size of each SCC is not very big and the average 607 

time to find optimum was around 3000ms in 50 times of test. To compare the result, we 608 

constructed a Dependency Structure Matrix following the sequence detected by 609 

Navisworks, as shown in Figure 13a and a DSM following the optimized sequence, as 610 

shown in Figure 13b. To represent the feedback arc information, the parallel 611 

information was not shown in the DSM graphs. In the DSM graphs, red points mean 612 

dependency relations and yellow means that the two clashes are independent. Obviously, 613 

the two graphs show that the original sequence has more sub-diagonal relations than 614 

the optimized sequence. In fact, the feedback arc number decreased from 180 to 150. 615 

One example is already listed in Figure 11 and Figure 12a. If the original sequence from 616 

Navisworks is followed, Clash 10 will be scheduled before Clash 79. However, in the 617 

optimal sequence, Clash 10 depends on Clash 79 and Clash 79 is scheduled before 618 

Clash 10. The optimized sequence conforms better with project practice.  619 

Another finding in the graphs is that in the original sequence, the dependency relations 620 

are decentralized, which hinders project engineers to notice the dependency between 621 

clashes and consider the dependency to optimize the clash resolutions. In the optimized 622 

sequence, dependent clashes are closely scheduled because of the disjointed set and 623 

strongly connected components calculations, which provides opportunities for project 624 
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engineers to solve these related clashes from a holistic view rather than focusing on a 625 

single clash.  626 

Figure 13a. DSM for Naviswork sequence  

Figure 13b. DSM for optimized sequnece 

 627 
5. Discussion  628 

Clash detection has been viewed as one of the most valued applications of BIM [6]. 629 

The adoption of BIM has changed the clash detection practice from visually detecting 630 

clashes by sequentially overlapping 2D drawings, to automatically detecting multi-631 

disciplinary clashes in a federated model. Identifying problems is the first step, and how 632 

to use the information embedded in BIM models to support the clash correction process 633 

is also important. Clashes are interrelated, as moving one building component to solve 634 

one clash may affect other components and cause ripple effects [2]. Even though 635 

sequentially building models and managing clashes can control ripple effects, under 636 

time pressure, parallel design and simultaneously detecting clashes by integrating 637 

multi-disciplinary together is common [7,10–12]. We argue that the information 638 

embedded in BIM models help to construct a hybrid method that integrates parallel and 639 

sequential coordination strategies and decrease information uncertainty to improve 640 

clash management.  641 

Multi-disciplinary clashes are detected from a federated model. To organize clash 642 

correction sequence and control ripple effects, we analyzed the dependency relations 643 

between clashes from a component level and conducted a clash dependency network. 644 
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Using the clash network as an input, the paper identified disjointed sets. Since there 645 

were no dependency relations among these sets, they could be parallelly solved. For 646 

clashes in each jointed set, we argued that dependency should be distinguished as 647 

feedback dependency and feedforward dependency. Feedback dependency means that 648 

that post-corrected clashes will impact pre-corrected clashes and may cause iterative 649 

adjustments and reworks because of information uncertainty, while feedforward 650 

dependency is acceptable. Then, the focus tended to minimize feedback dependency. 651 

Information inscribed in BIM models helps to refine the clash management strategies 652 

to combine parallel and sequential methods, and graph theory provides a method to link 653 

clashes and conduct the specific analysis.  654 

BIM has been discussed over many years; instead of acting as a database to store 655 

information and a visualization tool to facilitate communication, more analyses and 656 

optimizations can be conducted based on BIM information to support the project 657 

decision-making process. Dossick and Neff [12] argued that BIM helps project teams 658 

to tightly couple technologically by integrating models, while these teams are still 659 

divided organizationally. BIM models can be used to analyze information dependency 660 

relations and support organization collaboration. We clarified the dependency relations 661 

between clashes, which helps to organize organizational coordination. For example, as 662 

for feedforward dependency, one-way confirmation is enough, while for 663 

interdependency and unavoidable feedback dependency, organizing meetings that 664 

integrated related disciplines is a better choice. This paper is one example of using BIM 665 

information to support refined management, but more analyses can be conduct based 666 

on BIM data to fully exploit the benefits of BIM.  667 

6. Conclusions and Limitations 668 

Clashes are interrelated and the dependency relations between clashes complicate the 669 

clash coordination process and may cause ripple effects when correcting one clash [2]. 670 

From the information processing perspective, a well-organized clash correction 671 

sequence helps to decrease information uncertainty and control change propagation, 672 

which improve coordination efficiency. This paper proposed to use graph theory to 673 

optimize the clash correction sequence and figured out that the sequence optimization 674 

problem was equivalent to the minimum feedback arc set problem from a graph 675 

perspective. To construct a clash graph, we discussed how to identify clash dependency 676 
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relations by analyzing different spatial scenarios, system properties of clash 677 

components and clashing volumes. A min-FAS algorithm integrated approximation 678 

method, local search, and a linear program were designed to find the optimal sequence. 679 

Before running the algorithm, several pre-processing methods, such as calculating 680 

disjoined set, strongly connected components, and fully connected SCC, were adopted 681 

to decrease the graph size and improve the performance of the algorithm. The proposed 682 

method was validated in a project and the results showed that the number of feedback 683 

arcs of the optimized sequence had a significant decrease compared with the clash 684 

sequence detected by the clash detection software (Navisworks in the validation case). 685 

In addition, the optimized sequence automatically grouped dependent clashes together, 686 

which provides an opportunity for project participants to discuss clash solutions by 687 

considering these related clashes together. This paper concluded that using graph theory 688 

and BIM information helped to clarify clash dependency relations and optimize clash 689 

correction sequence by mixing parallel and sequential methods. 690 

A large amount of information is embedded in BIM models, which has not been fully 691 

used to support design or construction activities. This paper proposed how to use the 692 

spatial and system properties of clash components combined with graph theory to 693 

facilitate the clash correction process and control ripple effects caused by clash 694 

dependency. The limitation of the paper includes two levels. From the research itself, 695 

the paper used an automatic method to define clash dependency, which made it possible 696 

to be applied in practice. However, manual methods (interviews or survey experts) are 697 

able to conduct a more comprehensive assessment about clash dependency by 698 

considering various context, for example, production schedule and installation 699 

difficulty. How to combine the advantages of the two methods can be further discussed. 700 

In addition, this paper focused on MEP clashes, even though MEP coordination is the 701 

most challenging part for complex projects, clashes between MEP disciplines and 702 

structural components are also important and other non-MEP clashes also need to be 703 

solved. The method to identify dependency among MEP clashes and among non-MEP 704 

clashes can be different. For example, solving clashes between structural components 705 

(e.g. slabs or walls), sometimes, needs to consider the locations of preformed holes. 706 

How to discuss these openings to identify clash dependency to further improve the 707 

generality of the proposed methods is worthy of further discussions. Then, as for 708 
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implementing in construction projects, the paper mainly discussed clash correction 709 

sequence optimization from a technical perspective. However, to implement the 710 

sequence, it is needed an organizational support and a well-organized multi-disciplinary 711 

collaboration process. It can be imagined that the sequence can be implemented more 712 

easily in a project environment with project teams integrated and working together. 713 

Therefore, how to integrate the method in the design coordination practice is worthy of 714 

further study. Furthermore, in practice, some clashes may have a fixed sequence 715 

because of organizational or management requirements. How to change the current 716 

system to allow parts of fixed sequences can be discussed further. One potential solution 717 

is to set weights to the edges between clashes. Therefore, how to capture requirements 718 

to identify unchangeable clash sequence, set weights to clash dependent relations, and 719 

change the proposed method to involve edge weights need to be answered in the future. 720 

Third, the clash graph constructed in this paper is still a static graph that analyzes the 721 

clash dependency relations in one federated model. However, in many projects, clash 722 

detection is periodically conducted with a project going. In the process, parts of old 723 

clashes can be solved, and new clashes can be detected. How to deal with the dynamics 724 

of design and how to continually update the clash graph in an effective way can be a 725 

future research direction.726 
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Appendix  

Table 1. Algorithm Summary for Min-FAS (V is the number of vertices and E is the number of edges) 

Method Type Author Description Time Complexity & Performance Method Comments 

Approximation 

method 

Eades et al. [48] 

Greedy method: order nodes by outdegree-

inDegree (ELS) or abs(outdegree-inDegree) (ELS-

abs), and add the feedback arc into FAS  

Time complexity: O(V+E)   

Upper bound E/2-V/6 

Advantage: very fast, finish 

in linear time, easy to 

implement 

Disadvantage: usually can 

not find optimal solutions 

Even et al.[39] 
Using sphere-growing technique to acquire 

approximated optimal solution 

Time complexity: polynomial time 

Approximation ratio is O(log V 

loglogV) 

Advantage: the bound is 

tighter than Greedy method 

Disadvantage: optimal 

solutions are not guaranteed 

Ailon et al. [49] 

KwikSort: sorting the order of notes in Graph 

based on quicksort methods and delete feedback 

arc 

Time complexity: O(nlog(n)) 

Approximation ratio is 3 

Advantage: fast and easy to 

implement 

Disadvantage: usually cannot 

find optimal solutions 

Heuristic/Local 

search methods 

Saab [42] 

Divide & Conquer+ stochastic evolution/dynamic 

cluster: Divide & Conquer is to divide graph G into 

subgraphs G1 and G2 and order nodes in G1 before 

nodes in G2. FAS(G)=FAS(G1) U FAS(G2) U {i 

→ j :i ∈ G2 and j ∈ G1}. stochastic 

evolution/dynamic cluster are used to find optimal 

bisection of graph 

The time and performance depend 

on iterative times, and some initial 

iterative parameters 

Advantage: solutions can 

keep improving compared 

approximation methods 

Disadvantage: optimal 

solutions are not guaranteed, 
Meier et al. [50] 

Genetic algorithm: conduct position-based 

crossover and shift mutation to guarantee feasible 

solutions in these phases 
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Brandenburg 

and Hanauer  

[51] 

KwikSort heuristic methods-KwikSort with 

randomly choose initial pivot 
 

 

Exact methods 

Baharev et al. 

[45] 
Linear programming 

The constrain is O(n3) or the 

number of simple circles in the 

graph, which can be Ω(2n) 

Exact answer 

Advantage: Optimal solution 

can be found 

Disadvantage: time 

consuming 
Hecht [52] Dynamic programming 

Time Complexity: When FAS 

possess Bellman principle. O(2m|E|4 

log(|V |) m ≤ |E| − |V | + 1 

Exact answer 
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Figure 1. Test Graph 1[45] 

 

Figure 2. Test Graph 2[45] 
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Figure 3. Test Graph 3[45] 924 
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Figure 4. Test Graph 4[45] 926 
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Figure 5. Test Graph 5[45] Figure 6. Test Graph 6[45] 

  

Figure 7. Test Graph 7[45] Figure 8. Test Graph 8[45] 
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Figure 9. Test Graph 9 [45] Figure 10. Test Graph 10[45] 
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