Hydrogel Ionic Diodes toward Harvesting Ultralow-Frequency Mechanical Energy

Energy harvesting from human motion is regarded as a promising protocol for powering portable electronics, biomedical devices, and smart objects of the Internet of things. However, state-of-the-art mechanical-energy-harvesting devices generally operate at frequencies (>10 Hz) well beyond human activity frequencies. Here, a hydrogel ionic diode formed by the layered structures of anionic and cationic ionomers in hydrogels is presented. As confirmed by finite element analysis, the underlying mechanism of the hydrogel ionic diode involves the formation of the depletion region by mobile cations and anions and the subsequent increase of the built-in potential across the depletion region in response to mechanical pressure. Owing to the enhanced ionic rectification ratio by the embedded carbon nanotube and silver nanowire electrodes, the hydrogel ionic diode exhibits a power density of approximate to 5 mW cm(-2) and a charge density of approximate to 4 mC cm(-2) at 0.01 Hz, outperforming the current energy-harvesting devices by several orders of magnitude. The applications of the self-powered hydrogel ionic diode to tactile sensing, pressure imaging, and touchpads are demonstrated, with sensing limitation is as low as 0.01 kPa. This work is expected to open up new opportunities for ionic-current-based ionotronics in electronics and energy devices.

Files

Metadata

Work Title Hydrogel Ionic Diodes toward Harvesting Ultralow-Frequency Mechanical Energy
Access
Open Access
Creators
  1. Yong Zhang
  2. Chang Kyu Jeong
  3. Jianjun Wang
  4. Xin Chen
  5. Kyoung Hwan Choi
  6. Long-Qing Chen
  7. Wen Chen
  8. Q. M. Zhang
  9. Qing Wang
License In Copyright (Rights Reserved)
Work Type Article
Publisher
  1. Advanced Materials
Publication Date September 2021
Publisher Identifier (DOI)
  1. https://doi.org/10.1002/adma.202103056
Deposited August 10, 2022

Versions

Analytics

Collections

This resource is currently not in any collection.

Work History

Version 1
published

  • Created
  • Updated
  • Added Creator Sandra Elder
  • Added Hydrogel Ionic Diodes toward Harvesting Ultralow-Frequency Mechanical Energy.pdf
  • Updated License Show Changes
    License
    • https://rightsstatements.org/page/InC/1.0/
  • Published
  • Updated Publisher, Publisher Identifier (DOI) Show Changes
    Publisher
    • Advanced Materials
    Publisher Identifier (DOI)
    • https://doi.org/10.1002/adma.202103056
  • Deleted Creator Sandra Elder
  • Added Creator Yong Zhang
  • Added Creator Chang Kyu Jeong
  • Added Creator Jianjun Wang
  • Added Creator Xin Chen
  • Added Creator Kyoung Hwan Choi
  • Added Creator Long-Qing Chen
  • Added Creator Wen Chen
  • Added Creator Q. M. Zhang
  • Added Creator Qing Wang
  • Updated