Two-dimensional HYSCORE spectroscopy reveals a histidine imidazole as the axial ligand to Chl<sub>3A</sub> in the M688H<sub>PsaA</sub> genetic variant of Photosystem I

Recent studies on Photosystem I (PS I) have shown that the six core chlorophyll a molecules are highly coupled, allowing for efficient creation and stabilization of the charge-separated state. One area of particular interest is the identity and function of the primary acceptor, A0, as the factors that influence its ultrafast processes and redox properties are not yet fully elucidated. It was recently shown that A0 exists as a dimer of the closely-spaced Chl2/Chl3 molecules wherein the reduced A0[rad]− state has an asymmetric distribution of electron spin density that favors Chl3. Previous experimental work in which this ligand was changed to a hard base (histidine, M688HPsaA) revealed severely impacted electron transfer processes at both the A0 and A1 acceptors; molecular dynamics simulations further suggested two distinct conformations of PS I in which the His residue coordinates and forms a hydrogen bond to the A0 and A1 cofactors, respectively. In this study, we have applied 2D HYSCORE spectroscopy in conjunction with molecular dynamics simulations and density functional theory calculations to the study of the M688HPsaA variant. Analysis of the hyperfine parameters demonstrates that the His imidazole serves as the axial ligand to the central Mg2+ ion in Chl3A in the M688HPsaA variant. Although the change in ligand identity does not alter delocalization of electron density over the Chl2/Chl3 dimer, a small shift in the asymmetry of delocalization, coupled with the electron withdrawing properties of the ligand, most likely accounts for the inhibition of forward electron transfer in the His-ligated conformation.

Files

  • GorkaBBA2021_Accepted.docx

    size: 20.9 MB | mime_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document | date: 2021-07-21

Metadata

Work Title Two-dimensional HYSCORE spectroscopy reveals a histidine imidazole as the axial ligand to Chl<sub>3A</sub> in the M688H<sub>PsaA</sub> genetic variant of Photosystem I
Access
Open Access
Creators
  1. Michael Gorka
  2. Elijah Gruszecki
  3. Philip Charles
  4. Vidmantas Kalendra
  5. K. V. Lakshmi
  6. John H. Golbeck
License In Copyright (Rights Reserved)
Work Type Article
Publisher
  1. Biochimica et Biophysica Acta - Bioenergetics
Publication Date July 1, 2021
Publisher Identifier (DOI)
  1. https://doi.org/10.1016/j.bbabio.2021.148424
Deposited July 21, 2021

Versions

Analytics

Collections

This resource is currently not in any collection.

Work History

Version 1
published

  • Created
  • Added GorkaBBA2021_Accepted.docx
  • Added Creator Michael Gorka
  • Added Creator Elijah Gruszecki
  • Added Creator Philip Charles
  • Added Creator Vidmantas Kalendra
  • Added Creator K. V. Lakshmi
  • Added Creator John H. Golbeck
  • Published
  • Updated
  • Updated