
1 

 

Implementing data-driven parametric building design with a flexible 

toolbox approach 
 

Nathan C. Brown*a, Violetta Jusiega a, and Caitlin Muellera 

 

a Building Technology Program, Department of Architecture, Massachusetts Institute of 

Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA 

 

* Corresponding author. Present/Permanent Address: Department of Architectural Engineering, 

The Pennsylvania State University, 104 Engineering Unit A, University Park, PA 16802, USA. 

Tel. +1 814 404 9959  Fax. 814-863-4789 

Email address: ncb5048@psu.edu 

 

 

Abstract 

 

Designers in architecture and engineering are increasingly employing parametric models linked to 

performance simulations to assist in early building design decisions.  This context presents a clear 

opportunity to integrate advanced functionality for engaging with quantitative design objectives 

directly into computational design environments.  This paper presents a toolbox for data-driven 

design, which draws from data science and optimization methods to enable customized workflows 

for early design space exploration.  It then applies these approaches to a multi-objective conceptual 

design problem involving structural and energy performance for a long span roof with complex 

geometry and considerable design freedom.  The case study moves from initial brainstorming 

through design refinement while demonstrating the advantages of flexible workflows for managing 

design data.  Through investigation of a realistic early design prompt, this paper reveals strengths, 

limitations, potential pitfalls, and future opportunities for data-driven parametric design. 
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 Introduction 

Optimization and related techniques have been gaining traction in early building design, 

especially with increasing access to parametric modeling and the direct link various plug-ins offer 

between simulation engines and geometry [1–7].  While they have some limitations [8], these 

design approaches enable the use of building performance simulations to drive early decisions [9], 

rather than simply confirm or validate initial design choices.  This paper is motivated by a desire to 

increase the accessibility of such design tools, since efforts in this area can multiply the usage of 

data-driven approaches and their subsequent impact in practice [10,11].  Ideally, these tools should 

be flexible and easily integrated into existing design approaches.  Technologically savvy designers 

already generate design space catalogs [12,13], conduct architectural optimization [14–21], 

integrate technical and architectural design goals [22,23], and even implement surrogate modeling 

and other techniques in their workflows [24–29].   

Those designers who are comfortable with coding have found considerable support through 

open-source libraries, integrated development environments, and various scripting methods 

[30,31].  A segment of the design community often prefers to work on the cutting edge, frequently 

manipulating code in a raw form.  There have also been efforts in both academia and practice to 

educate architects and engineers and increase their capacity for computational design through 

visual programming and coding, which is likely to have a substantial effect on how buildings are 

designed.  This democratization and customization of computational design approaches has many 

benefits, while creating a constantly evolving and improving shared framework for performance-

based parametric design [32,33].   

Yet at the same time, many practicing architects and engineers do not have the background, 

interest, or time to become full-time software developers themselves.  Many prefer to spend their 

time concentrating on creating new designs rather than improving computational workflows.  

These designers, both professional and academic, depend on some level of existing software or 
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functionality to suit their needs, and frequently opt for standard visual programming interfaces 

rather than textual programming [34].  The risk for them, however, is that existing software may 

not be exactly what is needed, and it may exert more of an influence on their process than they 

desire, down to the particulars of a digital interface.  For these designers, it is worthwhile to find a 

satisfactory compromise that balances flexibility and accessibility. 

This paper describes a computational design toolkit that seeks to achieve such a balance by 

bringing data-driven approaches directly into a common parametric environment.  It acknowledges 

that visual programming is becoming a viable medium for widespread parametric design 

exploration in practice, due to its greater level of accessibility compared to raw code.  In this 

context, data-driven approaches can take advantage of the considerable effort within the design 

community to directly connect parametric geometry to performance simulation.  While describing 

an entire toolbox, this paper reveals how individual components with specific functions involving 

data science and optimization are combined to enable customized, data-driven design strategies.  It 

then presents an integrated early design example tracing possible workflow progressions through 

design space formulation, diversity-based brainstorming, and interactive optimization, while 

making use of various computational components.    

The culminating design example involves selecting the geometry for a long span athletic 

center roof, while considering implications for structural and energy efficiency.  The example 

shows, in practical terms, the advantages and possibilities of using these tools, as well as the 

limitations and complications that must be overcome in their application to realistic building design 

problems.   

 Background 

Performance-based parametric design operates in the conceptual “design space”, which 

contains all possible options that can be generated by a parametric script, and the “objective space”, 
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which locates these designs based on how well they perform.  The goal is to explore the design 

space (by adjusting the variables that control the current design iteration) with reference to the 

objective space (using simulation to understand performance).  In many cases, designers use a 

systematic approach for “searching” or “exploring” the design space rather than manually 

controlling each variable.  Through this process, designers seek feedback about how different 

possibilities behave, as well as guidance, which involves suggested directions for modification that 

correspond to performance improvement.  As a result, designers require functionality within 

parametric design environments that allows for generating options, running simulations, 

discovering trends, filtering the search, adjusting variables, implementing optimization, and a 

variety of related actions.  Yet the process of parametric design is not linear or perfectly defined—

these individual activities may occur iteratively, at different phases, or in combination.  Rather than 

a rigid platform for repeatedly exploring a problem with the same approach, some designers require 

flexibility.   

In response to the widespread need for quantitatively exploring and visualizing the design 

space, researchers have developed tools that offer different mixtures of these capabilities. To 

distinguish the specific contributions of this paper towards data-driven design within a shared 

parametric environment, a brief summary of overlapping functionality is given now.  This section 

will focus on tools in Grasshopper [35], which is the platform used by the authors.  In this 

environment, tools for conducting design space exploration primarily fit into three categories, with 

some spanning in between: (1) parametric toolboxes, (2) optimization solvers, and (3) sampling 

interfaces.  Parametric toolboxes include Lunchbox [36], TT Toolbox [37], and Dodo [38], which 

contain components for geometry processing as well as some machine learning and optimization 

functionality.  Optimization solvers include Galapagos (native to Grasshopper), stormcloud [39], 

Biomorpher [40], Goat [41], Silvereye [42], Opossum [43], and Octopus [44], which incorporates 

interactive evolution and supervised learning components. Tools focused on sampling and 
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visualization include Generator [45], Genoform [46], Conduit [47], and Colibri, which is included 

with TT Toolbox and connects to Design Explorer [48].  Recent machine learning tools include 

Owl [49] and Crow [50].  Some analogous functionality for exploration and optimization is also 

available in visual programming tools connected to BIM software, such as Optimo [51] for 

Dynamo [52], and Project Refinery [53]. 

These examples are prominent among users of graphical algorithm editors, but this list is 

not exhaustive.  Since parametric design platforms encourage continuous coding and modification, 

others may have developed similar functionality on their own.  Some architecture or engineering 

firms have in-house developers creating digital tools for design exploration among their own 

studios or teams.  These groups may be formal or informal, and concentrated or distributed across a 

large firm.  However, with a few notable exceptions, many privately developed tools are not 

publicized by firms or made freely available for broad use during parametric design. 

Although there are advantages and corresponding applications for each of these mentioned 

tools, this paper introduces the Design Space Exploration (DSE) toolkit, which combines data-

driven components together in a shared format, allowing them to be easily linked together during 

explorative design processes.  Breadth of available methods and easy transfer of information 

between components is not always possible in parametric design, especially for tools that rely on a 

specific custom interface.  DSE also contains components that offer new functionality not available 

elsewhere that is focused on data science applications specific to early design, such as variable 

analysis and transformation.  However, in some cases, the components could be used in 

conjunction with the tools listed above in customized workflows.     

Overall, the toolkit approach towards design proposed here addresses many core needs of 

performance-driven parametric designers.  At the same time, it achieves greater flexibility and 

accessibility than tools that require specialized knowledge to operate in a precise way.  The toolkit 
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application on a full-scale conceptual building design example in this paper also reveals nuanced 

and instructive interactions that can occur between interdisciplinary design goals.  

  Workflow methodology 

3.1 Design Space Exploration overview 

This section first describes the functionality developed as part of the Design Space 

Exploration (DSE) toolkit.  It then outlines selected workflows and corresponding modes of 

interacting with parametric design that are enabled by the tools.  This list of workflows is not 

limiting, and others have used components in the DSE toolbox on a variety of applications [54–56], 

since the intention is to create a flexible mixture of data science and optimization functions to 

allow designers to create their own approaches. 

Design Space Exploration was developed in collaboration with students and researchers 

affiliated with the Digital Structures Research Group in the MIT Department of Architecture.  It is 

an open-source plug-in for Grasshopper and consists of components for creating design space 

catalogs and conducting machine learning, optimization, and design space organization.  Some of 

the code, including significant portions related to surrogate modeling, was developed as part of 

[57].  However, the other workflows listed here were proposed and designed by the authors, with 

some development support from research assistants.  Contributors to the software are listed in the 

acknowledgements.       

DSE is not a simulation engine itself for predicting and understanding building 

performance, such as EnergyPlus [58] or structural finite element modelers [59].  Nor is it a plug-in 

that connects geometry to performance simulation engines, such as Diva-for-Rhino [60], Honeybee 

[61] or parts of the framework in [62]. Rather, it is designed to connect to the combination of any 

numerical design variables, geometry, and corresponding simulations, as described in Figure 1. 
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Some DSE components rely on external libraries, including Accord.NET [63], Math.NET [64], and 

JMetal [65].  Design Space Exploration is freely available online for users of Grasshopper and 

could be developed for other parametric software in the future.  The toolkit is in ongoing 

development.  

 

Figure 1: Diagram of the relationships between parametric components in a data-driven workflow.  Design 

Space Exploration is a plug-in for in Grasshopper, which works with other native components and third-

party plugins to connect to simulation engines for performance evaluation. 

 

3.2 Possible workflows with DSE 

The separate DSE components developed for visual programming can operate on a 

parametric design space in a variety of ways, described in Figure 2.  What follows is a description 

of relevant workflows enabled by components, and a contextualization of these workflows within 

typical designer behaviors. These workflows are not exhaustive due to the customizability of a 

flexible toolkit.  The standard method for interacting with a performance-based parametric model 

(Workflow 1) is to modify the sliders, view the geometry, run a simulation, and then view the 

results.  For rapid evaluations, the simulation and corresponding visualization may be completed 

automatically and update every time the slider is adjusted.  This base relationship between 

variables, geometry, simulation, and output is the fundamental building block of all other 

workflows.  
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Figure 2: Different workflows enabled by the various data-driven components in DSE.  Each blue box 

(denoted by a component logo) refers to a specific component. 

A catalog approach to parametric design repeats the basic structure by automatically 

generating multiple designs and simulating their geometry in sequence, as in Workflow 2.  While 

conducting this automatic generation, decisions must be made about the method and resolution of 
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sampling in the design space.  In addition to basic grid sampling functionality, in which designs are 

selected at even increments across each design variable’s range, DSE adds random and Latin 

Hypercube sampling procedures and separates the selection of sampling type from its more general 

iterator, providing increased control over the sampling method, scope, and resolution.  At the same 

time, this separation allows the iterator component to operate on any list of designs recorded in the 

same format—for example, to take screenshots of every design along a Pareto front as found by a 

multi-objective optimization algorithm, as described in Workflow 3.   

Other workflows build on the basics of design space exploration and catalog creation by 

enabling supplemental methods from data science and engineering.  Workflow 4 shows how one 

might use a diversity filter to assist with meaningful brainstorming within parametric software.  In 

this workflow, the designer can use a dataset generated either through sampling, the history of an 

optimization run, or another technique.  This dataset may contain hundreds or thousands of designs, 

which are not all worth considering individually.  The diversity component first allows the users to 

select target performance objectives and filter out all designs that are not within a specified range 

of the target.  Then, it asks the designer for a number of representative designs he or she would like 

to consider, before using the diversity measurements in [66] to generate a highly diverse, curated 

set of samples for consideration.   

The next possible workflow saves time, preserves original parametric relationships, and 

prevents clutter on a visual scripting canvas while transforming design variables using mapping 

coefficients, as described in [67].  For this task, a DSE component reads in sliders, a design space 

scale, and a set of coefficients, which may be calculated within or outside Grasshopper using data 

science approaches.  These coefficients can be numbers, which corresponds to linear mapping of 

the original variables, or they can be dynamic and depend on the script itself.  Once these 

coefficients are established, a user can create separate synthetic variable sliders to control the 

design, which override Grasshopper’s main solution structure and adjust the original sliders that are 
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still connected to the geometry and simulation.  Since new sliders do not have to be reconnected 

each time, designers can use this workflow to rapidly cycle through synthetic variables.  

The remaining workflows described here feature direct applications of classification and 

supervised learning for design space exploration.  Workflow 6 involves calculating effects and 

cluster-based design exploration—these techniques are described in greater detail in [68].  

Workflow 7 depicts how a surrogate modeling component trains a predictive model of objective 

performance based on an existing dataset.  Once the model has been appropriately trained, the 

simulation can be turned off, and the geometry can be manipulated with only the surrogate model 

information showing essentially in real-time depending on geometric complexity.  In Workflow 8, 

these live predictions have been plugged into a general interface for gradient-based interactive 

optimization, as described in [69].  The interactive optimization component of DSE offers the most 

engaging separate interface for moving in both the design and objective spaces, but has significant 

requirements, including previous simulation or objective functions that can be approximated with 

reasonable accuracy. 

3.3 Designer behavior with DSE 

These workflows span across stages of parametric design and their corresponding 

behaviors, but trend towards late conceptual design activities.  A variety of models exist to describe 

design behaviors, including Gero’s Function-Behavior-Structure (FBS) ontology [70], which has 

been used in cognitive design studies for parametric design  [71,72].  While considering the FBS 

model, most behaviors enabled by this toolkit involve reasoning about the solution space through 

synthesis, analysis, evaluation, and potential reformulation.  The toolkit is primarily for 

understanding the behavior of a structure (Bs), comparing it to expected behavior (Be), and 

manipulating a design description (D), rather than the initial Formulation itself.  Another model for 

digital design is presented by Oxman [73], which describes four classes of traditional design 
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activities: representation, generation, evaluation, and performance.  Based on Oxman, most 

workflows envisioned with these components activate a performance-based generation model by 

providing both performance feedback and guidance in various forms.  

More specific is Geyer and Beucke’s description of interactive cycles for Multidisciplinary 

Design Optimization in AEC, which proposes a relationship between a designer and an 

optimization process [74].  A modified version of this framework is provided in Figure 3.  Not 

every behavior enabled in the DSE toolkit involves optimization directly, and so a parallel strand of 

systematically exploring options has been added.  The possible DSE workflows from Figure 2 are 

labeled in relation to these actions, describing when they might fit into the process.  In addition to 

the applications shown here, individual components within DSE might have broader connections—

for example, the function that calculates the set design diversity might be used in the filtering 

workflow described, or it might be used as an optimization constraint or objective function.  The 

overall goal is to provide support and workflow flexibility for approaching conceptual design, 

rather than imposing a prescriptive procedure.  While Figure 2 provides context for how and when 

the toolkit might typically be used, other customizable workflows are possible.   

 

 

Figure 3: The proposed workflows from Figure 2 projected onto a modified “Interactive workflow for design 

process and optimization”, adapted from [74] and [75]. 
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The primary contribution of this section is the mapping of component relationships and 

how they can be structured to enable effective integration of interactive optimization and data 

science in parametric design.  Next, implementation and testing of these tools on a comprehensive 

example yields additional insight into data-driven early design processes.  

 Example of a conceptual grid shell roof 

4.1 Case study description 

This section provides an example of how the DSE components could be used in sequence 

to pursue parametric design.  It begins by analyzing and modifying a parametric design space 

during formulation, then uses a diversity filter to select specific directions for further exploration, 

and finally demonstrates how interactive optimization can be used locally on a selected working 

design concept.  There are some parallel aspects or repeated steps in the process for demonstrative 

purposes, as a designer would not need to consider every individual approach simultaneously.  

However, this example shows how the flexible approach to tool and interface development offers 

designers a buffet of data-driven methods that can stimulate creativity and support design ideation 

throughout a computational process. 

The selected case study is the design of an athletic center for a campus environment in 

Boston, MA.  For the case study, it is assumed that the design team decided on a hybrid structural 

system involving a curved grid shell roof, which can be supported on large external columns, as 

well as directly on the ground.  When the edge of the grid shell is lifted off the ground, the 

resulting gap can be filled with a mixture of opaque wall and transparent glazing. Thus, across the 

various configurations, the primary structural action may be arching in compression, or it may be 

spanning in bending between columns.  Structural models for this example account for bending by 
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allowing members to grow deeper, which approximates the effect of adding global depth to the 

roof surface when required.    

For many of the possible designs, the columns form clusters or tripods, which assist with 

lateral loads as well as gravity loads.  The column clusters are especially important for variants 

with flatter roofs that are entirely column-supported, but less so for arching structures that transfer 

loads directly to the ground.  The overall massing is explored by considering different boundary 

conditions, curvatures, and orientations within the original design concept.  Due to its adjustable 

variables, the design space contains considerable freedom, and the massing and structural system 

decisions have both performance and visual implications.  

 

Figure 4: A visualization of design objectives and variables for the case study.   

The case study has four numerical objectives, in addition to an acknowledged desire for a 

visually expressive structure.  Two are related to structural performance (total structural weight and 

structural weight / area), and two are related to energy performance (total annual energy and energy 

use intensity for the enclosed portion).  These objectives are common in parametric structural 

design and parametric sustainable design, and have been considered together in previous research 

[55,76–78].  This example primarily focuses on the normalized objectives, which are structural 



14 

 

weight / area, abbreviated as structural material quantity (SMQ), and energy use intensity (EUI).  

The initial structural simulations were conducted using Karamba’s optimize cross section feature, 

which runs a finite element analysis and performs an iterative procedure to size each member for 

axial, bending, shear, and local buckling.  The initial energy simulations used Diva-for-Rhino to 

generate a multi-zone model adequate to building codes for Boston.  Full details concerning model 

settings can be found in [79], which used the same base simulations.  The goal of the case study is 

to achieve a high-performance design according to these four objectives, but in the context of a 

natural design process in which other aspects of the design may influence decision-making and 

should be considered simultaneously.   

A few distinct building types within this design space are shown in Figure 5, along with a 

comparable precedent for each geometry.  These possibilities include cantilevered spanning 

structures, arches, vaults, and other variations of a typical long span design.  Although the column 

configurations change the force flow for some of these examples, many behave in a similar manner 

to their precedents.  As is true in the built environment, some of these designs have clear structural 

logic and will likely perform well in that domain, while others will not.  By considering such a 

wide design space, it is possible to see how a designer might use the approaches in this paper at 

different scales for global brainstorming, local optimization within an already sound concept, or a 

combination of the two. 
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Figure 5: Potential options within the design space for this example, along with building precedents they 

resemble.  Clockwise from top left are the Neue Nationalgalerie in Berlin [80]; SICLI Company Building in 

Switzerland [81]; Tulip Tree Shelter in Bentonville, AR ;  El Altillo in Mexico City; Kogod Courtyard in 

D.C.; Great Glasshouse in the National Botanic Garden of Wales ; Thompson Area in Hanover, NH [82]; 

and Dulles International Airport in Virginia [83].  Photos not credited are by the authors. 

4.2 Early design space analysis  

Initially, a designer might begin exploring the design space through direct slider 

manipulation, sampling, or optimization, in accordance with common methodologies.  Prior to a 

more exhaustive sampling or optimization procedure, when variables are still being established, 

one useful approach is to gain a quick understanding of how the variables affect the problem in 

terms of performance.  Intuitively, the designer might decide to begin this exploration by focusing 

on one objective first, due to experience, interest, or prioritization.  In this case, structure is 

considered first, since there is a strong relationship between geometry and structural weight that 

will become clearer as the example progresses.  A first pass method for calculating variable 
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importance for structure is demonstrated in Figure 6.  This effects calculation was conducted using 

three levels corresponding to variable settings at 0.25, 0.5, and 0.75 of the available range.   

Since there were more than 13 variables, which is a limit of the orthogonal array 

implemented in DSE, two separate calculations were conducted and then normalized using an 

effects calculation that included variables from both original groups.  The results of this analysis 

indicate that column spacing, edge start, and overall size have a considerable influence over the 

structural performance.  Column spacing mostly dictates the largest span for a given footprint, and 

it can remove intermediate columns for arching geometries, while the edge start generally 

prescribes the boundary condition along the outside of the roof.  Conceptually, the overall size 

variables should control structural performance, as larger structures and corresponding spans 

require more area.  However, designers must be careful to not assume too much from this analysis, 

as there is clearly noise in the data, even as knowledge of the main relationships can be useful.  

 

Figure 6: An initial estimation of variable importance to the problem by calculating variable effects 

4.3 Variable transformation 

 After understanding variable importance, the designer might seek creative solutions within 

the design space.  At this point, he or she could sample the design space at a resolution that fits the 

practical pressures on the design process.  In this example, a Latin Hypercube sampling 

methodology (n = 1000) was used to provides the underlying dataset used for the following 
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workflows.  Beyond viewing these samples as a design catalog, there are other ways to use a 

dataset to pursue more natural, interactive, and flexible approaches to design exploration.  One 

method is to mine the existing dataset for patterns and find new ways of manipulating geometry 

that connect more directly with performance.  Figure 7 provides two example directions for 

morphing geometry that are meant to correlate with performance for both structure and energy, 

based on Canonical Correlation Analysis (CCA).  These synthetic variables are found by 

conducting CCA, extracting the coefficients for each original variable, and then creating a slider 

that controls all original variables simultaneously through multiplication with these coefficients.  In 

the structural direction, very large spans and a relatively flat roof give way to a much smaller, 

curved roof that is supported at the corners.  Along this continuum, the structure transitions from 

acting primarily in bending to behaving primarily in compression, which is more efficient.  For 

energy, a tall, high-surface area design transitions towards larger, lower surface area structures 

before finding a design that is too low to be feasible for the programmatic requirements at the 

edges of the design space.    

 

 

Figure 7: CCA variable directions based on SMQ and EUI for the design space 
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The creation of synthetic variables like those shown in Figure 7 has a few potential 

benefits.  First, the designer might use these directions during live exploration, mostly likely in 

conjunction with the original sliders to provide more flexibility while moving from global to local.  

In addition, this slider essentially provides a composite visualization of which design variables 

matter, and how they should trend in order to improve performance. While this does not tell the 

whole story for complex objective functions, it can provide additional information and, in some 

cases, give increased control over the design.  In future cases with more variables, or when variable 

generation might be automated from an initial sketch, such methods for interpreting the morphing 

design space could see further applications. 

4.4 Filtering options 

Next, or independently at another point in the process, a designer might want to brainstorm 

and find a diverse range of possibilities, before choosing and further refining a single option.  

Working again from a generated dataset that contains either original or synthetic variables, a 

designer could achieve greater diversity while considering fewer results by using a diversity filter.  

In this example, the designer first starts with the large dataset that was employed for creating 

synthetic variables.  To obtain an initial starting point for further design, the designer first puts in a 

set of target numerical objectives.  Rather than consider all designs in the dataset that meet this 

qualification simultaneously, which are often too numerous for a human to fully consider without 

systematic organization [84], the designer can use a diversity filter to return 12 sufficiently 

different designs from the set.  The goal is to produce a wide range of potential options for further 

refinement, within a small enough group of designs to meaningfully consider each one.  The 

outcomes of this section are thus not final solutions, but intermediate geometries meant to inspire 

creativity. 
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As an exploratory procedure, this paper considers progressively lower isoperformance 

levels for the design space to understand how much diversity is sacrificed by moving towards 

better structural performance within the dataset.  Figure 8 shows the number of qualified designs, 

diversity of a random sample within each performance level, and the diversity of a specifically 

filtered set for structural performance targets ranging from 80-600 kg / m2.  The number of 

qualified designs shows a downward trend with lower structural material quantities—for example, 

within this dataset, fewer designs can be found at 100 kg / m2 than at 200 or 300 kg / m2.   

However, no similarly clear trend exists for design diversity.  To arrive at the diversity 

ranges in Figure 8, a random sample of 12 designs was first taken from within each qualified set 5 

times, and the diversity of this culled set was measured repeatedly.  In this paper, an average of the 

two sparseness methods and the outlier method was used as a unitless diversity metric for relative 

comparison.  Next, the DSE diversity filter was used to find 5 sets of 12 qualified designs that have 

measurably higher diversity, using the same metrics.  There is randomness in each procedure, 

hence the ranges and repeated sampling for research interest.  Yet in each case, the diversity filter 

leads to more diverse designs than a random selection, which might be the default way of initiating 

a similar interactive workflow.  Comparing across performance targets indicates that little diversity 

is sacrificed when moving towards 100-150 kg / m2 from the poorer performing levels.  Armed 

with this knowledge, a performance-conscious designer still in the creative brainstorming phase 

might begin by considering potential options at these lower ranges. 

A visual comparison of example isoperformance sets from this exploratory analysis is 

provided in Figure 9.  This image shows 12-design sets at three separate performance levels: 400, 

200, and 150 kg / m2, along with corresponding overall steel quantities. Following from the 

measured diversity, each of these sets provides noticeably dissimilar directions for further 

exploration and refinement.  Moving down the levels, there are other trends, such as increasing 

curvature and eventually the appearance of infeasible solutions, which must be managed. While 
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each of these levels satisfy the need for geometric diversity, it may be wisest to initiate further 

exploration at one of the lower performance levels, depending on the needs of a project.  

 

Figure 8: A comparison of number of qualified designs and diversity of diversity culled sets for 

brainstorming, at different structural performance targets 

Regardless of which individual designs would be selected, it is clear from the large 

differences and unorthodox geometries that these designs represent non-standard solutions, which 

expands the possible options during a brainstorming phase, albeit dependent on the resolution of 

previous manual steps.  Designers would have had trouble rapidly generating each of these options 

with only a chosen target threshold and an automated optimization process.  When compared to a 

pure sampling technique, the diversity filter makes sure to eliminate designs that are too similar 

from consideration and allow designers to meaningfully engage with their preferred number of 

options. 
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Figure 9: Example sets of 12 diverse design possibilities for three different structural performance levels.  

Moving towards Level 1 improves performance without meaningfully sacrificing too much diversity, but also 

leads to some geometrically unqualified designs. 
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4.5 Live feedback and interactive optimization 

After formulating and analyzing a design space, or selecting a design from a brainstorming 

activity, a user would likely continue refining the design.  With traditional parametric methods, it is 

only possible to adjust the original sliders.  Furthermore, simulations must be completed at each 

iteration, or turned off for the sake of live geometric changes.  Using the interactive optimization 

framework enabled in Workflow 8, designers can adjust the design while moving in the design 

space and objective space simultaneously.  The first step is to use the previously generated dataset 

to train surrogate models that predict in real-time the estimated performance of the building.   

For this example, both Random Forrest and Ensemble Neural Network surrogate models 

were attempted by splitting the dataset into training and validation data.  After testing, a Random 

Forest with 100 trees and 0.6 training set ratio was most accurate for the structural surrogate model, 

and a Random Forest with 200 trees and 0.6 training set ratio was best for energy.  The structural 

model used 12,000 initial simulations for training and validation, while the energy model used 

1,000.  Example plots of actual versus predicted performance for structural weight per area (500 

test points) and Energy Use Intensity (288 test points) are provided in Figure 10.  In this figure, the 

dotted lines represent 10% difference from the actual simulation values.  The energy surrogate 

model is more accurate than the structural model overall.  However, in the feasible structural range 

for the design problem, there is a strong relationship between predicted and actual data, which can 

still help support designers making live geometric decisions.    
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Figure 10: Visualization of the accuracy of surrogate models for structure and energy 

 

The output of these surrogate models can then be projected onto the screen along with 

other geometric design information, as shown in Figure 11.  As sliders are moved, the results of the 

surrogate models update in real-time, which the designer can use to further build intuition about the 

design space and understand if local movements improve or worsen performance.  Various 

visualization techniques can provide the performance feedback—these example graphics use native 

Grasshopper components.   
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Figure 11: Live visualization of geometry and performance (according to the surrogate models) together 

 

The design can also be manipulated interactively using gradient information from the 

objectives, which provides the user with specific directions to improve performance.  The starting 

point for this local exploration can be a design already optimized for one objective, a general 

concept with room for improvement selected using the diversity filter, or any other preferred point 

in the design space.  Using the Stepper component, which has a separate interface, designers can 

select an objective, pick a step size, and click to move in the direction of the gradient or its 

opposite.  In this stage, the designer can meaningfully engage with all design objectives 

simultaneously to understand their relationships while making subtle adjustments and ultimately 

refining the design.   

As shown in Figure 12, the changing objective functions can trend together for this design 

example, but tradeoffs are often typical in early stage design.  Yet even so, the designers might not 

want to keep improving a given objective until it flattens out, since following a single path through 

the design space could lead to better performing designs that deviate too far from the original 

design intent, fail to balance competing objectives, or violate obvious spatial constraints.  In an 
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automated optimization, such geometric constraints must be manually coded into the problem, 

which takes time and expertise to do properly.  The threshold at which a design might deviate from 

the original intent is also ignored by a computer.  By gradually optimizing step-by-step, these 

issues can be directly managed by the designer without any additional scripting.  Through the 

Stepper interface, it is also possible to attempt to move in isoperformance directions, which can 

support brainstorming.  These tools, when used sequentially, in parallel, or both, enable a rich, 

data-driven, multi-objective approach to early computational design. 

4.6 Comparison of designer types and lessons learned 

Building designers vary in their needs, approaches, and desired outcomes.  In some cases, 

data-driven methods are used to explore large geometric design differences for expressive, non-

traditional applications, with an eye towards quantitative performance goals along with outside 

design criteria.  In these settings, designers are open to a wide range of possibilities, and do not yet 

know which aspects of the design should remain constant as it is adjusted.  For other situations, 

designers might be refining an already sound concept, while considering multiple objectives 

simultaneously, perhaps because secondary objectives were ignored during the initial ideation. In 

either case, there are potential benefits and challenges to using these interactive methods compared 

to other available parametric workflows. 

Figure 12 presents two paths through the design and objective spaces for this case study, 

based on the hypothetical needs of two different design teams.  The dotted lines represent the 

changes in objective functions through discrete steps taken in the objective space, and the start and 

end points represent actual simulations of these two designs, which give a more accurate evaluation 

of overall performance changes.  These paths were generated using a combination of design space 

sliding and objective space stepping, which is enabled through DSE, allowing for both direct and 

indirect geometric manipulation.   



26 

 

 

Figure 12: Possible paths through the design space using interactive optimization, for two different designer 

types 

 

In the first example, the starting point is a form that seemed compelling from a visual 

perspective but does not perform well.  By moving through the design space, the designer notices 

how SMQ and EUI can both be reduced, while still maintaining visual aspects of the original 

concept.  While conducting this method, the designers can also consider qualitative feedback and 

even hard constraints, such as required programmatic area, without needing to code them directly 
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for an automated solver.  In this region of the design space, the surrogate model tends to be fairly 

accurate, and the result is a substantially better performing concept as measured by simulation.  

In the second design space path, a structurally efficient concept has already been 

developed.  The initial oval grid shell, which is symmetrical and supported along all edges, is a 

higher performing design than most other options in the space, weighing in at under 50 kg / m2.  

This structural surrogate model, which maps relationships between variables and objectives across 

a much broader design space, severely overestimates the amount of steel required to build it 

compared to the simulation.  The energy surrogate model provides a similar overestimate.  These 

inaccuracies make the stepping itself more difficult—attempting to improve performance in what is 

clearly near a local minimum leads to more back and forth.  In the end, the simulated performance 

turns out better for both objectives after moving through the design space, but not with the change 

in magnitude for the freer exercise above. 

Although the paths show improved performance, this exercise raises some issues.  It is 

obvious from the second example that surrogate model accuracy matters.  The goals of this case 

study necessitated an extremely broad design space, which made it difficult for a surrogate model 

to properly capture structural performance at the extremes.  Such methods must be properly tuned 

to the resolution of the question at hand, which was not the case for the second design path.  Even 

for problems in which surrogate models are generally more accurate, the risks propagated by their 

uncertainty never go away.  In other words, this approach does not always lead to an efficient form, 

due to either user preference, user error, or relationships that are simply too difficult to model. 

This is also true of using complicated performance models at all in the early design stages.  

Especially for structural and energy modeling, which many practitioners and researchers now do 

parametrically, complex design spaces require care to ensure meaningful results.  In a context 

where subtle design decisions are being made and one or two performance metrics dominate the 

conversation, it may make more sense to employ a catalog or run a long optimization instead of 
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using live surrogate modeling.  The choice of proper tool or method can also be discipline specific, 

and a general multi-objective data framework is not always the answer. 

Yet the utility of these methods for supplementing creative brainstorming processes, 

understanding and interpreting the design space, and making important design decisions about 

overall geometry is clearly demonstrated by this design example.  

 Discussion 

5.1 Design example performance compared to benchmarks 

While the main goals of this paper relate to demonstrating, justifying, and applying the 

exploration of relative options within a (possibly dynamic) design space, it is worthwhile to 

compare the performance of the options mentioned here to databases of actual buildings.  This 

comparison illuminates the magnitudes at which it is possible and practical to improve performance 

in the domains of structure and energy, which has implications for which performance objectives 

should be considered in early parametric design and how they might be prioritized.  It also helps 

contextualize and even quantify the potential benefits of a toolkit for considering geometric and 

technical goals simultaneously, which was not possible for many existing buildings.  Finally, it 

clarifies ways in which performance-conscious designers might apply these tools to supplement 

their workflows with a variety of intentions—finding optimal shapes, hitting generally accepted 

performance targets, or making minor improvements to an already preferred shape.   

First, the range of structural options in this paper is compared to buildings in the DeQo 

database [85], which contains an extensive record of structural material quantities for built projects 

around the world [86,87].  Figure 13 groups examples in this case study with other buildings based 

on construction material, number of stories, and longest clear span. The meaningful range of the 

case study contains an upper bound of around 600 kg/m2, with the knowledge that general concepts 
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at this performance level could be substantially improved through interactive optimization.  The 

lower bound considered is around 100 kg/m2, and a few carefully chosen structures in the design 

example are even lower.  While such high-performance designs are possible in the design space, it 

must be stressed that the simulations are only estimates and are not methodologically identical to 

the SMQ data collected for real buildings.  Thus, they are most useful for assessing relative 

performance. 

Nevertheless, the results of this example indicate that computational exploration can 

meaningfully move designs towards high performance.  This result must be understood cautiously, 

since a single-story roof that can behave primarily in tension or compression should be lighter per 

usable square meter than a tall tower, and the DeQo database only allows for basic segmentations.  

In the design context of shells or other lightweight geometries, 100 kg/m2 is a more reasonable 

target for a long span structure, compared to the variety of buildings in DeQo.  Capable structural 

designers around the world have pushed even lower on SMQ for high-performance roofs, which is 

desirable for economic and environmental reasons.   

Figure 13 supports another major conclusion: for structural designs, even with a given 

footprint and parametric model, it is easy to find options that are 10x, 20x, or even 30x worse in 

terms of material quantities.  Since stakes are quite high for designers in the structural domain, it is 

important that these data-driven tools be used by or in conjunction with experienced designers, who 

can identify potentially good and bad designs based on an understanding of structural behavior.  In 

these situations, data-driven techniques can help discover potentially new forms that perform 

similarly to well-known shapes, locally optimize geometry, or consider structural decisions with 

the benefit of multidisciplinary performance feedback.  
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Figure 13: The range of performance improvement generally considered for structural weight per area in 

this case study, compared to similar buildings from the DeQo database, after De Wolf (2016) 
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Two similar comparisons for the energy model reveal that geometric design decisions have 

a smaller performance multiplier in this domain than for structure.  The first comparison is to 

similar buildings found in the Building Performance Database (BPD) [88], which was created by 

Lawrence Berkeley National Laboratory and is the largest dataset of information about the energy-

related characteristics of commercial and residential buildings in the United States [89].  Figure 14 

includes all buildings of comparable use in the BPD constructed after 2000, in the same climate 

zone (5) as Boston.  Although there is no specific category for an athletic center, the selection 

included buildings categorized as education, healthcare, lodging, nursing home, office, public 

assembly, retail, service, and transformation, while avoiding energy outliers such as convenient 

stores, data centers, grocery stores, laboratories, and parking garages.   

Based on the interactive design space paths and sampled bounds, it is generally possible to 

move from slightly over the median building to substantially better than the 25th percentile, by 

making geometric changes using data-driven tools in DSE.  As with structure, being considerably 

better than the median does not in itself indicate a high-performance building.  Depending on use, 

climate, and other factors, contemporary practicing designers routinely set more ambitious source 

EUI targets to reduce the environmental impacts of their buildings.  Often, these targets are a direct 

response to the Architecture 2030 Challenge, or a similar push for better performance in buildings.  

For example, the Zero Tool from Architecture 2030 indicates a baseline source EUI of 305 kWh / 

m2 for a new construction fitness center in Boston with a similar square footage [90].  A 70% 

reduction would set a target of 92 kWh /m2, and an 80% reduction would leave a target of 61.  

The geometric changes explored in this example alone cannot reach these targets.  

Nevertheless, it does appear that early stage energy modeling during geometric exploration has 

some noticeable benefit, in that it allows designers to move towards geometries that are relatively 

more efficient and would likely lead to lower energy uses as the design is further refined.   
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Figure 14: The range of performance improvement generally considered for EUI in this design example, 

using only geometric variables, compared to similar buildings from Lawrence Berkeley National Lab’s 

Building Performance Database  

The second comparison considers the final design obtained from interactive stepping as it 

was modeled, versus how much the EUI could be reduced by upgrading non-geometric settings for 

energy performance.  The case study was conducted with a code-compliant building rather than one 

with many energy-efficient features, such that users could more easily perceive differences in 

energy performance during geometric exploration.  To understand the consequences of magnifying 

geometric differences with a mid-efficiency model, another test model was created with better 

insulation and glazing, more efficient lighting, and less substantial requirements for showers and 

equipment power density.  Figure 15 shows consecutive upgrades in these domains, according to 

the values in Table 1.  Overall, the energy efficiency features drop the baseline EUI of the selected 

design to ~150 kWh/m2, or around 55% of what was originally shown in the model.  These design 

decisions have a substantial influence over the performance of the building and may be worthwhile 

to contemplate using data-driven approaches.    However, they can be made independently of 

geometric exploration, and they often involve discrete options with associated costs, which is a 

different conversation than an exploration of form. 
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Figure 15: History of energy upgrades for the design example, which are here explored independent of 

geometry 

5.2 Prioritization in multi-objective design 

These comparisons to performance databases and an alternative energy modeling approach 

puts the improvements enabled by data-driven design of overall building form in context.  If 

designers did not have access to such tools and intended to “optimize” within an established 

geometry, or adjusted geometry without simulation feedback, they would miss out on potential 

savings in material usage, energy consumption, and other performance considerations that interact 

with geometry.  A comprehensive design study by Brown [79] quantifies differences in the 

simulated performance outcomes of designers with access to performance-free environments, 

versus those with access to several workflows described in this paper.  However, the main impact 

of the toolkit described here is its demonstrated flexibility and accessibility, which makes it more 

likely that designers can reap the benefits shown by providing context to the case study. 

At the same time, these comparisons also point to certain quantitative relationships that 

should be managed during conceptual design. For example, while structural material usage changes 

more substantially with geometry, annual energy over the lifetime of a building has a larger 
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lifecycle effect than the initial structural embodied energy for typical buildings, although this 

relationship is changing with the movement towards net-zero operation. Yet energy models are not 

always as effective “form-generators” as models for daylight, structure, and other objectives, 

depending on the design variables in question and the resolution of the model. In some cases, a 

design team might be better off with a simplified shoebox model to set all energy parameters, and 

then explore form with those settings already established, along with the knowledge that subtle 

geometric differences will not greatly affect overall EUI.  Prioritization between objective 

functions may also change for different projects.  One may want to increase roof surface area for 

PV at the expense of additional heat transfer, or the embodied energy in the structural material may 

be less concerning for wood structures versus concrete and steel.  For this reason, data-driven 

design tools that leave decisions about specific workflow to the user have advantages.  

Simulation-based computational design tools are thus meant to enhance or supplement 

designers’ abilities rather than replace them.  These tools can improve the performance of standard 

designs or push high-performance designs to use even less embodied and operational energy, while 

also illuminating how these objectives might interact with a long list of related goals.  The design 

space might need to be adjusted and refined to lead to good solutions, which is often a human task 

supported by computational feedback.  This is true of most early stage modeling platforms or 

comparable design tools, even as they begin to employ techniques like data science and machine 

learning—most interactive systems cannot yet complete all work alone, from problem formulation 

through final selection.  In the search for non-standard forms and creative freedom, designers still 

bring their own experiences and sensibilities to the process, often in a more direct, tangible way 

than they would to automated optimization.  
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 Conclusions 

6.1 Contributions towards flexibility & accessibility in data-driven parametric 

design 

This paper describes several contributions towards data-driven, multi-objective, parametric 

design.  Primarily, it proposes and justifies a toolbox approach, called Design Space Exploration, 

by explaining natural relationships between data science and optimization components that enable 

new data-driven strategies beyond the typical creation of design catalogs.  These approaches are 

demonstrated on a case study involving complex geometry, considerable design freedom, and a 

mixture of qualitative and quantitative design goals.  Advantages of the toolbox approach include 

better workflow flexibility and the possibility of customizing how design data is used without 

needing to manipulate text-based code.  Novel functionality within the DSE toolkit can also 

increase creative possibilities an enable more meaningful and directed consideration of the early 

design space. By enabling the workflows described throughout, these freely available tools provide 

the basis for further implementation of data-driven methods within both research and building 

design practice, which increases their potential for broader impact. 

6.2 Future work and concluding remarks 

Since the toolbox is in constant development, there are clear areas for future work.  The 

tools can gradually be improved in terms of user interfaces, robustness, and additional 

functionality.  Another topic of research and software development would include connecting these 

methods directly to a generalized data visualization platform.  Although used to clarify ideas, data 

visualization techniques themselves are largely out of the scope of this paper.  There are existing 

tools for design space visualization as mentioned in the literature review [44,47,48,91], and some 

have been connected to Grasshopper or related interfaces in compelling ways. While there are 
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opportunities to develop new methods for effective data visualization related to computational 

design, this part of the process was separated from the components that control and operate on the 

information found throughout the design space, which was the focus of this paper.  It is also worth 

mentioning that the ideas around data-driven design proposed here are platform agnostic and not 

married to specific software.  As such, future work could extend this functionality to the programs 

that designers adopt in the upcoming years.  More broadly, ongoing efforts to generalize surrogate 

modeling techniques beyond individual parametric models, extend interfaces to facilitate multi-user 

interaction, and further adapt optimization for creative applications could be implemented as part 

of a toolbox.  Each of these areas for future work would build on a conceptual framework for data-

driven, multi-objective design. 
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Tables 

 

Table 1: Energy upgrades and corresponding model settings for the example 

Setting Original Upgrade 

Envelope Upgrades 
R-2.75 Walls + R-3.67 Roof 

Double Pane Clear Glass 

R-5.5 Walls + R-9.17 Roof 

Double Pane Low-E Glazing 

Lighting Upgrades 12 w/m2 5 w/m2 

Equipment & Shower Reduction 12 w/m2 5 w/m2, 50% reduction in showers 

 

 

 

 

 


