Analyzing Cross-Validation for Forecasting with Model Uncertainty
When forecasting with economic time series data, researchers often use a restricted window of observations or downweight past observations in order to mitigate the potential effects of parameter instability. In this paper, we study the problem of selecting a window for point forecasts made at the end of the sample. We develop asymptotic approximations to the sampling properties of window selection methods, and post-window selection point forecasts, where there is local parameter instability of various sorts. We examine risk properties of point forecasts made after cross-validation to select the window, and compare this approach to some alternative methods of selecting the window. We also propose a quasi-Bayesian form of cross-validation that we find to have good risk properties.
© This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/
Files
Metadata
Work Title | Analyzing Cross-Validation for Forecasting with Model Uncertainty |
---|---|
Access | |
Creators |
|
License | CC BY-NC-ND 4.0 (Attribution-NonCommercial-NoDerivatives) |
Work Type | Article |
Publisher |
|
Publication Date | January 1, 2022 |
Publisher Identifier (DOI) |
|
Deposited | February 17, 2023 |
Versions
Analytics
Collections
This resource is currently not in any collection.