
1

Automatic Clash Correction Sequence Optimization Using a Clash Dependency 1

Network 2

Yuqing Hu1, Daniel Castro-Lacouture2, Charles M. Eastman3, and Shamkant B. 3

Navathe4 4

1 Ph.D. Student, School of Building Construction, Georgia Institute of Technology, 5

Atlanta, GA 30332 (corresponding author). email: yhu390@gatech.edu 6

2 Professor, School of Building Construction, Georgia Institute of Technology, 7

Atlanta, GA 30332. email: daniel.castro@design.gatech.edu 8

3 Professor, School of Architecture, Georgia Institute of Technology, 245 4th St NW, 9

Atlanta, GA 30332; e-mail: eastman@design.gatech.edu 10

4 Professor, College of Computing, Georgia Institute of Technology, 801 Atlantic Dr., 11

NW, Atlanta, GA 30332; e-mail: sham@cc.gatech.edu 12

Abstract 13

Building information modeling has demonstrated its advantage to support design 14

coordination, specifically for automatic clash detection. Detecting clashes helps us 15

identify problems, but the process for solving these problems is still manual and time-16

consuming. This paper proposes using network theory to improve clash resolution by 17

optimizing the clash correction sequence. Building systems are often interdependent of 18

each other, and the dependency relations between building components propagate the 19

impacts of clashes. Ignoring the dependency may cause new clashes when solving a 20

clash or cause iterative adjustments for a single building component. However, a well-21

organized clash correction sequence can help reduce these issues. Therefore, it is 22

necessary to holistically discuss the clash correction sequence by considering the 23

dependence between clashes. This paper analyzes clash dependencies based on building 24

component dependency relations. We design an optimization algorithm for determining 25

the optimal sequence based on the clash dependency network to minimize feedback 26

dependency, which may cause design rework on a project in project practice. The 27

proposed method is validated on a real building project. After comparing with the 28

natural sequence detected by commercial software, we find that the optimized sequence 29

significantly reduces feedback and automatically groups dependent clashes, which 30

facilitates design coordination. 31

Keywords: Clash Correction Sequence, Clash Dependency Network, Minimum 32

2

Feedback Arc Set, Heuristic Algorithm 33

1. Introduction 34

Design coordination is a problem-solving process, which involved experts from 35

multiple disciplines iteratively identify and solve problems to make sure that a design 36

meets its expected functional, economic, and aesthetic requirements [1–3]. With the 37

increase of building complexity, the design coordination process becomes more 38

challenging, specifically among mechanical, electrical, and plumbing (MEP) 39

disciplines. Previous studies argued that the MEP coordination was one of the most 40

challenging tasks for project delivery because it needs to coordinate the location of a 41

large number of interrelated components in a limited space to avoid interferences [2–42

4]. The cost of MEP coordination is significant, and according to some estimates, it 43

accounts for 6% of MEP cost, while the MEP cost can exceed 50% of the total 44

construction cost on heavily equipped buildings, such as hospitals and laboratories [2,3]. 45

Therefore, effective MEP coordination is important for project success. 46

In a traditional setting, MEP coordination is manually conducted by specialists from 47

multiple disciplines. They sequentially overlap their transparent 2D drawings on a 48

lighting table to identify component clashes by vision and discuss clash resolutions [5]. 49

Because of the limitation of human vision, the clash detection process is time-50

consuming. With the application of building information modeling (BIM), automatic 51

clash detection has been widely used in construction projects [6]. BIM can integrate 52

multi-disciplinary models and compute clashes in a federated model based on 53

geometric information of building components [7]. After detecting clashes, BIM 54

coordinators propose these clashes at design coordination meetings for solution 55

discussion. The coordination process can be conducted sequentially or parallelly among 56

multiple disciplines depending on how to build and integrate models to detect clashes. 57

A previous study compared sequential and parallel strategies based on a case study and 58

argued that the parallel method by simultaneously generating multi-disciplinary models 59

and detecting clashes after these models were finished, was less efficient for 60

coordination because clashes were interrelated and simultaneously dealing with many 61

dependency issues was difficult to control potential ripple effects, which increased 62

coordination cycles [2]. Sequential developing models and solving clashes seems more 63

efficient in [2], but the case context focused on building models based on 2D drawings. 64

3

Nowadays, many projects adopt model-oriented design methods or 2D and 3D mixed 65

methods. Because of the time pressure from the manufacturing or construction 66

processes, it is difficult to wait for one discipline to fix its model and then develop the 67

model of another discipline. In addition, the adoption of integrated delivery methods 68

and fast-track processes also promotes parallel design [8,9]. To fully unleash the BIM 69

potential, clashes are periodically detected in a federated model that integrates multi-70

disciplinary models [10–12]. Multi-disciplinary clashes are detected simultaneously. In 71

this scenario, it is important to know how to identify the dependency relations between 72

these clashes and how to organize clash correction sequences to control ripple effects 73

and avoid iterative adjustments. 74

Previous discussions about BIM-enabled clash correction focused more on the 75

individual clash level to identify clash responsible trades or clash solutions without 76

considering the interaction between clashes and their nearby building components 77

[4,13], which may cause iterative adjustments and increase coordination cycle [2]. 78

Therefore, instead of discussing clash one-by-one, this paper considers clashes from a 79

holistic viewpoint by analyzing the dependency between clashes from a component 80

level and uses the dependency to optimize the clash correction sequence to minimize 81

iterative adjustments. This paper discusses hard clashes among MEP disciplines 82

because the definition of hard clash is accurate and unambiguous. The paper is 83

organized as follows: first, clash dependency scenarios are discussed through analyzing 84

the spatial relations among building components. Then an algorithm is designed for 85

optimizing clash corrections. Finally, the proposed method is validated in a real project 86

and the optimized sequence is compared with the original sequence detected by BIM 87

commercial software to show the feasibility and benefit of the proposed method. 88

2. Related works 89

One important task of design coordination is clash management, which includes clash 90

detection and clash correction processes [10]. Traditionally, the two processes are 91

integrated to some degree. Multi-disciplinary specialists detect clashes by sequentially 92

overlapping their transparent 2D drawings on a lighting table and discuss how to solve 93

these clashes after detecting them [5]. With the application of BIM, clash detection and 94

correction processes tend to be separated. BIM coordinators integrate models from 95

multiple disciplines and detect clashes by BIM software. Then, these clashes are 96

4

proposed in the design coordination meeting and specialists discuss corresponding 97

solutions. Many studies have been conducted to further improve clash detection 98

accuracy by reorganizing BIM models [14], improving clash detection algorithms [15], 99

or using machine learning methods to filter out important clashes [10]. 100

Comparing with the clash detection process, the attention and the automatic level of the 101

clash correction process are much lower. Several research teams have contributed to 102

this field. Wang and Leite [13] pointed out that determining responsible trade is a key 103

issue when correcting clashes. They used machine-learning methods, including 104

decision tree, a rule-based model, and Bayesian method, to train historical data and 105

built a model that can automatically determine the responsible trade for one clash by 106

given required attributes. However, the accuracy of the model (around 70%) still needs 107

to be improved. Korman et al. [4] discussed how to deal with MEP interference from a 108

knowledge management perspective. Based on design criteria and intent, construction, 109

and operations and maintenance knowledge, they used a reasoning structure consisting 110

of model-based reasoning (MBR) and heuristic reasoning to support decision-making 111

in dealing with MEP interference. However, they still focused on a single clash and 112

ignored the dependency between clashes. 113

Building components are interrelated and the clashes between these components are 114

not isolated [2,16]. From the information processing perspective, an effective 115

coordination system needs the matching of the information processing needs and the 116

information processing abilities, while information needs are generated from 117

information uncertainty [17]. The dependency among building components and among 118

clashes adds information uncertainty, which increase information processing needs 119

[2,17]. Some studies tried to decrease information uncertainty to control information 120

processing needs. Radke et al. [18] mentioned that existing clashes should be solved 121

one-by-one, and the adjustment of each clash should be controlled in a “sticky area” to 122

avoid generate new clashes. Sticky areas were certain locations that objects preferred, 123

which were manually defined in this paper. However, they did not elaborate on how to 124

derive these areas and the size of these areas. In addition, they assumed that for any 125

clashes, the valid space for a clash always existed without impacting nearby objects. 126

This assumption cannot be supported in real projects. In an MEP intensive area, it may 127

be difficult to find a valid space. Lee and Kim [2] discussed coordination strategies 128

5

based on a case study, and they argued that sequentially generating MEP models by 129

system priorities and detecting clashes can control information uncertainty, which 130

improved coordination efficiency. However, in this sequential strategy, low priority 131

disciplines (for example, electrical system) were modeled until the models of high 132

priority disciplines (for example, HVAC system) were completed. In many situations, 133

the sequential strategy is difficult to conduct because of time pressure. Parallel design 134

is common in many projects and these projects detect clashes in a federated model that 135

integrate multi-discipline [7,10–12]. 136

The above research tried to eliminate the impact between dependent clashes in space 137

by controlling change areas or in time by sequentially coordinating clashes. In their 138

discussions, the dependency is a concept that lack of specific content and measurements. 139

Instead of ignoring dependency or viewing dependency as a negative concept, some 140

studies try to clarify the dependency. Wang and Leite [19] mentioned that clash 141

management should not only focus on clash attributes, but also need to consider clash 142

context, for example, the location of a clash, its spatial relations with nearby objects, 143

and the available space. However, they did not discuss how to represent the information 144

specifically and how to automatically query the context information. Hu et al. [16] 145

classified the dependency between building components into three types: connect, clash, 146

and impact, and discussed how to query this information from models. They used the 147

dependency relations to improve the clash detection process without discussing how 148

this information can support the clash resolution process. 149

Correcting clashes is the process of change management in nature. Mokhtar et al. [20] 150

depicted a scenario of one space function change. In the scenario, the space change will 151

cause an HVAC duct size change, a beam size change, a wall finishing change, a 152

luminaire type change, and so on. These changes were interrelated. Figuring out their 153

dependency relations and organizing change sequence based on these relations helped 154

to decrease information uncertainty and avoid applying the same change multiple times. 155

This work provides hints for our research. Building components are interdependent and 156

clashes are interrelated through these components. it is imperative to discuss clashes 157

from a holistic view and decide clash correction sequence based on the dependency 158

relations between clashes. 159

In summary, previous research rarely discussed the dependency between clashes, and 160

6

they usually solve clashes one-by-one [4] [13]. For a few studies that have realized that 161

the dependency between building systems would impact clash management, one group 162

tried to eliminate the dependency by limiting spatial scopes of clash change [18] or 163

applying sequential design coordination strategies [2]. These methods are difficult to 164

implement in construction projects, especially when projects are complex or have tight 165

schedules. Another group of studies discussed clash context [19] and dependency 166

relations between building components [16], but they did not elaborate on how to use 167

the information to facilitate the decision making of solving clashes. This paper fills the 168

gap and argues that the dependency between clashes should be used to decide the clash 169

correction sequence to minimize the potential iterative adjustments for single clashes. 170

We discuss how to define clash dependency and designed algorithms to search for the 171

optimal correction sequence based on the dependency. This paper proposes a new 172

perspective to solve clashes and presents how to use the information in BIM to refine 173

clash management from a holistic perspective. 174

3. Methodology 175

The paper aims to analyze the dependency relations between clashes and based on the 176

dependency structure to optimize clash correction sequence. Network theory is used in 177

this paper to analyze the dependency relations between clashes because a network 178

focuses on depicting relationships between objects rather than the properties of a single 179

object. A network consists of nodes and relations [21]. This paper constructs a clash 180

dependency network considering every clash as a node and the dependency 181

relationships between clashes as edges. Dependency structure matrix (DSM) is widely 182

used to represent dependent activities and analyze their sequence to decrease rework 183

[22–24]. There are three types of relations between activities: dependent, 184

interdependent, and independent, as shown in Figure 1. Independent relations are not 185

discussed in this paper since they do not impact the clash correction sequence. In Figure 186

1, each red point in the matrix means that correcting the clash located in the row location 187

of the red point will impact the clash located in the column location of the red point. 188

Therefore, in the matrix, super-diagonal elements indicate feedforward information and 189

sub-diagonal elements are feedbacks. Feedforward means pre-activities will impact 190

post-activities. Since when conducting post-activities, their input information (pre-191

activities) has been fixed, the information processing needs of project teams will not 192

7

increase because of feedforward dependency. Therefore, it is acceptable in practice. 193

However, feedbacks usually relate to reworks because it means post-activities will 194

impact the pre-activities. Since pre-activities have been finished, changing the pre-195

condition of the activity may cause the rework of it. Therefore, a reasonable sequence 196

for dependent activities should have as less as sub-diagonal elements/feedbacks in 197

DSM. For example, in Figure 1, the optimization direction of a sequence of four clashes 198

is to change from left order (a) to right order (b). Each clash is considered as an activity 199

in this example. 200

Figure 1. Dependency structure matrix for clash sequence 201

3.1 Clash Dependency Analysis 202

The first step for optimizing clash correction sequence consists of identifying the 203

dependency relations between clashes. Previous studies [16,19] did not fully discuss 204

how to define clash dependency. If viewing a correcting clash as a design change, the 205

methods to define change dependency are either manual or automatic. Manual methods 206

use interviews or questionnaires to involve experts in the process to define change 207

dependency [25,26]. However, a project can contain hundreds and thousands of clashes 208

or even more, and the clash coordination time is limited. Therefore, it is difficult to use 209

these methods to identify clash dependency in reality. Instead of manually detecting 210

change dependency, previous studies discussed information in BIM models can be used 211

to analyze component relations and the component relations can represent change 212

dependency [27,28]. For example, “IfcRelConnectsElements” in Industry Foundation 213

Classes (IFC) structure can be used to describe connect relations and changing one 214

component may impact its connected component [28]. A clash is a kind of topology 215

relation between building components in nature [16]. Lee and Kim [2] also argued that 216

8

clash coordination was complex because moving one building component may affect 217

other components. Therefore, the clash dependency originates from component 218

dependency to some degree. This paper decides to use automatic methods to extract 219

component dependency information from BIM models and based on their relations to 220

define clash dependency. 221

Many studies discussed the relations between building components [29–34]. Our 222

previous study filtered these relations under the clash management context and 223

classified them into three categories: connection (CO), clash (CL), and impact (IM). 224

We designed algorithms to automatically query these relations from BIM models and 225

built a component dependency network (CDN) for improving clash detection [16]. To 226

improve generality, these algorithms was designed based on IFC format. The elements 227

in a CDN and the methods for querying the information are listed in Table 1. This paper 228

used the CDN as a basis to analyze the dependency relations between clashes to 229

construct the clash dependency network (CLDN) and discussed how the CLDN 230

supports the clash resolution process and optimizes clash correction sequence. 231

 232

9

Table 1. Element summary for a component dependency network [16] 233

Elements Explanation Properties Query Method

Node

Each node

represents a

building

component

GlobalID, IFCType, System Type,

Boundary Box Coordinates (minX,

minY, minZ, maxX, maxY,

maxZ), Component Size Property

Ifc entities was used to query

corresponding properties.

Relations

Clash

Relation

Represent hard

clashes between

building

components

Minimum move distance of two

clash components to avoid the

clash in six directions

corresponding to the project world

coordinate system

(AMoveAxisXP, AMoveAxisYP,

AMoveAxisZP, AMoveAxisXN,

AMoveAxisYN, AMoveAxisZN;

BMoveAxisXP, BMoveAxisYP,

BMoveAxisZP, BMoveAxisXN,

BMoveAxisYN, BMoveAxisZN;)

Clash component id was extracted

from clash detection software

(e.g. Navisworks). Distance

information was calculated by

using primitive-based geometric

methods. Bounding volume

hierarchy (BVH) structure was

used to improve computational

performance

Connect

Relation

Represent logical

connection

relations between

building

components

No extra properties

Connect relations was queried by

using Ifc relationship entity, for

example:IfcRelConnectsElements,

IfcRelConnectsPortToElement,

IfcPort, and IfcRelConnectsPorts

Impact

Relation

Impact relations

mean that moving

one component

along a direction

in a certain

distance, it will

impact another

component.

Move direction (one of the six

directions corresponding to project

world coordinate system, AxisXP,

AxisYP，AxisZP，AxisXN，

AxisYN，AxisZN), The minimum

and maximum distances between

the impacted component (BLimit,

ULimit) and the clash component

in the direction

Impact relations were calculated

by using primitive-based

geometric methods. BVH

structure was used to improve

computational performance

To construct clash dependency, this paper applied two assumptions. First, to solve a 234

10

clash, one should move the component with lower priority (low priority principle) and 235

the system type is a key attribute to decide component priority [2,5]. For example, if 236

there is a clash involving an HVAC duct and an electrical conduit, engineers prefer to 237

move the conduit rather than the HVAC duct. Korman and Tatum [5] analyzed the 238

system priority in MEP coordination, from high to low as follows: Dry HVAC, wet 239

HVAC, gravity-driven plumbing system, process piping system, fire protection system, 240

pressure-driven plumbing system, electrical system, control systems, and 241

telephone/data communications. In our proposed method, we use this system priority 242

as the default rank, but also provides users with the flexibility to change the rank based 243

on their project characteristics. 244

In addition, the clashing volume is another standard to decide the clash sequence. In 245

practice, project participants prefer to solve clashes with a larger clashing volume first 246

rather than some tiny clashes [10]. This paper uses the minimum distance that one 247

object needs to be moved to avoid a clash in the six directions corresponding to the 248

project world coordinate system to represent the clashing volume. Figure 2 is the 249

graphic representation of the clashing volume. For Clash A in this figure, the clashing 250

volume is “d”. As for the distance calculation, our previous study [16] has elaborated 251

on the algorithm by using a bounding volume hierarchy structure based on the axis-252

aligned bounding box. 253

 254

Figure 2. Clashing Volume Representation 255

In fact, deciding clash sequence based on clashing volume has the following advantages: 256

1) A clash with a large clashing volume usually needs a large space to fix it, which 257

11

may impact a lot of building components and trigger more uncertainties. Therefore, 258

Solving the clash first facilitates to control uncertainties. 259

2) Sometimes, solving clashes with a larger volume first can automatically solve 260

clashes with a smaller volume. For example, in Figure 3, Clash 1 has a larger 261

clashing volume than Clash 2. If the project team decides to move up the exhaust 262

air duct to solve Clash 1, then Clash 2 is automatically solved. 263

Therefore, the clashing volume is used to decide the clash sequence when the two 264

clashes have the same system priority combination. 265

 266

Figure 3. Clashing volume comparison example 267

Component Dependency Patterns for Two Clashes 268

We analyze the component dependency patterns by summarizing clash dependency 269

scenarios and the analysis unit is the relationship between two clashes (for example, 270

Clash 1 and Clash 2). If the dependency relations between any two clashes are figured 271

out, the whole dependency network among clashes can be constructed. In order to 272

exhaustively list these scenarios, the paper divides nodes into two types: clash nodes 273

(C) and non-clash nodes (NC). Clash nodes refer to clash components and non-clash 274

nodes refer to other components that have no clash relations in the selected pattern. Two 275

clashes involve three or four clash nodes1. Non-clash nodes are media for transferring 276

the impact of clash changes; the number varies from zero to any number. However, 277

project engineers will not allow change to excessively propagate and will attempt to 278

localize change in a small scale. This is the common choice for clash correction based 279

on the constraints from project cost and schedule. This paper analyzes dependency 280

through one non-clash node. Relation class is denoted as R. Node class is denoted as N. 281

The relations incident to a node are denoted as RN (The relations that relate a clash node 282

1 There are situations that three or more building components will overlap at the same location. However,
these situations are rare in practice. Therefore, this paper only discusses clashes that are overlapped by two
components.

Return Air Duct Exhaust Air Duct

Supply Air Duct
Clash1

Clash2

Clashing

Volume 2

Clashing

Volume 1

12

are denoted as RC, and for a non-clash node as RNC). The relation between Node i and 283

Node j is denoted as 𝑅𝑁𝑖−𝑁𝑗
. The cardinality of relations is denoted as 𝑁𝑢𝑚𝑅 and of 284

nodes as 𝑁𝑢𝑚𝑁. A valid component dependency pattern needs to meet the following 285

constraints: 286

1) 𝑁 ∈ {𝐶, 𝑁𝐶} 287

2) 𝑅 ∈ {𝐶𝑂, 𝐶𝐿, 𝐼𝑀} 288

3) 𝑅𝐶 = 𝐶𝐿 ∪ {𝐶𝑂, 𝐼𝑀} 289

4) 𝑅𝑁𝐶 = {𝐶𝑂, 𝐼𝑀} 290

5) 𝑁𝑢𝑚𝑅𝑁𝑖−𝑁𝑗
∈ {0,1} 291

6) 𝑁𝑢𝑚𝑅𝑁𝐶𝑖−𝐶
≥ 2 292

7) 𝑁𝑢𝑚𝑅𝑁𝐶𝑖−𝐶𝑚
+ 𝑁𝑢𝑚𝑅𝑁𝐶𝑖−𝐶𝑛

< 2 𝑖𝑓 𝑁𝑢𝑚𝑅𝐶𝑛−𝐶𝑚
= 1 293

Constraint 1 means that nodes have two types: clash nodes (C) and non-clash node 294

(NC). Constraint 2 represents the three component dependency relations. Constraints 3 295

and 4 require that a clash node at least has one clash relation in the pattern and a non-296

clash node can only have connection or impact relations in the pattern. After cleaning 297

out clashes between connected components [16], the identified three component 298

relations are exclusive. Therefore, Constraint 5 requires that the number of relations 299

between a certain node pair should be 1 or 0. Non-clash nodes serve as intermediate 300

nodes for transferring changes between two clashes. Therefore, a non-clash node at 301

least needs to link with two clash nodes (Constraint 6). Otherwise, it cannot transfer 302

changes. In addition, if Node n and Node m are linked by a clash relation, the situation 303

that one non-clash node connects with the two clash nodes is not considered because 304

clash nodes have been directly linked (Constraint 7) and do not need other node to 305

transfer changes between them. Table 2 summarizes all the valid component patterns in 306

the situation containing three clash nodes, while Table 3 presents all the valid 307

component patterns in the situation containing four clash nodes. Since Clash 1 and 308

Clash 2 are interchangeable, the paper just discusses the situation in which Clash 2 309

depends on Clash 1 or they are interdependent. The situation in which Clash 1 depends 310

on Clash 2 can be defined by switching the location of them in these standards. 311

Table 2. Clash dependency scenarios for three clash nodes 312

Node Type Relation Type Graph Representation

No. Of

Clash

No. Of

Non-clash

No. of

Clashes

No. of

Connections

No. of

Impacts

 Clash Node

 Non-Clash Node

13

Nodes. Nodes.

3 0 2 0 0

 3a

3 0 2 1 0

 3b

3 0 2 0 1

 3c

3 1 2 2 0

 3d

3 1 2 1 1

 3e1

 3e2

3 1 2 0 2

 3f

 313
Table 3. Clash dependency scenarios for four clash nodes 314

Node Type Relation Type Graph Representation

No. Of

Clash

Nodes.

No. Of

Non-clash

Nodes.

No. of

Clashes

No. of

Connections

No. of

Impacts

 Clash Node

 Non-Clash Node

4 0 2 1 0

4a

4 0 2 0 1
4b

Clash1 Clash2

Node A Node B Node C

Clash1

Connect

Clash2

Node A

Node B

Node C

Clash1

Impact

Clash2

Node A

Node B

Node C

Clash1

Connect

Clash2

Node A

Node B

Node C

Node D

Connect

Clash1 Clash2

Node A

Node B

Node C

Node D

Connect Impact

Clash1 Clash2

Node A

Node B

Node C

Node D

Connect Impact

Clash1 Clash2

Node A

Node B

Node C

Node D

Impact1 Impact2

Clash1 Connect

Node A Node B Node C

Clash2

Node D

Clash1

Node A Node B Node C

Clash2

Node D

Impact

14

4 0 2 2 0

4c1

4c2

4 0 2 1 1

4d1

4d2

4d3

4d4

4 0 2 0 2

4e1

4e2

4 0 2 3 or 4 can be simplified into 4 edges

4 1 2 2 0

4f

4 1 2 1 1

4g1

4g2

4 1 2 0 2

4h

4 1 2 3-8 can be simplified into 4 edges

 315

Clash1 Connect

Node B Node C

Clash2

Node D Node A

Connect

Clash1 Connect

Node B Node C

Clash2

Node D Node A

Connect

Clash1

Connect

Node B Node C

Clash2

Node D Node A

Impact

Clash1 Connect

Node B Node C

Clash2

Node D Node A

Impact

Clash1

Connect

Node B Node C

Clash2

Node D Node A

Impact

Clash1 Connect

Node B Node C

Clash2

Node D Node A

Impact

Clash1

Node B Node C

Clash2

Node D Node A

Impact2

Impact1

Clash1

Node B Node C

Clash2

Node D Node A

Impact2

Impact1

Clash1

Node B Node C

Clash2

Node D Node A

Connect

Node E

Connect

Clash1

Node B Node C

Clash2

Node D Node A Node E

Impact Connect

Clash1

Node B Node C

Clash2

Node D Node A Node E

Impact Connect

Clash1

Node B Node C

Clash2

Node D Node A Node E

Impact2 Impact1

15

Clash Dependency Relations based on Component Dependency Patterns 316

After enumerating the component dependency patterns, the clash dependency relations 317

are analyzed based on different system priority combinations and the clashing volume 318

difference. In the last section, 21 component patterns were discussed. In fact, some 319

complex patterns can be viewed as a combination of some simple patterns, as shown in 320

Table 4. For example, 3d is the combination of 3a or 3b. If Component A has a higher 321

priority than Component B, then for Clash 1, changing Component B is a better choice 322

based on the priority principle, which means Clash 1 and Clash 2 will generate relations 323

through the shared component (Component B). This is equal to 3a, in which the two 324

clashes generate relations based on Component B. Otherwise, if Component B has a 325

higher priority than Component A, the clash dependency is transferred through 326

connection relations, which is equal to 3b. 327

Table 4. Equivalent simple component dependency patterns 328

Complex Component Dependency Pattern Equivalent Simple Component Dependency Pattern

3d 3a, 3b

4c2 4a

4d2 4a, 4b

4e1, 4e2 4b

4d2 is the combination of 4a and 4b. 4c2 can be viewed as two 4a. 4e1 and 4e2 are two 329

4b. In addition, some patterns are the same with regards to system priority combinations 330

because connected components have the same system priority, as shown in Table 5. 331

Therefore, 21 patterns are simplified into 6 patterns: 3a, 3b, 3c, 3f, 4b, and 4h 332

Table 5. Equivalent component dependency pattern pairs 333

Component Dependency Pattern Equivalent Component Dependency pattern

4a, 4f 3a

4c1 3b

4d1, 3e1,3e2, 4d2, 4d3, 4d4 3c

4g2, 4g1 4b

Pattern 3a has two clashes sharing a common component (Node B), and the dependency 334

relations are shown in Table 6. The priority of Component A larger than the priority of 335

Component B means that Component A has higher system priority. Taking Situation 5 336

as an example, in the three objects, Component A has the highest priority and 337

16

Component C has the lowest priority. According to the low priority principle, when 338

correcting Clash 1, Component B should be changed, which will impact the status of 339

Clash 2 because the location of Node C will be affected by the location of Node B. 340

Therefore, Clash 2 depends on Clash 1. When the system priority is not enough to 341

decide dependency relations, the clashing volume is further used to decide the 342

dependency. For example, in Situation 2, these components have the same priority. 343

When the clashing volume of Clash 1 is larger than Clash 2, based on clashing volume 344

principle, solving Clash 1 and then Clash 2 is a better choice. Therefore, Clash 2 345

depends on Clash 1. 346

Table 6. Clash relation analysis-Pattern 3a 347

Graph

representation

Priority Component A Component B Component C Clashing Volume Clash1→Clash2

Situation 1

Priority A= Priority B = Priority C

Clash1=Clash2 Interdependent

Situation 2 Clash1>Clash2 Dependent

Situation 3

Priority A>Priority B && Priority C>Priority B

Clash1=Clash2 Interdependent

Situation 4 Clash1>Clash2 Dependent

Situation 5
Priority A≥Prority B≥Prority C

(excluding Situation 1& Situation 2)

No need to consider
Dependent

Situation 6 Others No Need to consider Independent

Pattern 3b has two clashes sharing a common component (Node B), and the other two 348

components connected, as shown in Table 7, which is a supplement to Pattern 3a. In 349

Pattern 3a, if Component B has the highest priority, it belongs to an independent 350

situation. In fact, the two clashes will impact each other when Component A and 351

Component C are connected. Since Component A and Component C are connected, 352

they have the same priority from the system perspective. If the clashing volume of 353

Clash 1 is larger, Clash 2 depends on Clash 1. If the clashing volume are the same, they 354

are interdependent. 355

Table 7. Clash relation analysis- Pattern 3b 356

Graph

representation

Priority Component A, B, C Clashing Volume Clash1→Clash2

Clash1 Clash2

Node A Node B Node C

Clash1

Connect

Clash2

Node A

Node B

Node C

17

Situation 1
Priority A=Priority C<Priority B

Clash1=Clash2 Interdependent

Situation 2 Clash1>Clash2 Dependent

Pattern 3c has two clashes sharing a common component (Node B), and the other two 357

components impact each other, as shown in Table 8. It is also a supplement to Pattern 358

3a, similar to Pattern 3b, which discusses the situation when Component B has the 359

highest system priority. This pattern relates to impact relations. When discussing impact 360

relations, the moving direction and whether there is enough room for moving in this 361

direction need be discussed. First, the situation is only considered when the direction 362

of the impact relations is the most promising direction, which is decided by the clash 363

relation. This is because if the impact direction is not the most promising one, it will be 364

hard to find reasons to move in that direction. In this paper, the most promising direction 365

for a component in a clash is defined as the direction that the component needs to move 366

the minimum distance to avoid the clash. For example, in Figure 4, the most promising 367

direction for Component A is the negative Z axis. 368

 369

Figure 4. Promising direction for a component 370

Whether enough room exists is also important for impact relations. Checking enough 371

room for a component consists of comparing the required distance (d1) for avoiding 372

clashes and the distance (d2) with its impacted components in the same direction. If d2 373

is smaller than d1, this paper defined that enough room does not exist. In pattern 3c, if 374

the most promising direction of Component A is also the opposite promising direction 375

for Component C (Figure 5a), checking enough room needs to compare the distance 376

between A and C in the direction and the sum of the distance for Component A moving 377

along the direction to avoid Clash 1 and Component C moving along the opposite 378

direction to avoid Clash 2. Otherwise, checking enough room is to compare the distance 379

between A and C and the distance required for Component A in its most promising 380

Z_Positive

Z_Negative
X_Positive

X_Negative

Component A

18

direction (Figure 5b). If enough room exists, the two clashes are independent. 381

Otherwise, they may impact each other. If the system priority of A and C are the same 382

and their clashing volumes are the same, they are interdependent. If the system priority 383

of A is higher than C or the clashing volume of Clash 1 is larger than Clash 2, then 384

Clash 2 depends on Clash 1. 385

Table 8. Clash relation analysis-Pattern 3c 386

Graph

representation

Pre-condition
Priority B > Priority A &&

Priority B > Priority C
Enough room Clashing Volume Clash1→Clash2

Situation 1
Priority A = Priority C

No Clash1=Clash2 Interdependent

Situation 2 No Clash1>Clash2 Dependent

Situation 3 Priority A > Priority C No
No need to

consider
Dependent

 387

a b

Figure 5. Checking for enough room situations 388

Pattern 3f has two clashes sharing a common component (Node B), while the other two 389

components impact the same object. It is also a supplement to Pattern 3a; in which 390

Component A and Component C are independent (when Component B has the highest 391

priority). In this pattern, the direction of impact relations satisfies two conditions, 392

otherwise the non-clash component cannot transfer changes between the two clashes: 393

1) The direction of Impact Relation 1 is the opposite direction of Impact Relation 394

2. 395

Clash1

Impact

Clash2

Node A

Node B

Node C

19

2) The direction of Impact Relation 1 is the most promising direction for 396

Component A. 397

For checking enough room, if the direction of Impact Relation 2 is the most promising 398

direction for Component C, the required distance for the two clashes are the minimum 399

distance required by Component A adding the minimum distance required by 400

Component B. Otherwise, the minimum distance required by Component A compared 401

with the distance between Component A and Component D in the direction of Impact 402

1 is used to check enough room. The different situations for pattern 3f are shown in 403

Table 9. 404

Table 9. Clash relation analysis-Pattern 3f 405

Graph

representation

Pre-condition
Priority B > Priority A && Priority

B > Priority C
Enough Room

Clashing Volume
Clash1→Clash2

Situation 1
Priority A = Priority D = Priority C

No Clash1=Clash2 Interdependent

Situation 2 No Clash1>Clash2 Dependent

Situation 3
Priority A ≥ Priority D ≥ Priority

C (excluding Situation 1)
No

No need to

consider
Dependent

Situation 4 Priority A > Priority D && Priority

C> Priority D&& Object C has not

enough room

No Clash1=Clash2 Interdependent

Situation 5 No Clash1>Clash2 Dependent

Pattern 4b contains two clashes that do not share any components, but they impact each 406

other. The methods used to check enough room and define the impact direction is equal 407

to Pattern 3c. The dependency relations are shown in Table 10. 408

Table 10. Clash relation analysis-Pattern 4b 409

Graph

representation

Pre-condition Not Enough Room Clashing Volume Clash1→Clash2

Situation 1
Priority A= Priority B = Priority C= Priority D

Clash1=Clash2 Interdependent

Situation 2 Clash1>Clash2 Dependent

Situation 3 Priority A>Priority B = Priority C<Priority C Clash1=Clash2 Interdependent

Clash1 Clash2

Node A

Node B

Node C

Node D

Impact1 Impact2

Clash1

Node A Node B Node C

Clash2

Node D

Impact

20

Situation 4 Clash1>Clash2 Dependent

Situation 5
Priority A ≥ Priority B ≥ Priority C (excluding

Situation 1, 2)
No need to consider Dependent

Pattern 4h contains two clashes, which impact the same objects. The methods used to 410

check enough room and defined the impact direction requirements is equal to Pattern 411

3f. The detailed dependency relations are shown in Table 11. 412

Table 11. Clash relation analysis- Pattern 4h 413

Graph

representation

Priority Object A, B, C, D, E
Enough

Room Clashing Volume
Clash1→Clash2

Situation 1
Priority A ≥ Priority B > Priority C

≥ Priority D
No

No need to

consider
Dependent

Situation 2 Priority A ≥ Priority B ≥ Priority

C& Priority E ≥ Priority D≥

 Priority C

No Clash1=Clash2 Interdependent

Situation 3 No Clash1>Clash2 Dependent

Clash Dependency Relation Query 414

This paper uses a Neo4j graph database management system to save component 415

dependency networks because database systems based on a graph data model are 416

better suited for querying graph data, compared with relational databases [35–37]. 417

Neo4j version 3.3.5 is used in this project and Cypher is used as the query language to 418

query the above component dependency patterns. For example, to query pattern 3a, 419

the following query sentence is used: “Match (n1)-[r1:ClashRelationship]-(n2)-420

[r2:ClashRelationship]-(n3) Unwind[r1.n2MoveAxisZP, r1.n2MoveAxisXP, 421

r1.n2MoveAxisYP, r1.n2MoveAxisZN, r1.n2MoveAxisXN, r1.n2MoveAxisYN] AS 422

clashVolume1 Unwind[r2.n2MoveAxisZP, r2.n2MoveAxisXP, r2.n2MoveAxisYP, 423

r2.n2MoveAxisZN, r2.n2MoveAxisXN,r2.n2MoveAxisYN] AS clashVolume1 return 424

n1.SystemPriority, n2.SystemPriority, n3.SystemPriority, r1.ID As ID1, r2.ID As ID2, 425

min(clashVolume1) as CV1, min(clashVolume2) as CV2”. This query returns the 426

system priorities of involved three components and the clashing volumes information. 427

Then the clash dependency relation between the two clashes is decided based 428

component priorities and clashing volumes as discussed above (Table 6). 429

3.2 Clash Correction Sequence Optimization 430

The clash dependency network is built using the above pattern analysis (Table 6-Table 431

11). This network is transferred to a graph where each clash is viewed as a vertex. If 432

Clash1

Node B Node C

Clash2

Node D Node A Node E

Impact2 Impact1

21

two clashes are interdependent, they are connected by bidirectional edges, as shown in 433

Figure 6a. If they are dependent, they are connected by directional edges, as shown in 434

Figure 6b. We use the directed clash graph as an input to optimize clash correction 435

sequence. 436

a b

Figure 6. Clash dependency network unit 437

Essentially, optimizing the sequence of activities to minimize feedback translates to a 438

minimum feedback arc set problem (Min-FAS) in graph theory. Min-FAS consists of 439

deleting a minimum number of edges to make a directed graph acyclic. If a directed 440

graph is acyclic (Directed Acyclic Graph-DAG), many algorithms, such as Kahn’s 441

algorithm, can be used to calculate a topological sort for the DAG in linear time [38]. 442

A topological sort is a linear order of vertices in a DAG to achieve a sorted order such 443

that for every edge (U, V) from Vertex U to Vertex V, U comes before V in the order, 444

which means that there is no feedback in this order. Therefore, minimizing feedback is 445

equal to finding Min-FAS. However, Min-FAS is a non-deterministic polynomial 446

harness problem (NP-hard), so the computation cost is high. Many studies have 447

designed algorithms to solve this problem, as summarized in Table 1 of the Appendix. 448

In the table, V is the number of nodes in the graph, and E is the number of edges. 449

These algorithms contain three types: approximation methods, heuristic methods, and 450

exact methods. The best-known approximation ratio cost is proportional to 451

O(logVloglogV) [39]. The approximation methods are usually the fastest in the three 452

types, among which the greedy method can finish in linear time and the KwikSort 453

method has a cost proportional to O(VlogV) (V is the number of nodes in the graph). 454

However, this method cannot guarantee an optimal solution. In fact, most of the time, 455

they cannot achieve an optimal solution. Local search methods start from a candidate 456

solution, iteratively adding perturbations to the solution and moving from this solution 457

to one of the neighboring solutions and using evaluation function to choose among 458

neighboring solutions to realize the continuous improvements. The advantage of this 459

method is that it usually generates an acceptable solution in limited time and the 460

solution is better than approximation methods because it usually uses approximation 461

methods to generate the initial solution. However, the optimal solution still cannot be 462

Clash 1 Clash 2

Interdependent

Clash 1 Clash 2

Dependent

22

guaranteed by using this method. Exact methods require an exhaustive search to some 463

degree and they usually adopt some methods to prune the search by eliminating non-464

promising search space in order to expedite the search speed. Therefore, this method 465

can find an optimal solution, but the computation cost is very high, especially when the 466

size of the problem is large. 467

In order to find an approach to acquire an optimal solution and control search time, this 468

paper combines a greedy method, linear programming and iterative local search 469

methods to identify min-FAS. Since min-FAS is an NP-hard problem, conducting pre-470

processing to decrease the size of the problem is important for improving the 471

performance of the algorithms. First, disjointed sets of the given graph are detected by 472

the union-find algorithm [40]. In the context of this paper, disjointed sets mean that 473

there are no dependency relations between these sets, so they can be scheduled in 474

parallel. For each connected set, strongly connected components (SCC) are calculated 475

by Korsaraju’s algorithm with O(V+E) complexity [41] (V is the number of nodes in 476

the graph, and E is the number of edges). Using each SCC as input is the common pre-477

processing method for the FAS problem [42]. SCC is a directed graph in which every 478

node is reachable from any other nodes in the graph. If the number of SCCs is equal to 479

the number of vertices, which means that no circle exists in this set, then Kahn’s 480

algorithm is used to calculate a topological sort [43]. Otherwise, the algorithm checks 481

whether the vertices in an SCC are fully connected in both directions. If they are fully 482

connected, all vertices are equivalent, and randomly choosing a sequence is optimum. 483

Otherwise, the algorithm runs the min-FAS algorithm in the SCC. After deciding the 484

optimal sequence for each SCC, these SCCs can be represented as one node, which 485

makes the whole graph acyclic. The overall procedure is shown in Figure 7. 486

23

 487

Figure 7. Sequence optimization procedure 488

The min-FAS algorithm in Figure 7 includes four steps: 489

Step 1: use a greedy method to generate an initial solution. A feasible solution contains 490

two parts: 1) a vertex order; 2) a feedback arc set, noted as set E. The greedy method is 491

organized as: order vertices by the value of its outdegree minus its indegree in 492

decreasing order, and if the values are the same, order vertices with larger outdegree 493

first. Add edges that their starting vertices come after their ending node in Set E. 494

Step 2: when the running time is less than a predefined cut-off time, randomly select an 495

edge from set E for removal (removed_edge (U, V))and select all edges that relate 496

with Vertex U and Vertex V in a certain distance (the distance of the edges incident to 497

Vertex U or Vertex V (except edge (U, V)) is one) from E, add these edges (add-back 498

edges noted as E_add) back to the graph. For example, in Figure 7, if edge (D, B) is 499

selected, and the distance is one. Edge (D, C) is a feedback arc and its distance to edge 500

(D, B) is one. Therefore, edge (D, B) and edge (D, C) are added back to the graph. 501

Step 3: use vertices from Vertex U to Vertex V to constitute a subgraph Gsub, 502

recalculate SCCs, and if the number of E_add is less than the number of SCCs with 503

more than one node, run a linear program to generate the optimal order of nodes in each 504

SCC of Gsub and calculate sub-removed edge set Esub. We explain the formulation of 505

Calculate Strongly

Connected Components

for each disjointed set

Detect Disjointed Set

Calculate Topological

Sorting by Kahn’s

algorithm

Number of

SCC=number

of vertex

No

Yes

Start

End

Run min-FAS

algorithm in each SCC

to decide sub-sequence

For each SCC,

Check if fully

Connected

No

Randomly decide node

sequence

Yes

Represent each SCC

into one node

24

the linear program below. If the size of Esub is smaller than the number of E_add, the 506

algorithm updates the candidate solutions. Otherwise, keep the original solution. To 507

avoid the algorithm stuck in the subproblem, we set a local cut-off time. If in local cut-508

off time, no better solution is found, the algorithm also keeps the original solution. 509

LpsolveDotNet driver for C# was used to solve the linear programming problem [44]. 510

In Figure 8, if edge (D, B) and edge (D, C) are added back, the subgraph contains Vertex 511

B, Vertex C, and Vertex D, and edge (B, C), edge (D, C) and edge (D, B). 512

 513

Figure 8. Strongly connected component sequence 514

Step 4: repeat Step 2 and Step 3 until the solution has no improvement more than pre-515

defined times, increase the perturbance distance, and repeat Step 2 and Step 3. The 516

algorithm stops when the running time exceeds the pre-defined cut-off time, or the 517

iteration exceeds the pre-defined steps. 518

The linear programing problem is constructed as follows: 519

Objective: min ∑ 𝑏(𝑢, 𝑣)𝑒(𝑢,𝑣)∈𝐺 520

Constraints: 521

𝑑𝑖𝑗 ∈ {0,1}, 𝑖, 𝑗 ∈ [1, 𝑉] (1)

∑ 𝑑𝑖

𝑉

𝑗=1

𝑗 = 1; ∑ 𝑑𝑖

𝑉

𝑖=1

𝑗 = 1 (2)

∀𝑒(𝑢, 𝑣) ∈ 𝐺, ∑ 𝑗 ∗ 𝑑𝑣𝑗

𝑉

𝑗=1

− ∑ 𝑗 ∗ 𝑑𝑢𝑗

𝑉

𝑗=1

+ 𝑉 ∗ 𝑏(𝑢, 𝑣) ≥ 0 (3)

𝑏(𝑢, 𝑣) ∈ {0,1} (4)

The design assigns to each vertex a number ranging from 1 to V (number of nodes). d𝑖𝑗 522

represents whether Vertex i is ordered in jth position. ∑ j ∗ d𝑢𝑗V
j=1 represents the order of 523

Vertex 𝑢. ∑ 𝑑𝑖𝑗V
j=1 = 1 and ∑ 𝑑𝑖𝑗V

i=1 = 1 are used to constrain that each vertex has a 524

different order. For each edge e (𝑢, 𝑣), if the order of Vertex 𝑣 is smaller than Vertex 525

𝑢, b(𝑢, 𝑣) should be 1 based on the Constraint (3). The objective is to minimize the 526

sum of b(𝑢, 𝑣). 527

The pseudo code for calculating minimum feedback arc set is shown in Appendix 1 528

(Algorithm 1-Algorithm3). 529

A B C D E

25

To validate the robustness of the proposed approach, We use the graphs provided 530

in [45] as the test graphs because these graphs have known min-FAS. The properties 531

of these graphs are shown in Table 12, and the plots of these graphs are shown in 532

Appendix 1 (Figure 1-Figure 10). We used a laptop computer with an Intel-core i7-533

8750H CPU with 2.21 GHz, and 16.0GB RAM as the testing platform. The results in 534

Table 13 showed that in a given time (the maximum time is 2 seconds), the proposed 535

approach identified the optimal solution in all test graphs. Even though large 536

construction projects can have tens of thousands of clashes, normally these clashes 537

will not belong to the same connected set, and they can be solved set-by-set. For 538

example, in our validated case, we have 191 clashes, the largest connected set only 539

contains 22 nodes (the black circle in Figure 11). Therefore, even though we tested 540

our approach in graphs with up to 109 nodes, it has the capability to calculate the 541

optimal sequence for a larger clash dependency graph. 542

Table 12. Basic information of test graphs [45] 543

ID Nodes Edges SCCs (num of nodes>1) Optimum

1 10 90 1 45

2 12 21 1 2

3 15 35 3 6

4 19 31 1 6

5 25 32 1 3

6 29 37 1 5

7 30 42 1 3

8 41 61 1 5

9 50 79 1 8

10 109 163 1 12

 544

Table 13. Test Results 545

ID Cut-off (s) Local-cutoff (s) Calculate_Result Optimal

1 0.1 0.05 45 Yes

2 0.1 0.05 2 Yes

3 0.1 0.05 6 Yes

4 0.1 0.05 6 Yes

26

5 0.5 0.3 3 Yes

6 0.5 0.3 5 Yes

7 1 0.5 3 Yes

8 2 0.5 5 Yes

9 2 0.5 8 Yes

10 2 1 12 Yes

 546

4. Case Validation 547

4.1 Project Introduction 548

We validated the approach presented so far on an actual construction project. The test 549

building is a five-story student residence hall covering 4700-square-meter located in a 550

public university and accommodated 285 beds. The project spanned from Dec 2014 to 551

Aug 2018. Navisworks was used in this project for design coordination and clash 552

detection. Navisworks is a 3D design review tool, which is owned by Autodesk [46]. 553

The proposed method was applied in the coordination of MEP disciplines of the project. 554

To avoid detecting too many tiny clashes that bother the clash coordination process, the 555

project set clash tolerance value as 50mm. According to [7] analysis, around 90% 556

critical clashes have a size larger than 50mm. Under this setting, the project team 557

detected 221 MEP clashes by using Navisworks in a federated MEP model in the 558

detailed design phase. Before analyzing clash dependency relations, we preprocessed 559

the automatically detected clash result by cleaning out irrelevant clashes based on the 560

four scenarios identified in [16], resulting in 191 relevant clashes. 561

The system classification for these clashes is shown in Figure 9. C# in visual studio 562

2017 with .Net framework 4.6.1 was used to extract component dependency 563

information from IFC files by using xBIM library [47], and the dependency information 564

(three types of dependency relations: Clash, Connect, Impact relations, listed in Table 565

1) was saved in a Neo4j database for querying clash dependency relations. Figure 10 566

displays a screenshot of the user interface to set system priority. System type is 567

extracted from the properties of building components, which were saved in Neo4j and 568

the default rank follows previous studies [5]. Users have the flexibility to change the 569

system priority by selecting and changing the order, and they can also set two systems 570

to have the same priority (see how two systems in the dropdown boxes are set to the 571

27

same priority in Figure 10). After deciding system priority, the rank information is 572

saved into the Neo4j database. The “Run sequence algorithm” button implements 573

querying component patterns from the database, constructs a clash dependency network, 574

and searches an optimal clash correction sequence. In the validated case, the system 575

priority was kept using the default order. 576

 577

Figure 9. Clash system summary 578

 579

Figure 10. User interface for setting system priority 580

Figure 11 is the clash dependency network built based on the building component 581

dependency network. In the network, each vertex represents one clash and the vertex 582

ID is the corresponding order in Navisworks. The color and size of vertices are decided 583

by outdegree of a node. Green and small represents low outdegree. The network 584

contains 191 nodes and 281 edges. 58 vertices are isolated. Isolated clashes have no 585

dependency relations with other clashes which can be solved in parallel. 25 disjointed 586

sets exist among the remaining 133 connected nodes, which consist of 24 strongly 587

connected components. These disjointed sets can be scheduled in parallel. These 588

123

13
1 2 4

12

105

1
0

20

40

60

80

100

120

140

D
ry

 H
VA

C

W
et

 H
VA

C

G
ra

vi
ty

-d
riv

en

Pro
ce

ss
 p

ip
in

g

Fire
 p

ro
te
ct

io
n

Pre
ss

ur
e
dr

iv
en

Ele
ct

ric
al

 s
ys

te
m

C
on

tro
l s

ys
te

m

N
o

.
o

f
C

la
sh

e
s

28

dependency relations are reasonable from the project perspective. For example, in the 589

network, Clash 10 depends on Clash 79 and their geometric representations are shown 590

in Figure 12a. Clash 10 exists between a return air duct and a lighting panel. Clash 79 591

consists of the intersection between the return air duct and an exhaust air duct. In 592

practice, the mechanical system has a higher priority than the electrical system. 593

Therefore, the location of the lighting panel should be decided after fixing the location 594

of the return air duct. In the graph, it is shown as an edge from Clash 79 to Clash 10. 595

Another interdependent example is shown in SCC1 and their geometric representations 596

are shown in Figure 12b. These clashes exist between a cable tray with an electrical 597

cabinet. In this model, the cabinet consists of seven sets. Navisworks detected seven 598

clashes. However, these clashes are equivalent. Therefore, in the graph, they are 599

interdependent and fully connected. 600

 Figure 11. Clash dependency network for the test case

 601

29

a b

Figure12. Dependency relationship example 602

4.2 Clash Correction Sequence Optimization Result 603

The clash dependency network was used as the input for investigating an optimal 604

sequence by using min-FAS algorithm. The algorithm always found an optimal solution 605

in the test case (the optimum solution was captured by using linear programming 606

without time constraints) because the size of each SCC is not very big and the average 607

time to find optimum was around 3000ms in 50 times of test. To compare the result, we 608

constructed a Dependency Structure Matrix following the sequence detected by 609

Navisworks, as shown in Figure 13a and a DSM following the optimized sequence, as 610

shown in Figure 13b. To represent the feedback arc information, the parallel 611

information was not shown in the DSM graphs. In the DSM graphs, red points mean 612

dependency relations and yellow means that the two clashes are independent. Obviously, 613

the two graphs show that the original sequence has more sub-diagonal relations than 614

the optimized sequence. In fact, the feedback arc number decreased from 180 to 150. 615

One example is already listed in Figure 11 and Figure 12a. If the original sequence from 616

Navisworks is followed, Clash 10 will be scheduled before Clash 79. However, in the 617

optimal sequence, Clash 10 depends on Clash 79 and Clash 79 is scheduled before 618

Clash 10. The optimized sequence conforms better with project practice. 619

Another finding in the graphs is that in the original sequence, the dependency relations 620

are decentralized, which hinders project engineers to notice the dependency between 621

clashes and consider the dependency to optimize the clash resolutions. In the optimized 622

sequence, dependent clashes are closely scheduled because of the disjointed set and 623

strongly connected components calculations, which provides opportunities for project 624

Return Air Duct

Clash79 Clash10

Exhaust Air Duct

Lighting Panelboard

Clash61 Clash62

Clash65

Clash66

Clash63

Clash64

Clash67

Cable Tray

Electrical Cabinet

30

engineers to solve these related clashes from a holistic view rather than focusing on a 625

single clash. 626

Figure 13a. DSM for Naviswork sequence

Figure 13b. DSM for optimized sequnece

 627
5. Discussion 628

Clash detection has been viewed as one of the most valued applications of BIM [6]. 629

The adoption of BIM has changed the clash detection practice from visually detecting 630

clashes by sequentially overlapping 2D drawings, to automatically detecting multi-631

disciplinary clashes in a federated model. Identifying problems is the first step, and how 632

to use the information embedded in BIM models to support the clash correction process 633

is also important. Clashes are interrelated, as moving one building component to solve 634

one clash may affect other components and cause ripple effects [2]. Even though 635

sequentially building models and managing clashes can control ripple effects, under 636

time pressure, parallel design and simultaneously detecting clashes by integrating 637

multi-disciplinary together is common [7,10–12]. We argue that the information 638

embedded in BIM models help to construct a hybrid method that integrates parallel and 639

sequential coordination strategies and decrease information uncertainty to improve 640

clash management. 641

Multi-disciplinary clashes are detected from a federated model. To organize clash 642

correction sequence and control ripple effects, we analyzed the dependency relations 643

between clashes from a component level and conducted a clash dependency network. 644

31

Using the clash network as an input, the paper identified disjointed sets. Since there 645

were no dependency relations among these sets, they could be parallelly solved. For 646

clashes in each jointed set, we argued that dependency should be distinguished as 647

feedback dependency and feedforward dependency. Feedback dependency means that 648

that post-corrected clashes will impact pre-corrected clashes and may cause iterative 649

adjustments and reworks because of information uncertainty, while feedforward 650

dependency is acceptable. Then, the focus tended to minimize feedback dependency. 651

Information inscribed in BIM models helps to refine the clash management strategies 652

to combine parallel and sequential methods, and graph theory provides a method to link 653

clashes and conduct the specific analysis. 654

BIM has been discussed over many years; instead of acting as a database to store 655

information and a visualization tool to facilitate communication, more analyses and 656

optimizations can be conducted based on BIM information to support the project 657

decision-making process. Dossick and Neff [12] argued that BIM helps project teams 658

to tightly couple technologically by integrating models, while these teams are still 659

divided organizationally. BIM models can be used to analyze information dependency 660

relations and support organization collaboration. We clarified the dependency relations 661

between clashes, which helps to organize organizational coordination. For example, as 662

for feedforward dependency, one-way confirmation is enough, while for 663

interdependency and unavoidable feedback dependency, organizing meetings that 664

integrated related disciplines is a better choice. This paper is one example of using BIM 665

information to support refined management, but more analyses can be conduct based 666

on BIM data to fully exploit the benefits of BIM. 667

6. Conclusions and Limitations 668

Clashes are interrelated and the dependency relations between clashes complicate the 669

clash coordination process and may cause ripple effects when correcting one clash [2]. 670

From the information processing perspective, a well-organized clash correction 671

sequence helps to decrease information uncertainty and control change propagation, 672

which improve coordination efficiency. This paper proposed to use graph theory to 673

optimize the clash correction sequence and figured out that the sequence optimization 674

problem was equivalent to the minimum feedback arc set problem from a graph 675

perspective. To construct a clash graph, we discussed how to identify clash dependency 676

32

relations by analyzing different spatial scenarios, system properties of clash 677

components and clashing volumes. A min-FAS algorithm integrated approximation 678

method, local search, and a linear program were designed to find the optimal sequence. 679

Before running the algorithm, several pre-processing methods, such as calculating 680

disjoined set, strongly connected components, and fully connected SCC, were adopted 681

to decrease the graph size and improve the performance of the algorithm. The proposed 682

method was validated in a project and the results showed that the number of feedback 683

arcs of the optimized sequence had a significant decrease compared with the clash 684

sequence detected by the clash detection software (Navisworks in the validation case). 685

In addition, the optimized sequence automatically grouped dependent clashes together, 686

which provides an opportunity for project participants to discuss clash solutions by 687

considering these related clashes together. This paper concluded that using graph theory 688

and BIM information helped to clarify clash dependency relations and optimize clash 689

correction sequence by mixing parallel and sequential methods. 690

A large amount of information is embedded in BIM models, which has not been fully 691

used to support design or construction activities. This paper proposed how to use the 692

spatial and system properties of clash components combined with graph theory to 693

facilitate the clash correction process and control ripple effects caused by clash 694

dependency. The limitation of the paper includes two levels. From the research itself, 695

the paper used an automatic method to define clash dependency, which made it possible 696

to be applied in practice. However, manual methods (interviews or survey experts) are 697

able to conduct a more comprehensive assessment about clash dependency by 698

considering various context, for example, production schedule and installation 699

difficulty. How to combine the advantages of the two methods can be further discussed. 700

In addition, this paper focused on MEP clashes, even though MEP coordination is the 701

most challenging part for complex projects, clashes between MEP disciplines and 702

structural components are also important and other non-MEP clashes also need to be 703

solved. The method to identify dependency among MEP clashes and among non-MEP 704

clashes can be different. For example, solving clashes between structural components 705

(e.g. slabs or walls), sometimes, needs to consider the locations of preformed holes. 706

How to discuss these openings to identify clash dependency to further improve the 707

generality of the proposed methods is worthy of further discussions. Then, as for 708

33

implementing in construction projects, the paper mainly discussed clash correction 709

sequence optimization from a technical perspective. However, to implement the 710

sequence, it is needed an organizational support and a well-organized multi-disciplinary 711

collaboration process. It can be imagined that the sequence can be implemented more 712

easily in a project environment with project teams integrated and working together. 713

Therefore, how to integrate the method in the design coordination practice is worthy of 714

further study. Furthermore, in practice, some clashes may have a fixed sequence 715

because of organizational or management requirements. How to change the current 716

system to allow parts of fixed sequences can be discussed further. One potential solution 717

is to set weights to the edges between clashes. Therefore, how to capture requirements 718

to identify unchangeable clash sequence, set weights to clash dependent relations, and 719

change the proposed method to involve edge weights need to be answered in the future. 720

Third, the clash graph constructed in this paper is still a static graph that analyzes the 721

clash dependency relations in one federated model. However, in many projects, clash 722

detection is periodically conducted with a project going. In the process, parts of old 723

clashes can be solved, and new clashes can be detected. How to deal with the dynamics 724

of design and how to continually update the clash graph in an effective way can be a 725

future research direction.726

34

Reference 727

1. Dorst K, Dijkhuis J, Comparing Paradigms for Describing Design Activity, 728

Design Studies. Vol.16, (1995), pp.261–274, https://doi.org/10.1016/0142-729

694X(94)00012-3 730

2. Lee G, Walter J, Parallel vs . Sequential Cascading MEP Coordination Strategies : 731

A Pharmaceutical Building Case Study, Automation in Construction. Vol.43, 732

(2014), pp.170–179, http://dx.doi.org/10.1016/j.autcon.2014.03.004 733

3. Mehrbod S, Staub-french S, Mahyar N, Tory M, Characterizing Interactions 734

with BIM Tools and Artifacts in Building Design Coordination Meetings, 735

Automation in Construction. Vol.98, (2019), pp.195–213, 736

https://doi.org/10.1016/j.autcon.2018.10.025 737

4. Korman TM, Fischer MA, Tatum CB, Knowledge and Reasoning for MEP 738

Coordination, Journal of Construction Engineering and Management. Vol.129, 739

(2003), pp.627–634. http://ascelibrary.org/doi/10.1061/%28ASCE%290733-740

9364%282003%29129%3A6%28627%29 741

5. Korman TM, Tatum CB, Development of a Knowledge-Based System to 742

Improve Mechanical, Electrical, and Plumbing Coordination, CIFE Technical 743

Report #129. (2001), pp.1–162. www.stanford.edu/group/CIFE/Publications 744

6. Cao D, Wang G, Li H, Skitmore M, Huang T, Zhang W, Practices and 745

Effectiveness of Building Information Modelling in Construction Projects in 746

China, Automation in Construction. Vol.49, (2015), pp.113–122. 747

http://dx.doi.org/10.1016/j.autcon.2014.10.014 748

7. Pärn EA, Edwards DJ, Sing MCP, Origins and Probabilities of MEP and 749

Structural Design Clashes within a Federated BIM Model, Automation in 750

Construction. Vol.85, (2018), pp.209–219. 751

https://doi.org/10.1016/j.autcon.2017.09.010 752

8. Peña-Mora F, Li M, Dynamic Planning and Control Methodology For 753

Design/Build Fast-Track Construction Projects, Journal of Construction 754

Engineering and Management. Vol.127, (2001), pp.1–17. 755

https://doi.org/10.1061/(ASCE)0733-9364(2001)127:1(1) 756

9. Ilozor BD, Kelly DJ, Building Information Modeling and Integrated Project 757

Delivery in the Commercial Construction Industry : A Conceptual Study, Journal 758

35

of Enginnering, Project, and Production Management. Vol.2, (2012), pp.23–36. 759

http://www.ppml.url.tw/EPPM_Journal/volumns/02_01_January_2012/ID_013760

_2_1_23_36.pdf 761

10. Hu Y, Castro-Lacouture D, Clash Relevance Prediction Based on Machine 762

Learning, Journal of Computing in Civil Engineering. Vol.33, (2018). 763

http://ascelibrary.org/doi/10.1061/%28ASCE%29CP.1943-5487.0000810 764

11. Wang J, Wang X, Shou W, Chong HY, Guo J, Building Information Modeling-765

based Integration of MEP Layout Designs and Constructability, Automation in 766

Construction. Vol.61, (2016), pp.134–146. 767

http://dx.doi.org/10.1016/j.autcon.2015.10.003 768

12. Dossick CS, Neff G, Organizational Divisions in BIM-Enabled Commercial 769

Construction, Journal of Construction Engineering and Management.Vol.136, 770

(2010),pp.459–467. 771

http://ascelibrary.org/doi/10.1061/%28ASCE%29CO.1943-7862.0000109 772

13. Wang L, Leite F, Knowledge Discovery of Spatial Conflict Resolution 773

Philosophies in BIM- enabled MEP Design Coordination using Data Mining 774

Techniques: a Proof-of- Concept, Proceedings of The International Workshop on 775

Computing in Civil Engineering. Los Angeles, California: American Society of 776

Civil Engineers. (2013), pp. 399–404. 777

https://doi.org/10.1061/9780784413029.053 778

14. Hartmann T, Detecting Design Conflicts using Building Information Models: a 779

Comparative Lab Experiment, Proceedings of The 27th International Conference 780

- Applications of IT in the AEC Industry & Accelerating BIM Research 781

Workshop. Cairo, Egypt: Virginia Tech. (2010), pp.16–18. http://itc.scix.net/cgi-782

bin/works/Show?w78-2010-57 783

15. Van den Helm P, Böhms M, van Berlo L, IFC-based Clash Detection for the 784

Open-Source BIMserver, Proceedings of The International Conference on 785

Computing in Civil and Building Engineering. Nottingham, UK: Nottingham 786

University Press. Vol.181, (2010), http://bimserver.org/wp-787

content/uploads/sites/6/2010/11/Helm_Clashdetection.pdf 788

16. Hu Y, Castro-lacouture D, Eastman CM, Holistic Clash Detection Improvement 789

Using a Component Dependent Network in BIM Projects, Automation in 790

36

Construction. Vol.105, (2019). https://doi.org/10.1016/j.autcon.2019.102832 791

17. Galbraith JR, Organization Design : An Information Processing View, Interfaces. 792

Vol.4, (1974), pp.28–36. https://www.jstor.org/stable/25059090 793

18. Radke AM, Wallmark T, Tseng MM, An Automated Approach for Identification 794

and Resolution of Spatial Clashes in Building Design, Proceedings of The 795

International Conference on Industrial Engineering and Engineering 796

Management. Hong Kong, China: IEEE. (1974), pp.2084-2088. 797

https://ieeexplore.ieee.org/abstract/document/5373167 798

19. Wang L, Leite F, Formalized Knowledge Representation for Spatial Conflict 799

Coordination of Mechanical, Electrical and Plumbing (MEP) Systems in New 800

Building Projects, Automation in Construction. Vol.64, (2016), pp.20-26. 801

http://dx.doi.org/10.1016/j.autcon.2015.12.020 802

20. Mokhtar A, Bedard C, Fazio P, Collaborative Planning and Scheduling of 803

Interrelated Design Changes, Journal of Architectural Engineering. Vol.6, (2000), 804

pp.66–75. https://doi.org/10.1061/(ASCE)1076-0431(2000)6:2(66) 805

21. Chinowsky P, Diekmann J, Galotti V, Social Network Model of Construction, 806

Journal of Construction Engineering and Management. Vol.134, (2008), pp.804–807

812. https://doi.org/10.1061/(ASCE)0733-9364(2008)134:10(804) 808

22. Maheswari JU, Varghese K, A Structured Approach to Form Dependency 809

Structure Matrix for Construction Projects, Proceedings of The 22nd 810

International Symposium on Automation and Robotics in Construction. Ferrara, 811

Italy. (2005), pp. 1–6. https://doi.org/10.22260/ISARC2005/0062 812

23. Oloufa AA, Hosni YA, Fayez M, Axelsson P, Using DSM for Modeling 813

Information Flow in Construction Design Projects, Civil Engineering and 814

Environmental Systems. Vol.21, (2004), pp.105–125. 815

https://doi.org/10.1080/10286600310001638474 816

24. Srour IM, Abdul-Malak MAU, Yassine AA, Ramadan M, A Methodology for 817

Scheduling Overlapped Design Activities based on Dependency Information, 818

Automation in Construction. Vol.29, (2013), pp.1–11. 819

http://dx.doi.org/10.1016/j.autcon.2012.08.001 820

25. Zhao ZY, Lv QL, Zuo J, Zillante G, Prediction System for Change Management 821

in Construction Project, Journal of Construction Engineering and Management. 822

37

Vol.136, (2010), pp.659–669. https://doi.org/10.1061/(ASCE)CO.1943-823

7862.0000168 824

26. Wynn DC, Caldwell NHM, John Clarkson P, Predicting Change Propagation in 825

Complex Design Workflows, Journal of Mechanical Design. Vol.136, (2014). 826

http://mechanicaldesign.asmedigitalcollection.asme.org/article.aspx?doi=10.11827

15/1.4027495 828

27. Pilehchian B, Staub-french S, A Conceptual Approach to Track Design Changes 829

Within a Multi-disciplinary Building Information Modeling Environment, 830

Canadian Journal of Civil Engineering. Vol.152, (2015), pp.139–152. 831

https://doi.org/10.1139/cjce-2014-0078 832

28. Isaac S, Navon R, A Graph-based Model for the Identification of the Impact of 833

Design Changes, Automation in Construction. Vol.31, (2013), pp.31–40. 834

http://dx.doi.org/10.1016/j.autcon.2012.11.043 835

29. Nguyen T-H, Oloufa AA, Computer-Generated Building Data: Topological 836

Information. Journal of Computing in Civil Engineering, Vol.15, (2001), 837

pp.268–274. https://doi.org/10.1061/(ASCE)0887-3801(2001)15:4(268) 838

30. Solihin W, A Simplified BIM Data Representation using a Relational Database 839

Schema for an Efficient Rule Checking System and its Associated Rule 840

Checking Language, (2016), Ph.D. diss, School of Architecture, Georgia 841

Insititute of Technology. http://hdl.handle.net/1853/54831 842

31. Borrmann A, Rank E, Topological Analysis of 3D Building Models using a 843

Spatial Query Language, Advanced Engineering Informatics. Vol.23, (2009), 844

pp.370–385. http://dx.doi.org/10.1016/j.aei.2009.06.001 845

32. Nepal MP, Staub-French S, Pottinger R, Webster A, Querying a Building 846

Information Model for Construction-Specific Spatial Information, Advanced 847

Engineering Informatics. Vol. 26, (2012), pp.904–923. 848

https://doi.org/10.1016/j.aei.2012.08.003 849

33. Khalili A, Chua DKH, IFC-Based Graph Data Model for Topological Queries on 850

Building Elements, Journal of Computing in Civil Engineering. Vol.29, (2015). 851

https://doi.org/10.1061/(ASCE)CP.1943-5487.0000331 852

34. Solihin W, Eastman C, Lee Y-C, Yang D-H, A Simplified Relational Database 853

Schema for Transformation of BIM Data into a Query-efficient and Spatially 854

38

Enabled Database, Automation in Construction. Vol.84, (2017), pp.367–383. 855

https://doi.org/10.1016/j.autcon.2017.10.002 856

35. Elmasri R, Navathe SB, Fundamentals of Database System. six. Addison-Wesley. 857

(2016), p. 1242. http://iips.icci.edu.iq/images/exam/databases-ramaz.pdf 858

36. Huang H, Dong Z, Research on Architecture and Query Performance based on 859

Distributed Graph Database Neo4j, Proceedings of The 3rd International 860

Conference on Consumer Electronics, Communications and Networks. 861

Xianning, China: IEEE. (2013), pp.533–536. 862

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6703387&isnumber863

=6703249 864

37. Vicknair C, Nan X, Chen Y, Wilkins D, A Comparison of a Graph Database and 865

a Relational Database: A Data Provenance Perspective, Proceedings of The 48th 866

Annual Southeast Regional Conference. New York, USA: Association for 867

Computing Machinery. Vol. 42, (2010), pp.1–6. 868

http://doi.acm.org/10.1145/1900008.1900067 869

38. Barnat J, Brim L, Ročkai P, Parallel Partial Order Reduction with Topological 870

Sort Proviso. Proceedings of The 8th IEEE International Conference on Software 871

Engineering and Formal Methods. Pisa, Italy: IEEE. (2010), pp.222–231. 872

https://ieeexplore.ieee.org/document/5637433 873

39. Even G, Naor J, Schieber B, Sudan M, Approximating Minimum Feedback Sets 874

and Multicuts, Algorithmica. Vol.20, (1998), pp.151–174. 875

https://doi.org/10.1007/PL00009191 876

40. Wikipedia, Disjoint-Set Data Structure. (February 23, 2020) 877

https://en.wikipedia.org/wiki/Disjoint-set_data_structure 878

41. Wikipedia, Kosaraju’s Algorithm.(March 7, 2019) 879

https://en.wikipedia.org/w/index.php?title=Kosaraju%27s_algorithm&oldid=88880

6695367 881

42. Saab Y, A Fast and Effective Algorithm for the Feedback Arc Set Problem, 882

Journal of Heuristics. Vol.7, (2001), pp.235–250. 883

https://doi.org/10.1023/A:1011315014322 884

43. Kahn AB, Topological Sorting of Large Networks, Communications of the ACM. 885

Vol.5, (1962), pp.558-562. https://doi.org/10.1145/368996.369025 886

39

44. Gosselin M, Linear Programming Solver. (2018). 887

https://www.nuget.org/packages/LpSolveDotNet/ 888

45. Baharev A, Schichl H, Neumaier A, An Exact Method for the Minimum 889

Feedback Arc Set Problem. University of Vienna. Vol.10, (2015), pp.35–60. 890

https://www.mat.univie.ac.at/~neum/ms/minimum_feedback_arc_set.pdf 891

46. Wikipedia, Navisworks. (February 11, 2020). 892

https://en.wikipedia.org/wiki/Navisworks 893

47. Lockley S, XBIM -The BIM Toolkit. (2015). https://github.com/xBimTeam/ 894

48. Eades P, Lin X, Smyth WF, A Fast and Effective Heuristic for the Feedback Arc 895

Set Problem, Information Processing Letters. Vol.47, (1993), pp.319–323. 896

https://doi.org/10.1016/0020-0190(93)90079-O 897

49. Ailon N, Charikar M, Newman A, Aggregating inconsistent information: 898

Ranking and Clustering, Journal of the ACM. Vol.55, (2008), pp.1–27. 899

https://dl.acm.org/citation.cfm?doid=1411509.1411513 900

50. Meier C, Yassine AA, Browning TR, Design Process Sequencing With 901

Competent Genetic Algorithms, Journal of Mechanical Design. Vol.129, (2007), 902

pp.566–585. 903

http://mechanicaldesign.asmedigitalcollection.asme.org/article.aspx?articleid=1904

449386 905

51. Brandenburg FJ, Hanauer K, Sorting Heuristics for the Feedback Arc Set 906

Problem, Technical Report MIP-1104, University of Passau, Germany. (2011). 907

https://pdfs.semanticscholar.org/220c/e6b7b095b4608e671ca5ea9889ac0f5d09908

d8.pdf 909

52. Hecht M, Exact Localisations of Feedback Sets, Theory of Computing 910

Systems. Vol.62, (2018), pp.1048–1084. 911

https://link.springer.com/article/10.1007/s00224-017-9777-6 912

 913

40

Appendix

Table 1. Algorithm Summary for Min-FAS (V is the number of vertices and E is the number of edges)

Method Type Author Description Time Complexity & Performance Method Comments

Approximation

method

Eades et al. [48]

Greedy method: order nodes by outdegree-

inDegree (ELS) or abs(outdegree-inDegree) (ELS-

abs), and add the feedback arc into FAS

Time complexity: O(V+E)

Upper bound E/2-V/6

Advantage: very fast, finish

in linear time, easy to

implement

Disadvantage: usually can

not find optimal solutions

Even et al.[39]
Using sphere-growing technique to acquire

approximated optimal solution

Time complexity: polynomial time

Approximation ratio is O(log V

loglogV)

Advantage: the bound is

tighter than Greedy method

Disadvantage: optimal

solutions are not guaranteed

Ailon et al. [49]

KwikSort: sorting the order of notes in Graph

based on quicksort methods and delete feedback

arc

Time complexity: O(nlog(n))

Approximation ratio is 3

Advantage: fast and easy to

implement

Disadvantage: usually cannot

find optimal solutions

Heuristic/Local

search methods

Saab [42]

Divide & Conquer+ stochastic evolution/dynamic

cluster: Divide & Conquer is to divide graph G into

subgraphs G1 and G2 and order nodes in G1 before

nodes in G2. FAS(G)=FAS(G1) U FAS(G2) U {i

→ j :i ∈ G2 and j ∈ G1}. stochastic

evolution/dynamic cluster are used to find optimal

bisection of graph

The time and performance depend

on iterative times, and some initial

iterative parameters

Advantage: solutions can

keep improving compared

approximation methods

Disadvantage: optimal

solutions are not guaranteed,
Meier et al. [50]

Genetic algorithm: conduct position-based

crossover and shift mutation to guarantee feasible

solutions in these phases

41

Brandenburg

and Hanauer

[51]

KwikSort heuristic methods-KwikSort with

randomly choose initial pivot

Exact methods

Baharev et al.

[45]
Linear programming

The constrain is O(n3) or the

number of simple circles in the

graph, which can be Ω(2n)

Exact answer

Advantage: Optimal solution

can be found

Disadvantage: time

consuming
Hecht [52] Dynamic programming

Time Complexity: When FAS

possess Bellman principle. O(2m|E|4

log(|V |) m ≤ |E| − |V | + 1

Exact answer

 914

42

 915

 916

 917

43

 918

 919

 920

 921

44

 922

45

Figure 1. Test Graph 1[45]

Figure 2. Test Graph 2[45]

 923

Figure 3. Test Graph 3[45] 924

 925

Figure 4. Test Graph 4[45] 926

46

Figure 5. Test Graph 5[45] Figure 6. Test Graph 6[45]

Figure 7. Test Graph 7[45] Figure 8. Test Graph 8[45]

47

Figure 9. Test Graph 9 [45] Figure 10. Test Graph 10[45]

 927

 928

