
THE EFFECTS OF MAGNETIC FIELDS

AND

FIELD-ALIGNED ROTATION ON LINE-DRIVEN

HOT-STAR WINDS

by

Asif ud-Doula

A dissertation submitted to the Faculty of the University of Delaware in
partial fulfillment of the requirements for the degree of Doctor of Philosophy in
Physics

Fall 2002

c© 2002 Asif ud-Doula
All Rights Reserved



THE EFFECTS OF MAGNETIC FIELDS

AND

FIELD-ALIGNED ROTATION ON LINE-DRIVEN

HOT-STAR WINDS

by

Asif ud-Doula

Approved:
James MacDonald, Ph.D.
Chair of the Department of Physics and Astronomy

Approved:
Mark W. Huddleston, Ph.D.
Dean of the College of Arts and Science

Approved:
Conrado M. Gempesaw II, Ph.D.
Vice Provost for Academic Programs and Planning



I certify that I have read this dissertation and that in my opinion it meets
the academic and professional standard required by the University as a
dissertation for the degree of Doctor of Philosophy.

Signed:
Stanley P. Owocki, Ph.D.
Professor in charge of dissertation

I certify that I have read this dissertation and that in my opinion it meets
the academic and professional standard required by the University as a
dissertation for the degree of Doctor of Philosophy.

Signed:
James MacDonald, Ph.D.
Member of dissertation committee

I certify that I have read this dissertation and that in my opinion it meets
the academic and professional standard required by the University as a
dissertation for the degree of Doctor of Philosophy.

Signed:
James M. Stone, Ph.D.
Member of dissertation committee

I certify that I have read this dissertation and that in my opinion it meets
the academic and professional standard required by the University as a
dissertation for the degree of Doctor of Philosophy.

Signed:
Dermott J. Mullan, Ph.D
Member of dissertation committee

I certify that I have read this dissertation and that in my opinion it meets
the academic and professional standard required by the University as a
dissertation for the degree of Doctor of Philosophy.

Signed:
Harry L. Shipman, Ph.D
Member of dissertation committee



ACKNOWLEDGEMENTS

I wish to thank Prof. S. Owocki for all his help in my research. His patience

and support have been of utmost value to me. I also thank Hans Mueller and David

Cohen for helpful feedback.

This research was supported in part by NASA grant NAG5-3530 and NSF

grant AST-0097983 to the Bartol Research Institute at the University of Delaware. I

also would like to acknowledge the support of NASA’s Space Grant College program

at the University of Delaware.

iv



TABLE OF CONTENTS

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

Chapter

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Brief Historical Overview of Line-Driven Winds . . . . . . . . . . . . 2
1.2 The Impact of Winds on Stellar Evolution . . . . . . . . . . . . . . . 5
1.3 Variability of Hot-Star Winds . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Rotation of Hot Stars . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 Magnetic Fields in Hot Stars . . . . . . . . . . . . . . . . . . . . . . . 8
1.6 Hot-star X-ray Emission . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.7 Overview of Research . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 THE THEORY OF STELLAR WINDS . . . . . . . . . . . . . . . . 14

2.1 Gas Pressure Driven Isothermal Winds: the Solar Wind . . . . . . . 14

2.1.1 The Expansion of the Solar Corona . . . . . . . . . . . . . . . 14
2.1.2 Parker’s Solution to the Solar Wind . . . . . . . . . . . . . . . 16

v



2.1.3 Numerical Solution . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Magneto-hydrodynamic Equations . . . . . . . . . . . . . . . . . . . . 20

2.2.1 Numerical Solver: ZEUS-3D . . . . . . . . . . . . . . . . . . . 24

2.3 Weber and Davis Model of Solar Wind . . . . . . . . . . . . . . . . . 26

2.3.1 Our Numerical Result . . . . . . . . . . . . . . . . . . . . . . 28

2.4 Pneuman and Kopp Model of the Solar Wind . . . . . . . . . . . . . 29
2.5 Line-force in Stellar Winds . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5.1 Radiation Force for a Point-Source Star . . . . . . . . . . . . . 35
2.5.2 Force due to Electron Scattering . . . . . . . . . . . . . . . . . 36
2.5.3 Radiation Force due to a Single Line . . . . . . . . . . . . . . 37
2.5.4 Force Due to an Ensemble of Lines . . . . . . . . . . . . . . . 40

2.6 Solution to the 1-D CAK Wind . . . . . . . . . . . . . . . . . . . . . 41
2.7 Finite Disk Correction Factor . . . . . . . . . . . . . . . . . . . . . . 43

3 MAGNETICALLY CHANNELED LINE-DRIVEN WINDS . . . 48

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2 Numerical Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2.1 Magnetohydrodynamic Equations . . . . . . . . . . . . . . . . 53
3.2.2 Spherically Symmetric Approximation for Radial Line-Force . 55
3.2.3 Numerical Specifications . . . . . . . . . . . . . . . . . . . . . 56

3.3 Heuristic Scaling Analysis for Field vs. Flow Competition . . . . . . . 58

3.3.1 The Wind Magnetic Confinement Parameter . . . . . . . . . . 58
3.3.2 Alfven Radius and Magnetic Closure Latitude . . . . . . . . . 60

3.4 MHD Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.4.1 Time Relaxation of Wind to a Dipole Field . . . . . . . . . . . 61
3.4.2 Global Wind Structure for Strong, Moderate, and Weak Fields 62
3.4.3 Variability of Near-Surface Equatorial Flow . . . . . . . . . . 63

vi



3.4.4 Comparing Models with Different Stellar Parameters but Fixed
η∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.5 Analysis and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.5.1 Comparison of MHD Simulations with Heuristic Scaling
Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.5.2 Effect of Magnetic Field on Mass Flux and Flow Speed . . . . 70
3.5.3 Observational Implications of these MHD Simulations . . . . . 71

3.5.3.1 UV Line-Profile Variability . . . . . . . . . . . . . . 71
3.5.3.2 Infall within Confined Loops and Red-Shifted

Spectral Features . . . . . . . . . . . . . . . . . . . . 72
3.5.3.3 Effect on Density-Squared Emission . . . . . . . . . . 73
3.5.3.4 Implications for x-ray Emission . . . . . . . . . . . . 74

3.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4 THE EFFECT OF MAGNETIC FIELD TILT AND

DIVERGENCE ON WIND MASS FLUX AND FLOW SPEEDS 89

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.3 1D CAK Wind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.3.1 Simple, Radial Flow . . . . . . . . . . . . . . . . . . . . . . . 91
4.3.2 The Effect of Finite disk Correction Factor . . . . . . . . . . . 92
4.3.3 The Effect of Rapid Divergence on Mass Loss . . . . . . . . . 94

4.3.3.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . 94
4.3.3.2 The Role of Rapid Divergence in Wind Flow . . . . . 95

4.3.4 Combined Effect of Finite Disk and Rapid Divergence . . . . 96
4.3.5 Mass Loss for tilted flow . . . . . . . . . . . . . . . . . . . . . 97

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.4.1 Open Field Region . . . . . . . . . . . . . . . . . . . . . . . . 99
4.4.2 Rapid Areal Divergence Factors . . . . . . . . . . . . . . . . . 100

vii



4.4.3 Mass Flux at the Stellar Surface . . . . . . . . . . . . . . . . . 101

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.5.1 Rapid Areal Divergence vs Finite Disk Correction in
Enhancement of Flow Speed . . . . . . . . . . . . . . . . . . . 103

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5 THE EFFECTS OF FIELD-ALIGNED ROTATION ON THE

MAGNETICALLY CHANNELED LINE-DRIVEN WINDS . . . 114

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.2.1 Oblateness due to Rotation . . . . . . . . . . . . . . . . . . . 116
5.2.2 Equations of Magnetohydrodynamics . . . . . . . . . . . . . . 117
5.2.3 Numerical Specifications . . . . . . . . . . . . . . . . . . . . . 119

5.3 Rotation Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.4 Simulation Results and Discussion . . . . . . . . . . . . . . . . . . . . 123

5.4.1 Global Wind Structure of the Wind . . . . . . . . . . . . . . . 124

5.4.1.1 The Models with Fixed Rotation but Different
Magnetic Confinement Parameter . . . . . . . . . . . 124

5.4.1.2 The Models with Fixed Magnetic Confinement but
Different Rotations . . . . . . . . . . . . . . . . . . . 126

5.4.2 Co-rotation and Variability of the Near-Surface Wind Flow . . 126
5.4.3 Azimuthal Components of the Flow and Field . . . . . . . . . 128
5.4.4 Radial Outflow and Mass Loss Rates . . . . . . . . . . . . . . 129
5.4.5 Angular Momentum Loss . . . . . . . . . . . . . . . . . . . . . 131
5.4.6 Observational Implications . . . . . . . . . . . . . . . . . . . . 132

5.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6 MAGNETICALLY CHANNELED ADIABATIC LINE-DRIVEN

viii



WINDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.1 Radiative Cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.1.1 Column Density for Cooling Layer in a Shock . . . . . . . . . 151
6.1.2 Competing Wind Column Density . . . . . . . . . . . . . . . . 152
6.1.3 Thermal Conduction . . . . . . . . . . . . . . . . . . . . . . . 153

6.2 Line-Force for Non-Isothermal Models . . . . . . . . . . . . . . . . . . 154
6.3 Energy Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
6.4 Initialization of Simulations . . . . . . . . . . . . . . . . . . . . . . . 156
6.5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 156

6.5.1 Adiabatic Models with Zero Rotation . . . . . . . . . . . . . . 157
6.5.2 Adiabatic Models With Rotation . . . . . . . . . . . . . . . . 160
6.5.3 Implication for X-ray Emission . . . . . . . . . . . . . . . . . 162

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

7 SUMMARY AND FUTURE WORK . . . . . . . . . . . . . . . . . . 178

7.1 Summary of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 178
7.2 Future Plans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

ix



LIST OF FIGURES

1.1 Formation of P Cygni Profile . . . . . . . . . . . . . . . . . . . . . 6

2.1 Solution topology for the isothermal solar wind . . . . . . . . . . . 21

2.2 Numerical Solution for Isothermal Solar Wind . . . . . . . . . . . . 22

2.3 Sample solution of modified Weber and Davis model of the solar
corona- B0 = 1G. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4 Sample solution of modified Weber and Davis model of the solar
corona, B0 = 4G. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5 Pneuman and Kopp model of the solar wind . . . . . . . . . . . . . 34

2.6 1D-CAK Wind Solutions . . . . . . . . . . . . . . . . . . . . . . . . 44

2.7 Finite disk correction factor for selected values of β. . . . . . . . . . 47

3.1 Variation Alfven radius RA with magnetic confinement parameter η∗. 80

3.2 Snapshots of density (as logarithmic color-scale) and magnetic field
(lines) at the labeled time intervals . . . . . . . . . . . . . . . . . . 81

3.3 Comparison of overall properties at the final simulation time
(t = 450 sec) for 3 MHD models . . . . . . . . . . . . . . . . . . . . 82

3.4 Contours of log(density) and magnetic field lines for the inner,
magnetic-equator regions of MHD models with moderate (η∗ = 1;
left), strong (η∗ =

√
10; middle), and strongest (η∗ = 10; left) . . . . 83

3.5 Contours for log of density (color-scale) and magnetic fields . . . . 84

3.6 Contours of the Alfven radius in MHD models . . . . . . . . . . . . 85

x



3.7 The measure of faster-than-r2 decline of the polar magnetic field . . 86

3.8 The radial mass flux density ρvr and radial flow speed vr . . . . . . 87

3.9 For the strong magnetic confinement case η∗ = 10 . . . . . . . . . . 88

4.1 The measure of how much a magnetic flux tube diverges from radial
configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.2 Rapid divergence fmax plotted vs µmax for five MHD cases . . . . . 107

4.3 The measure of faster-than-r2 decline of the polar magnetic field . . 108
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ABSTRACT

There is extensive evidence that the radiatively driven stellar winds of OB-

type stars are not the steady, smooth outflows envisioned in classical models, but

instead exhibit extensive structure and variability on a range of temporal and spatial

scales. This dissertation examines the possible role of stellar magnetic fields in

forming large-scale wind structure. It is based on numerical magnetohydrodynamic

(MHD) simulations of the interaction of a line-driven flow with an assumed stellar

dipole field.

The first two chapters provide a brief historical overview and a background

summary of the dynamics of line-driven winds. Chapter 3 then presents initial MHD

simulations of the effect of a dipole field on isothermal models of such line-driven

outflows. Unlike previous fixed-field analyses, the MHD simulations here take full

account of the dynamical competition between field and flow, and thus apply to

a full range of magnetic field strength, and within both closed and open magnetic

topologies. A key result is that the overall degree to which the wind is influenced

by the field depends largely on a single, dimensionless, ‘wind magnetic confinement

parameter’, η∗ (= B2
eqR

2
∗/Ṁv∞), which characterizes the ratio between magnetic

field energy density and kinetic energy density of the wind.

Chapter 4 carries out semi-analytic analyses of the properties of these nu-

merical simulations, with focus on the effect of magnetic field tilt on the mass flux

and rapid flow-tube divergence on the terminal flow speed. The results show in

particular that previous expectations of a strong, factor 2-3 enhancement were a

consequence of assuming a point-star approximation for the wind driving, and that

xv



in finite-disk-corrected models one obtains a much more modest 20-30% speed in-

crease, in agreement with both the numerical MHD simulations and observational

constraints.

Chapter 5 extends our MHD simulations to include field-aligned stellar rota-

tion. The results indicate that a combination of the magnetic confinement parameter

and the rotation rate as a fraction of the ‘critical’ rotation now determine the global

properties of the wind. For models with strong magnetic confinement, rotation can

limit the extent of the last closed magnetic loop, and lead to episodic mass ejec-

tions that break through the close loop and are carried outward with a slow, dense,

equatorial outflow.

In contrast to these idealized isothermal models, wherein any hot gas is as-

sumed to radiate away excess energy instantaneously, Chapter 6 carries out MHD

simulations of the other extreme limit of adiabatic outflows, for which no energy

is lost at all. The results show that adiabatic models with magnetic confinement

η∗ < 1 are very similar to their isothermal counterparts, but those with η∗ ≥ 1 are

dramatically different from the isothermal case, with much greater level of equatorial

confinement.

Chapter 7 summarizes the key conclusions of the thesis, and outlines direc-

tions for future work. Overall, the results here provide a dynamical groundwork for

interpreting many types of observations – e.g., UV line profile variability; red-shifted

absorption or emission features; enhanced density-squared emission; x-ray emission

– that might be associated with perturbation of hot-star winds by surface magnetic

fields.
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Chapter 1

INTRODUCTION

Stars are classified based on their effective surface temperatures. The hottest

of them are called O and B stars. Because OB stars are very luminous and some

of them, like supergiant O stars, are up to a million times brighter than the sun,

they often dominate light from many galaxies. Hot stars are also very massive, and

they lose most of their mass in various ways over a relatively short period of time,

of the order of a few million years. Thus they contribute significantly towards the

the enrichment of interstellar medium. So, it is important to understand these hot

stars.

In our daily lives light plays very little role as a direct source of momentum or

force, yet in the case of hot stars with their overwhelming luminosities, light becomes

the dominating mechanism in driving a continuous outflow of material called the

stellar wind. It is surprising to think that the light can drive wind outflows as high

as 10−5M�/yr as is the case for some hot stars. What makes it possible is the

absorption and scattering of UV photons by the resonance lines of minor ions (ions

heavier than He) which have relatively large opacities. Although the abundance of

the minor ions is small (typically ∼ 10−4 for hot stars), they play a crucial role

in converting the photon momentum into the wind momentum. We discuss this

mechanism of line-driving in greater detail in Chapter 2.

In the past few decades rapid developments have been made in understanding

the basic properties of hot-star winds, but there are a number of issues that are

1



contentious and still unclear. For instance, it is not well understood what possible

role magnetic fields can play in perturbing such hot-star winds. In this work, we

address this issue using numerical simulations as a tool.

In this chapter we outline the importance of the subject of line-driven winds,

and discuss why we chose to study the effects of magnetic fields on such winds. We

conclude this chapter with a brief description of the content of this dissertation.

1.1 Brief Historical Overview of Line-Driven Winds

Because virtually all the knowledge we have about stars other than the sun,

is based on incoming light from the stars, it is not a simple matter to detect stel-

lar winds directly. One of the first indirect evidence of the mass loss of stars, in

general, came with the optical observations of objects called ‘new stars’ or novae,

transient outbursts in brightness that are visible even by naked eye. Tycho Brahe’s

observation of such a ‘new star’ in 1572 was in fact what we now call a supernova.

Another ‘new star’ was discovered by Blaeu in 1600 that later was named P Cygni.

It was not clear at the time of their discoveries what the reasons were behind these

apparent variations in brightness.

One of the first clues came with the application of spectroscopy to the light

coming from distant stars in the late nineteenth century. Observations showed

that spectral lines from many stellar objects had prominent line profiles similar

to those observed in the spectrum of P Cygni. These ‘P Cygni’-like profiles were

characterized by having redshifted peaks along with blueshifted absorption troughs.

By the end of 19th century, technological improvement in spectroscopic techniques

allowed scientists to resolve the spectra of novae. It was clear that the broadening

of lines, ∆λ was the result of the so called Doppler effect. But it was not clear what

caused such broadenings.

It can be argued that one possible mechanism for the formation of such line

profiles is the spherical expansion of the stellar atmosphere, shown schematically in

2



figure 1.1. Most of the P Cygni profiles observed in UV (ultraviolet) lines of hot

stars are formed by scattering of photons. When a bound electron makes a transition

between the ground state and the first excited state it absorbs a photon which thus

is removed from the line of sight. But, the electron very quickly de-excites with the

net result that the original photon is not lost but scattered in a different direction.

From an observer’s point of view, the original photon has been removed from the

line of sight resulting in an absorption trough also known as resonance lines. The

fact that these lines are blue-shifted indicates that the absorbers are moving towards

the observer away from the star. Now, if we assume that this process is spherically

symmetric, the photons scattered out elsewhere will come into the line of sight of

the observer as an emission profile. In an ideal case where all the photons that

have been absorbed are scattered back into the line of sight, this emission profile is

symmetric with respect to the line center, but because the star occults the part of

the atmosphere on the backside that is moving away from the observer, the emission

profile on the red side is slightly weaker than that on the blue side. By adding the

absorption trough and the emission profile, the characteristic P Cygni line is formed.

In addition to novae and stars that have P Cygni-like spectra, Wolf and Rayet

(1867) discovered another class of stars (called now Wolf-Rayet (WR) stars) which

have similar spectra that, in this case, do not have any outbursts and do not fade

away with time. Based on the fact that the line widths for WR stars are very broad,

Beals (1929) proposed a model where the star ejects gaseous material continuously

and in radial direction with high velocities. In other words, the star is surrounded

by a fast-expanding envelope whose spatial extension is large compared to the size

of the star. We now know that this is a reasonable picture of the WR stars.

Slowly, it was becoming evident that most stars may have some sort of mate-

rial outflows. In the case of the sun, Parker (1958) showed that given the hot solar

corona of ∼ 106 K, it is not possible to have a static corona since the finite pressure
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at infinity that one obtains from equations of hydrostatic equilibrium could not be

matched by the small interstellar gas pressure we infer from measurements. Thus,

the existence of hot solar corona leads naturally to its expansion through a gas

pressure gradient. We describe Parker’s elegant argument in chapter 2. Predictions

were verified by in situ observations of the solar wind performed by the Mariner

2 interplanetary probe (1962). Parker is also credited for the introduction of the

terminologies of the solar and stellar winds.

The case of WR and other hot stars that are very luminous, was somehow

different from the case of the relatively cool sun. If hot star winds were driven by gas

pressure gradient, it would require extraordinarily high temperature stellar coronae

for which there are no observational evidence. However, it was recognized by Milne

(1924) that photons can in principle impart momentum onto the wind material. In

the solar context, Milne showed that pure absorption of radiation flux can perhaps

maintain a gravitationally bound atmosphere. This was one of the earliest attempts

to provide a framework for radiation-driven winds.

Despite the lack of an elaborate theory of how hot-star winds are acceler-

ated, a very compelling evidence for the existence of hot-star winds came with the

discovery of P-Cygni type profiles in the UV resonance lines of NV, CIV and SiIV

in the spectra of O and B supergiants (Morton 1967). By then it was clear that

P-Cygni profiles can be formed only by an expanding envelope with a velocity that

can be directly determined by the width of the profiles. Soon after, a more complete

version of line-driven wind theory was developed by Lucy and Solomon (1970), and

then extended by Castor, Abbott and Klein (1975; hereafter CAK). In particular,

CAK showed that in an expanding atmosphere a large ensemble of lines can give

rise to a line-force that is a function of the local velocity gradient. There have been

further developments and extensions to the CAK theory since then, e.g. Pauldrach,

Puls and Kudritzki (1986), Friend and Abbott (1986), Owocki, Castor and Rybicki
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(1988). Most of the earlier works considered stars as point-like sources. It turns

out that the finite size of the star does make a difference dynamically in driving

the wind (Pauldrach, Puls and Kudritzki (1986); Friend and Abbott (1986)), and

its effect can be included through so called finite disk correction factor . All of our

work here follows the basic formalism of the CAK theory with this correction factor,

and is discussed in Chapter 2.

1.2 The Impact of Winds on Stellar Evolution

The knowledge of the mass loss rates is essential to understanding the evolu-

tion of stars. The most luminous hot stars can lose up to half of their masses during

their lifetimes. After going through different stages of evolution they expose their

hot cores turning into the Wolf-Rayet stars. Finally they end their lives in a violent

supernova explosion that disrupts the star enriching the interstellar medium with

various elements. The shockwave resulting from this explosion can induce new star

formation. Thus it is important for us to understand how these hot-stars lose mass

through the stellar winds and how stellar wind properties are determined.

The basic formalism of the CAK theory, which assumes time-steady and

spherically symmetric configuration, can explain the overall global properties of

the winds of the main sequence O and B stars, the hottest two classes of stars.

Unfortunately, this theory cannot account fully for the phases of the strongest mass

loss, the LBV (Luminous Blue Variable) and the Wolf-Rayet phases. It is beyond

the scope of this work to analyze these phases, instead we focus on the more common

O and non-peculiar B stars. But even for these stars, a wealth of complex physics is

involved in line-driven winds, and it is not possible for us to address all the aspects

of this subject in the limited scope of a PhD dissertation. In this work we will mostly

concern ourselves with the larger scale properties of the hot-star winds within the

framework of an improved CAK theory.
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Figure 1.1: A sketch of formation of the P Cygni profile, adopted from J. Puls’s
website. Here vinf is the terminal velocity of the wind.
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1.3 Variability of Hot-Star Winds

Winds of OB-type stars are intrinsically variable. There is extensive evidence

that these winds are not the steady, smooth outflows as it was classically assumed

in the original CAK-type models, but instead manifest extensive structure and vari-

ability on both temporal and spatial scales. There are different physical mechanisms

that can lead to such structures and variability, and it is convenient to classify them

into two different categories: (1) small-scale, stochastic structure and (2) large-scale

structure.

Small-scale variability is evidenced often by constant soft X-ray emission

(Long & White 1980). UV lines with extended black troughs provide us with yet

another indirect evidence. This suggests a nonmonotonic velocity field (Lucy &

White 1980). Both of these can be caused by the strong intrinsic instability of

the line-driving mechanism (Owocki 1994; Feldmeier 1995). On the other hand,

large-scale changes seem to be the consequence of wind perturbation by processes

occurring in the underlying star as evidenced by UV line profile variability. This

can be attributed to several reasons: (i) dynamical effects of rotation, (ii) magnetic

fields and (iii) non-radial pulsations.

Numerical analyses of small-scale structures require an extremely fine mesh,

with grid size smaller than the so called ‘Sobolev length’ (to be discussed later). As

such they are computationally expensive. They also involve more subtle physics that

goes beyond the classical CAK treatment of the line-force, which we do not consider

here. Our main goal is to provide a framework for better understanding some aspects

of the large-scale structures. In particular, we examine the stellar rotation and the

stellar global magnetic fields as possible mechanisms for the large-scale variability

as evidenced by numerous observations.
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1.4 Rotation of Hot Stars

The rotation of stars became detectable once the Doppler effect was under-

stood. The wavelength of photons coming from the approaching side of the star

is blue-shifted while the photons from the receding part become red-shifted. But

because Doppler broadening is affected only by the projected component of the

equatorial rotation speed, Vrot in the line of sight, we can measure, at the best,

Vrot sin i, where i is the inclination angle between the axis of rotation and the line

of sight. OB-type stars are observed to have projected rotational speeds of 150

-250 km/s, but some of them rotate up to 400 km/s suggesting thus that hot stars

are rapid rotators, in general. This is not surprising since hot stars are also young

stellar objects, and as such they did not exist long enough to lose the initial angular

momentum likely gained during the star formation from the original gas cloud.

Some hot stars rotate so rapidly that their rotation speeds are a significant

fraction of the ‘critical’ value, which occurs when the apparent centrifugal force bal-

ances gravity, and any small outward force can launch material into orbit. These

extreme rotational velocities deform the shape of a spherical star into an oblate

configuration. In numerical computations, such an oblate star can be very difficult

to model, especially if an effect known as gravity darkening (von Zeipel 1924) is con-

sidered. In the context of hydrodynamics, Cranmer (PhD Thesis, 1996) examined

the effect of rotation that includes both gravity and limb darkening. In this work,

we do not consider such extreme rotational velocities so that the approximation of

a spherical star is well justified. Also, as an initial study, we ignore both gravity

and limb darkening.

1.5 Magnetic Fields in Hot Stars

Magnetic fields among main sequence cool stars like the sun are generated

through the dynamo mechanism for which convection zones, which are induced by

the increased opacity associated with recombination, typically of hydrogen, but in
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principle also of helium, are necessary. Hot stars are too hot to have such convective

zones and thus classically have been thought not to have magnetic fields. But we

know that non-convective Bp stars have strong surface magnetic fields of the order of

many kG (Shore 1990). In addition, Henrichs et al (2001) reported a direct detection

of magnetic field in a non-chemically peculiar early type star, β Cep. Donati et al

(2001) estimated the polar strength of magnetic field for β Cep at about 400 G.

There are also preliminary reports (Donati 2001) of a ca. 1000 G dipole field in the

O-star θ1 Ori C.

The source of these magnetic fields is not well understood. It could simply be

the fossil field, or generated at the core, and then diffused out (Cassinelli and Mac-

Gregor 2001) to the surface. Both convective zones and rotation are the essential

ingredients of the dynamo mechanism. So, in principle hot stars with weak convec-

tive zones but high rotation rate could produce macroscopic magnetic fields. But

whatever the source might be, it seems plausible that hot stars can have magnetic

fields.

1.6 Hot-star X-ray Emission

First detections of soft (∼ 1 keV) x-ray emissions from hot, luminous OB

stars by the Einstein satellite came as a surprise. Cool stars like the sun have x-

ray emitting hot coronae, but hot stars do not have them due to lack of convection

zones, which may be responsible for mechanical heating of the coronae. As such, hot

stars were not expected to emit x-rays. However, even before these detections, xray

emission from a narrow stellar corona was postulated to explain the superionization

seen in the UV spectra of OB stars (Cassinelli & Olson 1979). Such a coronal model

was extended further by Waldron (1984).

The surrounding cool wind of a hot star attenuates the emission from the hot

corona at the base of the wind significantly (Lamers et al. 1984). A more favored

scenario has been that the x-ray is emitted from wind shocks formed farther out
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in the wind, which can arise from strong intrinsic instabilities in the line-driving

mechanism (Lucy & Solomon 1970; Owocki & Rybicki 1984, 1985). Dynamical

simulations of the evolution of this instability show that the x-ray emission from

the resultant shocks are soft and low compared to observations (Owocki, Castor &

Rybicki 1988; Feldmeier 1997). There is mounting evidence that the hard x-rays

observed in some of the OB stars (e.g. τ Sco & θ1 Ori C) require strong shocks with

velocity jumps of order ∆V ∼ v∞/2. The standard instability induced wind-shocks

cannot explain such hard x-ray; instead magnetically channeled wind shock models

are invoked (Babel & Montmerle 1997a, 1997b).

Discriminating between these two models, the coronal and the wind-shock

models, was difficult with low-resolution x-ray spectroscopy. But the recently launched

x-ray satellites, Chandra and XMM, provide us with high-resolution and high signal

to noise line profiles and line ratios that can help determine the velocity struc-

tures, density and spatial location of the x-ray emission. In particular, the He-like

forbidden-to-intercombination (f/i) line strength ratio can potentially yield the ra-

dius of the x-ray emitting plasma (Waldron and Cassinelli 2001; Cohen et al. 2002).

Traditionally, f/i ratio has been used as a density diagnostics in coronal sources.

But in hot stars the presence of intense UV radiation can weaken the forbidden

line altering the f/i ratio. As such, care must be taken when applying f/i ratio to

diagnose densities in hot stars which in general yields very high values (Gabriel and

Jordan 1969).

Recent high resolution Chandra x-ray spectra of OB stars are providing im-

portant clues about the mechanisms which produce x-rays from these young stars.

For ζ Pup, the broad, blue-shifted line profiles, line ratios, and derived temperature

distribution suggest that the x-rays are produced throughout the wind, perhaps

via instability-driven wind shocks (Cassinelli et al. 2001). However, in τ Scorpii’s

Chandra HETGS spectrum, the hard, strong but narrow x-ray emission spectrum
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suggests that x-ray emitting plasma is located near the stellar surface (Cohen et

al. 2002, Cohen, Cassinelli & Waldron 1997), favoring magnetically channeled wind

shock model. Similar mechanism is suggested for the very young O star θ1 Ori C

(Gagne et al. 1997). On the other hand, the very broad (∆V ∼ 1000 km/s) and

symmetric x-ray spectra observed for δ Ori and ζ Ori are difficult to explain (Miller

et al. 2000; Waldron and Cassinelli 2001).

1.7 Overview of Research

Optical pictures of the sun during the eclipse or X-ray images of the sun

provide us with a vivid example of how magnetic fields can influence the solar wind.

The magnetic fields confine the gas within closed loops, while in the coronal hole

region the gas is able to flow out with high-speeds. There is no simple way of

studying this competition between the field and the wind, since this is usually a

time-dependent problem. In this work we wish to investigate such an interaction

between the wind and the fields for the case of hot stars.

The theory of the line-driven winds is highly non-linear, and inclusion of

magnetic fields makes it even more complex. Thus analytical solutions are not

easily available for most problems in the theory of hot-star winds. In the past, there

have been some limited attempts to study the effects of surface magnetic fields

on the line-driven winds. Notably, Shore and Brown (1990) proposed a model of

a magnetically confined circumstellar matter in helium strong B stars. Babel and

Montmerle (1997a) extended this by modeling the stellar wind within the framework

of a prescribed magnetic field geometry limited to the region where the magnetic

fields were strong enough to contain the wind. This is often cited in literature as

the ‘magnetically confined wind shock’ (MCWS) model and used to explain hard

x-ray emission from some of the hot stars, e.g. θ1 Ori C. In this thesis we attempt to

incorporate the full MHD equations self-consistently to study how magnetic fields

affect the line-driven winds within and outside the magnetically confined region.
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In chapter 3 we present numerical simulations of the effect of stellar dipole

magnetic fields on such winds, using the publicly available numerical solver ZEUS-

3D as a tool. We show that the overall degree to which the wind is influenced

by the field depends largely on a single, dimensionless ‘wind magnetic confinement

parameter’. We conclude from the simulations that for weak confinement the field

lines are ripped open into a radial configuration, but nonetheless some wind material

is diverted towards the equator, enhancing the density and reducing the flow speed in

the equatorial region. For strong confinement, the magnetic field remains closed over

a limited range of latitude and height about the equatorial surface, but eventually is

opened into a nearly radial configuration. The flow pattern within the closed loops

is complex, and may involve some material falling back onto the stellar surface.

Although we assume an isothermal gas, we estimate the amount of hard X-ray

that can be produced within closed loops and open field flow where the equatorial

channeling leads to oblique shocks.

Following this, in chapter 4, we discuss the polar flow that is characterized

by a faster-than-radial expansion more gradual than anticipated by earlier 1D flow-

tube studies. We show that relatively modest increase in terminal speed is consistent

with observational constraints.

There is a longstanding problem in astrophysics in understanding the forma-

tion of transient disks in Be stars. It is difficult to understand how such a structure

wherein the material is in a Keplerian orbit can be formed in a hot-star especially

because while the line-force is an efficient mechanism to lift material off the stellar

surface, it is not efficient in providing angular momentum necessary for the mate-

rial to go into a Keplerian orbit. Bjorkman & Cassinelli (1993) proposed a Wind

Compressed Disk (WCD) model wherein conservation of angular momentum tends

to focus the wind material into a density enhanced disk-like equatorial region. How-

ever, dynamical simulations of Owocki et. al. (1994) showed that the material from
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the rotating star lacks the necessary angular momentum to form a stable Keple-

rian orbit that would define a disk. Instead, the material flows through the WCD,

with the inner portion falling back onto the star while the outer portion flows out

as an equatorial outflow. This scenario is contrary to the observed dense, nearly

stationary Keplerian disks (Hanuschik 1996; Hummel 1998; Rivinius et al. 2001).

One obvious candidate for providing angular momentum is the moment arm of a

stellar magnetic field. In chapter 5 we present numerical MHD simulations where

starting from an initial condition at which a dipole field is imposed on an existing

1D spherically symmetric wind of a rigidly rotating star, then the model is evolved

forward in time to an asymptotic solution. We show that although the magnetic field

can indeed provide angular momentum to the wind, it does not form a Keplerian

disk. Instead, for sufficiently strong magnetic confinement density enhanced equa-

torial outflow often accompanied by high density centrifugally-driven mass ejecta

are formed.

One important issue we want to address in this thesis is whether our dynam-

ical MHD models can help explain the detection of sometimes quite hard, and even

cyclically variable x-ray emission from hot stars. The isothermal MHD models in

chapter 3 do not include the detailed energy balance treatment necessary for quan-

titative modelling of shocked-gas x-ray emission. In chapter 6, we present adiabatic

MHD models that do include energy balance equation, although, as our first at-

tempt, we do not include any radiative cooling term. We show that the models with

the magnetic confinement η∗ ≥ 1 are dramatically different from their isothermal

counterparts with identical wind and stellar parameters.

Finally, we conclude the thesis with a brief summary and the plans for future

work in chapter 7.
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Chapter 2

THE THEORY OF STELLAR WINDS

The theory of line-driven winds is a complex subject. It involves a set of

highly non-linear equations which are not usually solvable analytically. In particular,

if the magnetic fields are involved in channeling such winds, the resultant system

of equations is extremely difficult to analyze. We will use numerical simulations as

an aid for our study of the magnetized hot-star winds. Our focus is to sort out the

physics behind such complex winds.

Before we describe the theory of the line-driven winds in §2.5, let us briefly

discuss much simpler gas-pressure-driven stellar wind, like the solar wind in §2.1.

We introduce the general equations governing astrophysical fluids that are subject

to the magnetic forces in section §2.2. We discuss Weber and Davis (1967) model

of the solar wind in §2.3 followed by the Pneuman and Kopp (1971) model in §2.4.

2.1 Gas Pressure Driven Isothermal Winds: the Solar Wind

2.1.1 The Expansion of the Solar Corona

The first model of a solar corona that extends beyond the earth’s orbit was

proposed by Chapman (1957), who assumed a static atmosphere where the energy

is transferred by thermal conduction alone. For a steady state, the heat flux across

any Gaussian surface is constant, and if we assume spherical symmetry, then:

4πr2κ
dT

dr
= C (2.1)
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where C is a constant, r is the radius and κ dT/dr is the the heat flux density with

the thermal conduction κ = κ0T
5/2 (Spitzer 1956). The above equation can be

readily integrated to yield:

T = T0

(

R0

r

)2/7

(2.2)

under the assumption that T = T0 at r = R0 and temperature T goes to zero at large

radii. Moreover, this corona is subject to the hydrostatic equilibrium condition,

1

ρ

dP

dr
=

GM�

r2
. (2.3)

Using the ideal gas law, the pressure can be written as P = ρ a2 where a2 =

a2
0 (R0/r)

2/7 with the isothermal sound speed a0 at the base of the corona. The

hydrostatic equation can be now integrated,

P = P0 exp

[

7R0

5H0

[

(

R0

r

)5/7

− 1

]]

(2.4)

where P0 is the pressure at the coronal base r = R0, H0 = a2
0R

2
0/GM� is the scale

height. Clearly, as r → ∞ the pressure approaches a finite value,

P (∞) = P0 exp
[

−7R0

5H0

]

. (2.5)

Here,

R0

H0

= R0
GM�

a2
0R

2
0

≈ 14

(T0/106 K)
(2.6)

for R0 close to the solar surface. This leads to,

log
(

P0

P∞

)

≈ 8.5

(T0/106)
. (2.7)

In practice P∞ is the pressure of the interstellar medium (ISM) that surrounds the

heliosphere, and we observe this ratio log (P0/PISM ) ≈ 12. So, if we wish to have a
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hydrostatic corona that is contained by the gas pressure of the ISM, the temperature

of the corona must be,

T0 < 0.7 106K . (2.8)

But the observations show that the temperature of the solar corona is a few million

degrees K. Clearly, P∞ obtained from this model cannot be matched by the inter-

stellar medium pressure. In addition to this shortcoming, in the limit of r → ∞
the temperature approaches zero, and since the pressure is finite at large radii, the

density becomes arbitrarily large. Because of these inconsistencies, the solar corona

cannot remain static.

2.1.2 Parker’s Solution to the Solar Wind

Parker (1958) resolved the above problem by suggesting that solar the corona

is continuously expanding outwards simply because there is no ‘lid’ that can contain

the corona. He called this outflow as the ‘solar wind’.

Parker considered a spherically symmetric solar wind that is in a steady, time

independent motion where all the properties vary with distance r only. Then the

equation of conservation of momentum for a fluid parcel becomes:

v
dv

dr
= −1

ρ

dP

dr
− GM�

r2
, (2.9)

where M� is the mass of the sun. The equation of mass conservation is:

1

r2

d

dr

(

r2ρv
)

= 0 . (2.10)

If we assume the mass loss rate Ṁ is a constant, then

Ṁ = 4πr2ρ(r)v(r) . (2.11)

In principle, as the gas expands it will cool, and unlike the hot-star winds where

intense radiation from the star keeps the wind nearly isothermal, the solar wind may

not remain at constant temperature. But the hot solar coronal material has a very
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high conductivity due to the mobile electrons, implying thus a small temperature

gradient. As such, for simplicity it is assumed that the solar wind behaves like a

perfect gas maintained at a constant temperature T , which is of the order of a few

MK as mentioned above. Using the perfect gas law and the equation (2.11), we can

now replace the pressure gradient term in the continuity equation (2.9) to obtain,

1

ρ

dP

dr
= a2 1

ρ

dρ

dr

= −a2

v

dv

dr
− 2a2

r
. (2.12)

Substituting this in the equation (2.9) yields:

[

v2 − a2
] 1

v

dv

dr
=

2a2

r
− GM�

r2
. (2.13)

When the right hand side (RHS) is zero then we obtain the critical solution at

r = rc, with

rc =
GM�

2a2
. (2.14)

This defines the ‘critical radius’ and can be obtained either when

v(rc) = a (2.15)

or
1

v

dv

dr
(r = rc) = 0 . (2.16)

We are interested in continuous and single-valued solutions of v(r) and dv/dr. If

the condition (2.15) is satisfied then dv/dr has the same sign for all r or else (by

mean value theorem) there would have been a radius rc where dv/dr would attain

zero. This implies that v(r) is either monotonically increasing or monotonically

decreasing function of radius. On the other hand, if the condition (2.16) is met,

(v2 − a2) has the same sign for all r, implying that at radius r = rc the speed v(rc)

attains a maximum or a minimum.
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The solution topology to this isothermal solar wind problem is sketched in

figure 2.1. Each of the solution types fits a different set of boundary conditions.

Mathematically, all these solutions are acceptable, but physically not all of them are

plausible. For instance, the solution types 3 and 4 can be ruled out as acceptable

on the basis of the fact that they all start off at the base of the corona at supersonic

speeds. We have no physical or observational evidence to believe that the solar

corona is expanding supersonically at the base. The remaining two types of solutions

have small speeds at the base, but they differ at large radii. The wind in solution

type 2 is supersonic at the outer radii, while in the solution type 1, often called

“breeze” solution, the wind speed approaches zero asymptotically implying a finite

pressure at r = ∞. But this finite pressure cannot be matched by the interstellar

pressure. Thus the solutions of type 2 remain as the most plausible solutions.

To illustrate this point more clearly, let us first integrate the equation (2.13).

The equation can be more easily integrated if we rewrite the momentum equation

replacing the derivative term dv/dr by (1/2v)(dv2/dr):
[

1 − a2

v2

]

1

2

dv2

dr
=

2a2

r
− GM�

r2
. (2.17)

This can be easily integrated to yield,

v2

2a2
− 1

2
ln

v2

a2
= 2 ln

r

rc

− GM�

a2r
+ C (2.18)

where C is a constant of integration. We can evaluate the above transcendental

equation at r = rc where v(rc) = a, and if we define u ≡ v/a and x ≡ r/rc we

obtain,
u2

2
− ln u = 2 ln x +

2

x
− 3

2
, (2.19)

where the appropriate value for solution type 2, C = 3/2 was used. Now, for

solutions type 1 as r → ∞ the velocity u decreases to an arbitrarily small number,

as such,

ln u ≈ 2 ln x (2.20)
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implying

u ∝ 1

r2
. (2.21)

Hence, the continuity equation (2.11) for a fixed mass flux implies a finite value of

density ρ. This in consequence implies the finite pressure at large r.

On the other hand, for the solution type 2, the velocity u increases with

radius, thus

u2 ≈ 4 ln x . (2.22)

In this case,

u ∝
√

ln x . (2.23)

This implies that the density at large distances goes to zero. Thus, the pressure

goes to zero as well. Therefore, the solutions of type 2, match boundary conditions

at the base of the corona and at large radii. Note that the solutions are independent

of density.

2.1.3 Numerical Solution

In this section we reproduce the above isothermal solar wind solution for

various base coronal temperatures using ZEUS-3D. The code is very versatile and

allows the user to specify a variety of flow geometries (planar, cylindrical and spher-

ical) in one, two or three dimensions. In all our simulations in this work we use

spherical polar coordinates with radius r, co-latitude θ and azimuth φ. In defining

this particular problem of the isothermal solar wind we use, naturally, spherical po-

lar coordinates in one dimension. We switched on all the necessary hydrodynamic

modules and switched off the full energy equation in favor of the isothermal equation

of state.

The boundary conditions are very important in reaching a stable numerical

solution to set of partial differential equations we deal with here. Thus we took

particular care in defining our inner, rmin boundary. We specify the density ρin
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at the base but allow the inflow velocity vin to ‘float’ by extrapolating it linearly

from the closest two zones in the interior of the computational domain. In order

to make our solution independent of the initial conditions, we do not allow any

supersonic outflow or inflow in the inner boundary by simply limiting the velocity

vin below the sound speed, |vin| ≤ a. We also specify the temperature of the wind

to a fixed value T0. The upper boundary, rmax which occurs at the maximum radius

of our computational domain, meets the simple outflow condition where all the

hydrodynamic quantities are linearly extrapolated.

Figure 2.2 shows the wind velocity v(r) obtained by the numerical simula-

tions for various temperatures of the solar corona as noted on the figure. All these

solutions are in a very good agreement, within a fraction of percent, with the semi-

analytical solution of the solar wind obtained by solving the transcendental equation

2.19. The observed solar wind speed at 1 AU is ca. 400-700 km/s which can be

matched by our simulations with assumed solar corona temperatures of 2-4 MK. In

reality, the solar wind is not isothermal, the temperature of the gas drops to about

100,000 K near the earth. These solutions show that even a simple approximation

can yield fairly good results.

2.2 Magneto-hydrodynamic Equations

The hot-star winds we deal with in this work, are mainly composed of fully

ionized hydrogen and helium, and trace amounts of partially ionized metals (∼
10−4). These winds are dense enough that the mean free paths between collisions

are relatively small, and the plasma can be treated as a single fluid. The time-

dependent MHD equations governing the system include the conservation of mass,

Dρ

Dt
+ ρ∇ · v = 0, (2.24)

and the equation of motion

ρ
Dv

Dt
= −∇p +

1

4π
(∇× B) × B − GM r̂

r2
+ gexternal , (2.25)
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Figure 2.1: The solution topology for the isothermal solar wind equations. The
Y-axis u/a represents velocity in the unit of sound speed, and the
X-axis is the radius in the units of critical radius, rc. Types 3 and 4
solutions are supersonic at the base of the corona, and thus are physi-
cally inadmissible. Type 1 represents the ‘breeze’ solutions that never
reaches supersonic values, contrary to observations. The solution type
2 (bold line) is in agreement with observations.
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22



where ρ, p, and v are the mass density, gas pressure, and velocity of the fluid flow,

and D/Dt = ∂/∂t+v·∇ is the advective time derivative. The gravitational constant

G and stellar mass M set the radially directed (r̂) gravitational acceleration. The

term gexternal represents the total external force that may include the centrifugal

force. In our case it is the line-force and the force due to scattering of the stellar

luminosity L by the free electron opacity κe. The magnetic field B is constrained to

be divergence free

∇ · B = 0, (2.26)

and, under our assumption of an idealized MHD flow with infinite conductivity (e.g.

Priest & Hood 1991), its inductive generation is described by

∂B

∂t
= ∇× (v × B). (2.27)

The validity of such an assumption can be readily seen from the following. For a

fluid at rest, the diffusion equation for the magnetic field can be written as,

∂B

∂t
=

c2

4πσ
∇2B , (2.28)

where σ is the conductivity for the fluid. This implies that an initial magnetic field

will decay away in a diffusion time scale (Jackson 1967),

τdiff =
4πσL2

c2
, (2.29)

where L is a characteristic length of the spatial variation of B. For ordinary metals,

e.g. a copper sphere of 1 cm radius, the time τdiff is of order 1 sec, but for astro-

physical fluids (stellar winds) we deal with here this can be of order of 1010 years!

This implies that the diffusion of the magnetic fields in stellar winds is unimportant

and the ideal MHD approximation is valid.

A useful dimensionless parameter to characterize the relative importance of

magnetic diffusion is the magnetic Reynolds number RM defined as,

RM =
V τdiff

L
, (2.30)
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where V is a typical advective flow velocity and with some macroscopic length scale

L. For values of RM ∼< 1, the diffusion of field lines dominates over advective

transport. But for stellar winds, where V ∼ 2000 km/s and L ∼ 1012 cm, RM ∼
1013 � 1. As such, resistive diffusion is irrelevant and the field lines are effective

frozen in. Such a case is assumed in all the models we present in this dissertation.

However, as in any finite difference method, effective diffusion by the numerical grid

will allow reconnection of field at the grid scale. For our simulations with ca. 100

grid points in each dimension, this is typically on the order of effective numerical

Reynolds number of order 100, much smaller than idealized value.

The one last equation that we should, in principle, consider solving is an

explicit equation for conservation of energy, e.g. a purely adiabatic energy equation,

ρ
D

Dt

(

e

ρ

)

= −p∇ · v . (2.31)

But the stellar winds we consider in this work are relatively dense and the energy

balance is primarily dominated by radiative processes that are rapid enough to keep

the wind at nearly constant temperature. In all our simulations, except for the

models in chapter 6, we will assume an explicitly isothermal flow with T = Teff ,

where Teff is the effective stellar temperature. In such a case, the sound speed

a =
√

kT/µ with k Boltzmann’s constant and µ the mean atomic weight of the gas

is a constant. We use the perfect gas law to compute the pressure:

p = ρa2 . (2.32)

2.2.1 Numerical Solver: ZEUS-3D

Astrophysical processes that require simultaneous solution of all the above

MHD equations, can be readily modeled using time-dependent numerical MHD

codes, such as the Versatile Advection Code developed by Keppens and Goedbloed

(1999), or the publicly available the ZEUS-3D code (Stone and Norman 1992). We

chose to apply the latter for our research purposes.
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ZEUS-3D is designed to solve astrophysical problems in 1-, 2- and 3-dimensions.

It has a modular form which allows the user to select the appropriate parts of the

code necessary for any specific problem. It also enables introduction of new physics

through incorporation of additional subroutines. For instance, if we wish to study a

spherically symmetric isothermal solar wind, the user is able to use spherical polar

coordinates in 1-D, r dimension, shut off all the parts of the code that involves the

magnetic fields and select an isothermal equation of state. But in order for us to

study the line-driven winds, we had to include our own subroutines to account for

the the radiative driving terms, and to specify the specialized boundary conditions.

This kind of flexibility makes ZEUS-3D computationally efficient.

An important aspect of any numerical code is the interpolation scheme.

ZEUS-3D implements three different schemes, the first order donor cell method,

the second order van Leer method (van Leer 1977), and the third order piecewise

parabolic advection (PPA) method introduced by Collela and Woodward (1984). In

all our simulations, we use the second order van Leer method.

The van Leer method uses a piecewise linear function to represent the distri-

bution of a zone centered scalar q within a zone. In this scheme, the face centered

upwinded interpolated value q∗i are,

q∗i =











qi−1 + (∆xi−1 − vi∆t)(dqi−1/2) if vi < 0

qi − (∆xi + vi∆t)(dqi/2) if vi > 0

where vi is the flow speed and dqi are the monotonized van Leer slopes given by the

following:

dqi =















2(∆qi−1/2∆qi+1/2)

∆qi−1/2 + ∆qi+1/2

if ∆qi−1/2∆qi+1/2 > 0

0 otherwise

Here ∆qi+1/2 = (qi+1 − qi)/∆xi. ZEUS-3D allows to have non-uniform grids, and

the above definitions take this into account. For other aspects of the numerical
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algorithms implemented in ZEUS-3D we refer the reader to Stone and Norman

(1992).

2.3 Weber and Davis Model of Solar Wind

Let us next examine the more complex solar wind problem by including sur-

face magnetic field and the rotation of the sun. The hot solar wind that we discussed

above is expected to have an extremely high electrical conductivity implying that

the surface magnetic field of the sun would be “frozen-in” and carried away by the

plasma into the interplanetary space. If we ignored the rotation of the sun and as-

sumed that the solar magnetic field is too weak to have any significant influence on

the flow so that the coronal expansion is purely radial, then the resultant magnetic

configuration would have been quite simple: field lines stretched out outward into

a radial configuration.

But the sun rotates (although differentially) at the rate of about once in 27

days. The question is: how does the rotation change the magnetic field configuration

under the same assumption of purely radial outflow? For simplicity let us consider

the wind at the equatorial plane only, where θ = 90o. In a spherical polar coordinate

system that is rotating with the sun, the velocity components of the solar wind can

be written as follows:

Ur = u

Uφ = −ωr sin θ

Uθ = 0 (2.33)

with ω the angular velocity of the rotating sun, u the flow velocity that is constant

at large radii from the sun. Because in the rotating frame of reference the source

area remains fixed, the fluid parcel will follow the flow streamlines. The following is
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the differential equation that governs such streamlines for a constant θ (Hundhausen

1972):
1

r

dr

dφ
=

Ur

Uφ

=
u

−ωr sin θ
. (2.34)

In our assumed ‘frozen-in’ field lines or equivalently ideal MHD approximation, these

streamlines are also the field lines. Let us assume that the flow speed is constant,

u = us. Then, the integration of the above equation yields:

r − R� =
−us

ω sin θ
(φ − φ0) (2.35)

where φ0 is the initial position at R� which for simplicity can be assumed to be

zero. From the condition for the divergence free magnetic fields, ∇ · B = 0 we can

obtain the components of the fields:

Br(r, φ, θ) = B∗(R�, 0, θ)
(

R�

r

)2

Bφ(r, φ, θ) = −B∗(R�, 0, θ)
ωR�

us

R�

r
sinθ

Bθ = 0 . (2.36)

For a fixed colatitude θ, the magnetic field lines are wrapped into spirals by the

solar rotation. In particular, for θ = 90o we get a pattern of the magnetic field

configuration similar to found by Weber and Davis (1967; WD thereafter) where

they proposed a model of the solar wind in the equatorial plane in the presence of

a monopole like magnetic fields.

The model of WD was somehow more complex than the picture we depicted

above. In their more realistic model, WD assumed a polytropic gas with adiabatic

index γ = 1.22 where the flow is influenced by the the fields as well. Based on the

hydrodynamic and magnetic values of the solar wind near the Earth, they integrated

the necessary MHD equations to find that the field lines naturally are drawn into

spirals by solar rotation.

Here we do not wish to reproduce the exact WD model, but instead we

want to show that even under the simplified assumption of an isothermal solar wind
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with monopole-like magnetic fields at the solar surface and modest rotation, the

numerical code ZEUS can basically reproduce self-consistently the essence of the

WD model. The ZEUS code has been extensively tested for its accuracy (Stone and

Norman 1992; Stone et al 1992) over the long period of time it has been public.

In particular, Stone in his PhD dissertation(1990) tested for the correctness of the

ZEUS code against the actual WD model.

2.3.1 Our Numerical Result

In this section, we present numerical results of our simplified version of WD

models of the solar wind. The principle difference comes in the equation of state of

the gas, where we adopt an isothermal gas with a fixed temperature, T . Like WD

we limit ourselves to the equatorial plane of the sun with monopole like magnetic

fields at the surface. We assume the rotation period of about 27 days at the equator

resulting in the azimuthal speed vφ ∼ 1 km/s. Although we assume azimuthal

symmetry, the azimuthal velocity component vφ is allowed to vary in radius and the

problem can be considered as ‘1.5-dimensional’.

Earlier when we discussed the isothermal solar wind, we had to worry about

only the hydrodynamic quantities at the lower and upper boundaries. Here, we have

to account for the magnetic quantities as well. Thus in our definition of the lower

boundary the conditions on most of the hydrodynamic quantities remain unchanged

while the magnetic flux is introduced into the computational domain through the

fixed radial component of the field, Br. The azimuthal component of the flow,

vφ is fixed as we assume a rigidly rotating sun, and the azimuthal component of

the magnetic field Bφ is extrapolated linearly from the two closest zones in the

computational domain.

We evolve our version of the WD model from an initial condition at t = 0

sec when monopole-like magnetic field is introduced into a previously relaxed, 1D

isothermal gas-pressure-driven solar wind. Figure 2.3 shows various MHD quantities
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(as noted in the figure) at time t = 350 ksec of a run with assumed monopole-like

surface stellar magnetic field of strength B0 = 1G, and the rotation rate of 1.0 km/s.

The temperature of the gas was set to T = 2 MK.

As expected from the WD model, the azimuthal velocity vφ increases for a

short radial distance, representing co-rotation, and then falls off as ∼ 1/r preserving

the angular momentum gained up to the co-rotation radius. The radial velocity vr

profile is very similar to the one obtained for the isothermal 1- D solar wind case

with the coronal temperature T = 2 MK. In agreement with equation 2.36 above,

the radial component of the magnetic field Br scales as 1/r2 while the azimuthal

component as 1/r. The net result is that the field lines are wrapped around into a

spiral pattern.

If we increase the strength of the surface magnetic field, we expect the co-

rotation radius to move further out. Figure 2.4 shows the results of another sim-

ulation of WD model now with B0 = 4 G. Again, we see clearly that the fluid

co-rotates further out to a larger radius, but the radial velocity remains virtually

unchanged. The scaling of the the magnetic field components is the same as in the

previous figure. It is interesting to note that even a modest magnetic field can force

the wind to co-rotate to a relatively large radius. We shall see that the main reason

for this is the relatively weak solar wind, and for the case of much denser hot-star

winds significantly higher fields are required for co-rotation of the wind.

2.4 Pneuman and Kopp Model of the Solar Wind

Before we study MHD aspects of hot-star winds, let us describe the solar

analogy of our research in this work. Numerous pictures in the optical and soft-

Xray bands show that the solar corona is highly structured and the magnetic fields

play an important role in it. Near the sun where the magnetic field is strong, the

coronal gas is contained within the closed loops. But because the strength of the
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Figure 2.3: Sample solution of Weber and Davis model of the solar corona. Here
the strength of the magnetic fields at the base, B0 = 1 G. The rotation
rate at the solar surface is about 1.0 km/s. The blue dashed line in
the upper left panel represents co-rotation, the red line is the angular
momentum preserving vφ. The red line in the lower left panel is the
1/r fit for Bφ(r) while the red line in the lower right panel is the 1/r2

fit for Br(r). The aim here is to reproduce the results qualitatively. For
quantitative analysis of this problem using the ZEUS code see Stone
(PhD dissertation, 1990)
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field decreases outward rapidly, the gas flow is able to dominate and stretch the field

lines outward into a radial configuration.

Motivated by these, Pneuman and Kopp (1971, PK hereafter) proposed a

model of a steady, axisymmetric, coronal expansion from the sun with the surface

dipolar magnetic field and solved numerically the relevant MHD equations. The

necessary equations for this model have already been introduced in §2.2 , equations

2.24 through 2.32 with no external force, gexternal = 0.

They assumed constant density at the surface that is independent of the

latitude with the coronal temperature T = 1.56 × 106 K and prescribed the nor-

mal/radial component of the magnetic field at the coronal base to be that of a

dipole, Br = B0 cos θ with the polar magnetic field B0 = 1 G. To solve this problem,

PK used an iterative technique in three stages. First, they used Ampere’s Law (eqn

2.27) to find the magnetic field generated by a given current density. Then, both

the continuity and the equation of motion along magnetic field lines are solved to

obtain the density and velocity everywhere in the computational domain. Finally,

a new current distribution is computed from these. This process is repeated until

the solution converges.

We, on the other hand, use the time-dependent MHD code ZEUS-3D to re-

produce this model. We evolve our simulation from an initial condition a time t = 0,

when a dipole magnetic field is inserted into a spherically symmetric isothermal solar

wind that has been relaxed in an earlier separate 1D hydrodynamic simulation. We

adopt all the MHD quantities like the strength of the magnetic field, the tempera-

ture and the density of the corona from the PK model. Like Pneuman and Kopp,

we fix both the density and the radial component of the magnetic field at the lower

boundary. We let the two components of the velocity and the latitudinal component

of the magnetic field ‘float’ freely through simple linear extrapolation with constant

gradient.
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A time snapshot of density (logarithmic color-scale) and field lines (solid

lines) at t = 600 ksec of our simulation is shown in right panel of figure 2.5. For

convenience, a scanned figure of the original PK result is shown in the left panel.

The dashed lines represent the initial dipolar field lines. Since we do not have the

actual data of PK results, we were unable to make quantitative comparison, but

the qualitative similarity between these two results obtained from two completely

different techniques is quite good. The wind material is magnetically channeled

towards the equator leading to a density enhancement in the equatorial region. The

field lines at the higher latitudes are ripped open by the wind flow, but the magnetic

field near the solar surface about the equator is strong enough to contain the wind.

Within the closed loops, the gas is maintained in a hydrostatic equilibrium. This

is possibly due to high sound speed of hot solar wind, and we shall see that this is

quite different from the relatively cool winds of hot stars where the flow within the

magnetically confined region is complex, with the wind supersonic from very near

the stellar surface.

Many of our later results for line-driven winds are based on the solar analogy

of this PK model. As we will see, there are some fundamental differences in the end

results that are the consequence of the different physical nature of these winds.

2.5 Line-force in Stellar Winds

We showed in the first part of this chapter that the solar wind arises from

pressure-expansion of the hot corona which is superheated to temperatures of a few

million degrees by the mechanical energy dumped by the convection near the sur-

face of the relatively cool sun. By contrast, the hot stars with surface temperatures

10,000-100,000 K are considered not to have convection zones, a necessary mecha-

nism to have hot coronae. Their winds remain nearly at surface temperatures of the

star. Thus they lack the very high-pressure needed to drive the wind against the
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Figure 2.5: Left panel is the result of Pneuman and Kopp obtained by an it-
erative scheme. Right panel is our result that was obtained using
time-dependent MHD code. Color scale represents logarithmic den-
sity scale, the solid lines are the magnetic field lines, the dashes lines
are the initial dipolar field lines, just to show how much the field lines
have evolved from the initial condition.
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gravity in a similar fashion to the solar wind. But the hot stars are very luminous,

and it is the pressure of radiation that drives their winds.

Intuitively light is not a good source for momentum transfer. This is mainly

because the momentum of a photon is determined by division of its energy by the

maximum possible speed, c, the speed of light. But the hot stars are no ordinary

objects. They are very massive and very luminous. In their case, the photons

become the dominating factor in controlling the physics of the continuous outflow

of material from the stellar surface. The typical flow speeds of hot-star winds can

reach as high as 3000 km/s, much faster than the 400-700 km/s speed of the solar

wind. At the same time, typical mass loss rates for the hot stars can reach up to

∼ 10−6M�/yr, which are up to a factor of a billion higher than that of the sun.

In this section we discuss the interesting question of how photons can drive

hot-star winds. First, we present the theory of the line-driving, and then illustrate

solutions with some numerical simulations.

2.5.1 Radiation Force for a Point-Source Star

The line force per unit mass (acceleration) due to radiation at a radius r, is

given generally by:

grad =
1

c

∮

∞
∫

ν=0

κνIν(r, n̂) n̂ dΩ dν (2.37)

where the line strength has been characterized by isotropic κν , the total mass extinc-

tion coefficient that includes both absorption and scattering. The monochromatic

radiative intensity Iν along the direction n̂ is integrated over the solid angle Ω.

The total mass extinction coefficient can be separated into two parts:

κν = κe + κL (2.38)

where κe is the mass absorption coefficient (sometimes called ”opacity”) due to

scattering of continuum photons by free electrons, given by κe = σe/µe. Here σe
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(= 0.66 × 10−24am2) is the classical Thompson cross-section, and µe is the mean

atomic mass per free electron defined as µe = 2mH/(1 + X), with mH and X the

mass and mass-fraction of hydrogen, and κL the absorption coefficient due to the

bound electrons of a line. Thus the radiation force can be separated in two parts as

well:

grad = ge + gL . (2.39)

where ge is the radiation force due scattering of continuum photons by free electrons

and gL is the line force.

2.5.2 Force due to Electron Scattering

The continuum processes in hot stars are presumed to be dominated by elec-

tron scattering. Now, we can write,

ge =
κe

c

∮

∞
∫

ν=0

Iν(r, n̂) n̂ dΩ dν . (2.40)

In the case of spherical symmetry and a point source star, the integrand gives just

the total radiation flux. Thus,

ge =
κe

c

L∗

4πr2
(2.41)

where L∗ is the total bolometric luminosity of the star. Here we assumed that the

wind is optically thin to the continuum radiation.

Note that ge is inversely proportional to r2, just like the gravity. Therefore

it is useful to compare ge with gravity g by defining,

Γ ≡ ge

g
=

κeL∗

4πGM∗c
(2.42)

where Γ is often referred as the Eddington parameter, G is the gravitational constant

and M∗ is the mass of the star. Clearly, if the value of Γ exceeds unity, the star cannot

remain in hydrostatic equilibrium. For the OB-type stars we study here Γ ≈ 0.5.

Thus ge essentially reduces the effective gravity by 1 − Γ, i.e. geff = g(1 − Γ).
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2.5.3 Radiation Force due to a Single Line

In formulating the radiation force due to a single line, we will follow mostly

Cranmer (PhD Thesis, 1996). In general,

gL =
κL

c

∮

∞
∫

ν=0

φ̃(ν − ν ′) Iν(r, n̂) n̂ dΩ dν, (2.43)

where κL is the mass absorption coefficient for a single line, φ̃(ν) is a normalized

line profile function. Here ν ′ is the frequency of the line in the comoving frame of

the gas, and can be related to the emitted frequency ν0 by

ν ′ = ν0

(

1 +
n̂ · v(r)

c

)

, (2.44)

with v(r) the flow velocity, non-relativistic in the domain of our interest.

Now, for convenience, let us make a change of variables and define the fre-

quency in the unit of Doppler widths,

x =
ν − ν0

∆νD

(2.45)

where the Doppler width ∆νD = ν0 vth/c with the ion thermal speed in the gas vth.

Thus the single line force can be rewritten as:

gL =
κL∆νD

c

∮

∞
∫

x=−∞

φ

(

x − n̂ · v(r)

vth

)

Iν(r, n̂) n̂ dΩ dx . (2.46)

Note that the lower limit for x = −c/vth has been extended to x = −∞. We

can do this because the line opacity is mostly concentrated around the line center

and −c/vth is many Doppler widths away from it. The error introduced by this

approximation is negligible, but it makes the further analysis much simpler.

The intensity Iν(r, n̂), will, in general, have a contribution from the direct

intensity from the core and a contribution from the diffuse component arising from

the radiation scattered (or created) within the wind,

Iν = Idir
ν + Idiff

ν . (2.47)
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In this work, the treatment of the line force is based on pure absorption model. In this

model the force is computed by integration of the frequency-dependent attenuation

of the direct radiation. The contribution to the line force from the diffuse radiation

is ignored since in the smooth and supersonic wind we consider here, the line force

arising from it is nearly fore-aft symmetric yielding net zero force. Now, the direct

component of the intensity can be written as:

Idir
ν (r) = I∗e

−τν(r) (2.48)

where I∗ is the core intensity, assumed to be constant throughout the stellar surface,

and τν is the frequency-dependent optical depth along a path of length s:

τν(r) =

r
∫

R∗

κρ(r′)φ

(

x − n̂ · v(r′)

vth

)

dr′ . (2.49)

In general, the equation (2.48) involves non-local integration over space, but one

can localize the radiation transport by invoking the Sobolev approximation (Sobolev

1957, 1960). The key idea of this approximation is to turn this spatial integral into

an integral over comoving frame frequency. In order to do this, Sobolev assumed

that the line profile function is very narrow, δ-function like, and over a length scale

LSob which is small compared to hydrodynamic scale lengths, the density remains

fairly constant. As such, the optical depth integral becomes a function of local

variables only,

τν(r) = κρ(r)

r
∫

R∗

φ

(

x − n̂ · v(r′)

vth

)

dr′ . (2.50)

Here, let us transform the frequency variable into the comoving frame frequency,

x′ = x − n̂ · v(r′)

vth

, (2.51)

dx′ = − 1

vth

(n̂ · ∇)(n̂ · v(r)) dr′ . (2.52)

With these changes, the integral for the optical depth becomes:

τν(r) =
κLvthρ(r)

(n̂ · ∇)(n̂ · v(r))

∫ ∞

x−
n̂·v(r)

vth

φ(x′) dx′ (2.53)
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Like before, the limit of integration is extended to infinity. We can define the

constant part of the integral, the Sobolev optical depth,

τS ≡ κLvthρ(r)

(n̂ · ∇)(n̂ · v(r))
, (2.54)

and

Φ ≡
∫ ∞

x−
n̂·v(r)

vth

φ(x′) dx′ (2.55)

Now the equation for the single line force can be rewritten in a convenient form:

gL =
κL∆νD

c

∮

∞
∫

x=−∞

φ(x′) I∗e
−τSΦ(x,r) n̂ dΩ dx′

=
κL∆νD

c

∮

∞
∫

x=−∞

I∗e
−τSΦ(x,r) n̂ dΩ dΦ(x, r) (2.56)

This can be easily integrated to give:

gL =
κL∆νD

c

(

∮

I∗n̂ dΩ

[

1 − e−τS

τS

])

. (2.57)

The term in the open bracket is the total flux of radiation at frequency ν and

distance r, and for point-like star model we have:

gL =
κLvth

c2

ν0Lν

4πr2

[

1 − e−τS

τS

]

. (2.58)

In the approximation of a point-like star, the Sobolev optical depth collapses into a

simpler form,

τS =
κLvthρ(r)

∂vr/∂r
. (2.59)

For most hot stars, the lines in consideration are near the peak of the continuum

spectrum, as such we can assume ν0Lν ≈ L∗. Thus,

gL =
κLvth

c2

L∗

4πr2

[

1 − e−τS

τS

]

. (2.60)
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2.5.4 Force Due to an Ensemble of Lines

In the previous section we formulated the radiation force due to a single line

in the stellar wind. In reality, the total radiative acceleration is produced by a large

number of lines. In order to account for the contributions from all the lines one has

to sum over all of them,

glines =
∑

lines

κLvth

c2

L∗

4πr2

[

1 − e−τS

τS

]

, (2.61)

where glines is the cumulative force due to the ensemble of lines.

In practice, the number of lines is huge, and can be expressed as a statistical

distribution. In its original formulation, CAK considered an extensive list of subor-

dinate lines of C+3 and parameterized the line-force via a power law fit in tems of

force multiplier, M(t) as a function of the electron-scattering optical depth , t,

glines ∝ M(t) ∝ k t−α , (2.62)

where t = κeρvth/(∂vr/∂r), k defines the overall strength of the lines, and α de-

termines the fraction of optically thick lines. Owocki, Castor, & Rybicki (1988,

OCR hereafter) generalized this, and formulated a number distribution of lines as

an exponentially-truncated power law,

dN(κ)

dκ
=

1

κ0

(

κL

κ0

)α−2

e−κ/κmax (2.63)

where κ0 is a normalization constant that is related to the CAK k parameter by κ0 =

Γ(α)(vth/c)(κ0/κe)
1−α/(1−α); the cutoff κmax limits the the maximum line strength

(OCR); κe is the electron scattering coefficient and Γ(α) is the complete Gamma

function. With this distribution of lines, the summation in the above equation can

be replaced by an integral over κ,

glines =
∑

lines

gL

=
∫ ∞

0
gL

dN

dκL

dκL
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=
∫ ∞

0

κLvth

c2

L∗

4πr2

[

1 − e−τS

τS

]

1

κ0

(

κL

κ0

)α−2

e−κ/κmax dκL . (2.64)

This integral can be readily integrated using the definition of τS (eqn 2.59), yielding,

glines =
Γ(α)

1 − α

κ0vth

c

L∗

4πr2c

[

κ0 vthρ(r)

∂vr/∂r

]−α (
(τmax + 1)1−α − 1

τ 1−α
max

)

, (2.65)

with τmax ≡ κmax vth ρ(r)/(∂vr/∂r). For τmax � 1 the term in the round bracket

equals unity, and we retrieve the original CAK force. In this work, for the sake of

simplicity we shall ignore this correction term in what follows since its contribution is

negligible in any case. Note however that the expression above contains the thermal

velocity of the ion, vth. The quantity κ0 which is related to the line strength, is

dependent on vth. As such, the appearance of the thermal speed is redundant.

Gayley (1995), in his excellent paper, recast the CAK line-force in terms of

Q̄ that is closely related to the classical oscillator strength and eliminates vth from

the line-force expression. He assumed the following identity:

κ0vth

c
≡ Q̄ κe Γ(α)−

1
1−α . (2.66)

Here Q̄ remains fairly constant at ∼ 1000 for most O and B stars. With a little

algebra, we can rewrite the line-force as:

glines =
1

(1 − α)

Q̄κeL∗

4πr2c

(

∂v/∂r

ρcQ̄κe

)α

(2.67)

Throughout this work, we will follow Gayley’s formalism of the CAK force.

2.6 Solution to the 1-D CAK Wind

In this section we outline the possible solutions to a wind that is subject to

the CAK force as derived in equation 2.67. Since the line force is very dominant

in hot-star winds, the gas pressure plays virtually no role, and one can ignore it

altogether to a good approximation. Thus the momentum equation for 1-D time-

steady radial flow of line-driven wind becomes:

v
dv

dr
= −(1 − Γ)

GM

r2
+

Q̄κeL

4πr2c

1

1 − α

[

dv/dr

Q̄κeρc

]α
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= −(1 − Γ)
GM

r2
+

Q̄κeL

4πr2c

1

1 − α

[

4πr2v dv/dr

Q̄κeṀc

]α

(2.68)

In the second line in the above equation we used the mass continuity equation,

Ṁ = 4πr2ρv. To simplify this equation let us divide both sides by the effective

gravity (1 − Γ)GM/r2 and define inertial acceleration in this unit,

w ≡ r2vdv/dr

(1 − Γ)GM
. (2.69)

Thus,

w = −1 +
L

c1+α(1 − α)Ṁα

[

4πGM(1 − Γ)

Q̄κe

]α−1

wα

≡ −1 + Cwα (2.70)

Here, the constant C ∼ 1/Ṁα determines the mass loss rate, and the solution to

the above dimensionless equation will depend on this constant. To show this let us

first rearrange the above equation:

Cwα = w + 1 (2.71)

Figure 2.6 illustrates the graphical solution to the above equation for various values

of C. The left hand side (LHS) of the equation represents the line force, and the

right hand side (RHS) tells us how much of it goes into inertia (w) vs. gravity. For

high Ṁ or small C there are no solutions, while for small Ṁ or high C there are two

solutions. The intermediate of these two is the critical solution that corresponds to

maximal CAK mass loss rate solution. It requires that Cwα line intersect the 1 + w

line tangentially, i.e.

Ccαwα−1 = 1 (2.72)

If we solve for w, we obtain,

w =
α

1 − α
= constant . (2.73)
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Now the constant Cc becomes,

Cc =
(1 − α)α−1

αα
(2.74)

Using the definition for C and after some simple algebraic manipulations, one finds

that:

ṀCAK =
L

c2

α

1 − α

[

Q̄Γ

1 − Γ

](1−α)/α

(2.75)

Notice that the complete Gamma function, Γ(α) disappeared. This is due to the

definition of Q̄ in equation (2.66). If we assume α = 1/2, we can integrate equation

(2.73) to obtain the following velocity law for line-driven hot-star winds:

v(r) =

√

α

1 − α
vesc

(

1 − R∗

r

)1/2

, (2.76)

where vesc =
√

2GM(1 − Γ)/R∗ is the escape speed from the stellar surface. Note

that the terminal speed here is nearly equal to escape speed, v∞ =
√

α/(1 − α)vesc.

In fact, for α = 1/2 they are exactly equal. This is the classical CAK solution of

line-driven winds. For the general case with 0 < α < 1, one can fit the velocity

solution with:

v(r) = v∞

(

1 − R∗

r

)β

, (2.77)

where the exponent β determines how steeply the velocity reaches the terminal

speed. The solution we derived above (eqn. 2.76) is widely known in the literature

as the β = 1/2 velocity law. It underestimates observed terminal velocities for most

hot stars. In the next section we discuss an extension of this model that takes into

account the finite size of the star.

2.7 Finite Disk Correction Factor

In the above analysis, we assumed that the star is a point like source. That

enabled us to derive a relatively simple form of the line force. In reality, stars have

finite size, and especially near the surface it has significant dynamical effects on the
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Figure 2.6: Graphical solutions of the dimensionless equation of motion () repre-
senting 1D CAK wind solutions. If Ṁ is big, there are no solution;if Ṁ
is small there are two solutions; only the critical value of Ṁ = ṀCAK

gives a single solution.
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wind outflow. This arises due to the presence of non-radial rays from the stellar

disk. In this section we will derive this effect of the finite size of the star on the

line force. We assume spherical symmetry with n̂ along the z-axis and purely radial

wind outflow,

n̂ = µ′ r̂ +
√

1 − µ′2 θ̂′ , (2.78)

v = vr r̂ (2.79)

where µ′ = cos θ′. The general velocity gradient can be derived as,

(n̂ · ∇)(n̂ · v(r)) = µ′2 ∂vr

∂r
+

vr

r
(1 − µ′2) (2.80)

=
∂vr

∂r

σµ′2 + 1

σ + 1
, (2.81)

where we have defined

σ ≡ ∂ln vr

∂ln r
− 1 . (2.82)

The bolometric intensity can be expressed as:

I∗(r, θ
′, φ′) =

L∗

4πR2
∗

D(µ′, r) (2.83)

with the limb darkening function D(µ′, r). For simplicity, we will assume a uniformly

bright disk,

D(µ′, r) =











0 if − 1 ≤ µ′ < µ∗

1/π if µ∗ < µ′ ≤ +1

where

µ∗ ≡
√

1 − R2
∗

r2
(2.84)

defines the cosine of the angle subtended by the stellar disk. The radial line force

we have derived in equation (2.67) now can be rewritten as,

glines =
1

(1 − α)

Q̄κeL∗

4πR2
∗c

(

1

ρcQ̄κe

)α

2π
∫ +1

−1
D(µ′, r)

[

∂vr

∂r

σµ′2 + 1

σ + 1

]α

dµ′ . (2.85)
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The integration is straightforward and yields,

glines =
1

(1 − α)

Q̄κeL∗

4πR2
∗c

(

∂vr/∂r

ρcQ̄κe

)α
(σ + 1)α+1 − (µ2

∗σ + 1)α+1

σ(α + 1)(σ + 1)α
. (2.86)

We can recast the above expression by rewriting R2
∗ as r2(1 − µ2

∗).

glines =
1

(1 − α)

Q̄κeL∗

4πr2c

(

∂vr/∂r

ρcQ̄κe

)α [
(σ + 1)α+1 − (µ2

∗σ + 1)α+1

σ(1 − µ2
∗)(α + 1)(σ + 1)α

]

. (2.87)

The term in the square bracket in the above equation is the only extra term compared

to the expression of the line-force for the case of a point source (eqn 2.67). In the

literature this is called as finite disk correction factor, fd, and appears as equation

(50) in CAK (1975),

fd =
(σ + 1)α+1 − (µ2

∗σ + 1)α+1

σ(1 − µ2
∗)(α + 1)(σ + 1)α

(2.88)

Throughout this work we will assume this form of fd. We will see in chapter 4, that

it plays an important role in the dynamics of hot-star winds and the negligence of

this factor may be rather misleading.

As a sample, figure 2.7 shows the finite disk correction factor fd assuming

a β-velocity law (eqn. 2.77) and α = 1/2 for various values of beta, noted on the

figure, against radius (logarithmic scale). Note that fd starts at about ≈ 0.70, rises

above unity around the isotropic expansion point, then finally approaches unity

asymptotically.
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Figure 2.7: The finite disk correction factor plotted against radius for assumed β-
velocity law and α = 1/2. The three curves correspond to β = 0.5, 1.0
and 5.0 (top to bottom).
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Chapter 3

MAGNETICALLY CHANNELED LINE-DRIVEN WINDS

3.1 Introduction

Hot1, luminous, OB-type stars have strong stellar winds, with asymptotic

flow speeds up to v∞ ∼ 3000 km/s and mass loss rates up to Ṁ ∼ 10−5M� /yr.

As was mentioned earlier, these general properties are well-explained by modern

extensions (e.g. Pauldrach, Puls, and Kudritzki 1986) of the basic CAK formalism

for wind driving by scattering of the star’s continuum radiation in a large ensemble

of spectral lines.

However there is also extensive evidence that such winds are not the steady,

smooth outflows envisioned in these spherically symmetric, time-independent, CAK-

type models, but instead have extensive structure and variability on a range of

spatial and temporal scales. Relatively small-scale, stochastic structure – e.g. as

evidenced by often quite constant soft x-ray emission (Long & White 1980), or by UV

lines with extended black troughs understood to be a signature of a nonmonotonic

velocity field (Lucy 1982) – seems most likely a natural result of the strong, intrinsic

instability of the line-driving mechanism itself (Owocki 1994; Feldmeier 1995). But

larger-scale structure – e.g. as evidenced by explicit UV line profile variability in

even low signal-to-noise IUE spectra (Kaper et al. 1996; Howarth & Smith 1995)

– seems instead likely to be the consequence of wind perturbation by processes

1 A paper based on the material in this chapter has been accepted for publication
in ApJ September 2002; Authors: ud-Doula, A. & Owocki, S.
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occurring in the underlying star. For example, the photospheric spectra of many

hot stars show evidence of radial and/or non-radial pulsation, and in a few cases

there is evidence linking this with observed variability in UV wind lines (Telting,

Aerts, & Mathias 1997; Mathias et al. 2001).

An alternate scenario – one explored through dynamical simulations in this

chapter – is that, in at least some hot stars, surface magnetic fields could perturb,

and perhaps even channel, the wind outflow, leading to rotational modulation of

wind structure that is diagnosed in UV line profiles, and perhaps even to magnet-

ically confined wind-shocks with velocities sufficient to produce the relatively hard

x-ray emission seen in some hot-stars.

The sun provides a vivid example of how a stellar wind can be substantially

influenced by a surface magnetic field. Both white-light and x-ray pictures show the

solar corona to be highly structured, with dense loops where the magnetic field con-

fines the coronal gas, and low-density coronal holes where the more radial magnetic

field allows a high-speed, pressure-driven, coronal outflow (Zirker 1977). In a sem-

inal paper, Pneuman and Kopp (1971) provided the first magnetohydrodynamical

(MHD) model of this competition between magnetic confinement and coronal expan-

sion. Using an iterative scheme to solve the relevant partial differential equations for

field and flow, they showed that this competition leads naturally to the commonly

observed ‘helmet’ streamer configuration, for which the field above closed magnetic

loops is extended radially outward by the wind outflow. Nowadays such MHD pro-

cesses can be readily modelled using time-dependent MHD simulation codes, such

as the Versatile Advection Code (Keppens and Goedbloed 1999), or the publicly

available ZEUS codes (Stone and Norman 1992). Here we apply the latter to study

MHD processes within line-driven stellar winds that have many characteristics quite

distinct from the pressure-driven solar wind.

For the solar wind, the acceleration to supersonic speeds can take several
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solar radii; as such, magnetic loops that typically close within a solar radius or so

can generally maintain the coronal gas in a nearly hydrostatic configuration. As we

show below, in the more rapid line-acceleration of hot-stars winds, strong magnetic

confinement typically channels an already supersonic outflow, often leading to strong

shocks where material originating from different footpoints is forced to collide, with

compressed material generally falling back to the star in quite complex and chaotic

patterns. In the solar wind, the very low mass-loss-rate, and thus the low gas

density and pressure, mean that only a modest magnetic field strength, of order of

a Gauss, is sufficient to cause significant confinement and channeling of the coronal

expansion. In hot-star winds, magnetic confinement or channeling generally requires

a much stronger magnetic field, on the order of hundreds of Gauss. As such, a key

issue underlying the study here regards the theoretical prospects and observational

evidence for hot-star magnetic fields of this magnitude.

In the sun and other cool stars, magnetic fields are understood to be generated

through a dynamo mechanism, in which coriolis forces associated with stellar rota-

tion deflect convective motions in the hydrogen and helium recombination zones. In

hot stars, hydrogen remains fully ionized even through the atmosphere, and so, lack-

ing the strong convection zones associated with hydrogen recombination, such stars

have traditionally been considered not to have strong, dynamo-generated magnetic

fields. However, considering the generally quite rapid rotation of most hot stars,

dynamo-generation may still be possible, e.g. within thin, weaker, near-surface

convection zones associated with recombination of fully ionized helium.

Moreover, the interior, energy-generation cores of such massive stars are

thought to have strong convection, and recently Cassinelli and Macgregor (2000;

see also Charbonneau and MacGregor 2001) have proposed that dynamo-generated

magnetic flux tubes from this interior could become buoyant, and thus drive an up-

ward diffusion to the surface over a time-scale of a few million years. Such a model
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would predict surface appearance of magnetic fields in hot-stars that have evolved

somewhat from the zero-age-main sequence. Alternatively, magnetic fields could

form from an early, convective phase during the star’s initial formation, or perhaps

even arise through compression of interstellar magnetic flux during the initial stellar

collapse. Such primordial models would thus predict magnetic fields to be strongest

in the youngest stars, with then some gradual decay as the star evolves.

In recent years there has been considerable effort to develop new techniques,

e.g. based on the Hanle effect, to observationally detect stellar magnetic fields

(Ignace, Nordsieck, & Cassinelli 1997; Ignace, Cassinelli, & Nordsieck 1999). The

Hanle effect is related to the polarization arising from resonance-line scattering in

the presence of relatively weak magnetic fields. It is applicable when the magnetic

sublevels of a line transition are sufficiently close in frequency that the natural

line widths of these sublevels overlap significantly. Consequently, the existence of

quantum mechanical coherences leads to an interference between the polarized line

components, resulting in changes of the polarization of the scattered light. With

Hanle effect one can detect magnetic fields 1 ∼< B ∼< 1000 G. When the magnetic

field strength is larger than 1000 G, the sublevels of the line transition are distinctly

separated and the Zeeman effect starts to dominate.

The Zeeman effect represents the most direct and well-demonstrated method

to determine the magnetic field strength in stars through the separation of the sub-

levels and associated circular polarization of stellar photospheric absorption lines

(Borra & Landstreet 1980). This technique has been used extensively in direct mea-

surement of the quite strong magnetic fields that occur in the chemically peculiar

Ap and Bp stars (Babcock 1960; Borra et al. 1980; Bohlender 1993; Mathys 1995;

Mathys et al. 1997). For more ‘normal’ (i.e., chemically non-peculiar) hot stars, the

generally strong rotational line-broadening severely hinders the direct spectropo-

larimetric detection of their generally much weaker fields, yielding instead mostly
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only upper limits, typically of order a few hundred Gauss. This, coincidentally and

quite tantalizingly, is similar to the level at which magnetic fields can be expected

to become dynamically significant for channeling the wind outflow.

Recently, however, there have been first reports of positive field detections in

a few normal hot stars. For the relatively slowly rotating star β Cephei, Henrichs

et al. (2000) and Donati et al. (2001) report a 3-sigma detection of a ca. 400 G

dipole field, with moreover a rotational modulation suggesting the magnetic axis

is tilted to be nearly perpendicular to the stellar rotation. There are also initial

reports (Donati 2001) of a ca. 1000 G dipole field in θ1 Ori C, in this case with

the magnetic axis tilted by about 45 degrees to the rotation. For Ap and Bp stars,

the most generally favored explanation for their strong fields is that they may be

primordial, and the relative youth of θ1 Ori C also seems to suggest a primordial

model. In contrast, the more evolved evolutionary status of β Cephei seems to favor

the interior-eruption scenario.

The focus of the work in this chapter is to carry out magnetohydrodynamical

simulations of how such magnetic fields on the surface of hot stars can influence their

radiatively driven stellar wind. Our approach here represents a natural extension

of the previous studies by Babel & Montmerle (1997a,b; hereafter BM97a,b), which

effectively prescribed a fixed magnetic field geometry to channel the wind outflow.

For large magnetic loops, wind material from opposite footpoints is accelerated to

a substantial fraction of the wind terminal speed (i.e. ∼ 1000 km/s) before the

channeling toward the loop tops forces a collision with very strong shocks, thereby

heating the gas to temperatures (107−108 K) that are high enough to emit hard (few

keV) x-rays. This ‘magnetically confined wind shock’ (MCWS) model was initially

used to explain x-ray emission from the Ap-Bp star IQ Aur (BM97a), which has

a quite strong magnetic field (∼ 4kG) and a rather weak wind (mass loss rate

∼ 10−10M�/ yr), and thus can indeed be reasonably modeled within the framework
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of prescribed magnetic field geometry.2 Later, BM97b applied this model to explain

the periodic variation of x-ray emission of the O7 star θ1 Ori C, which has a much

lower magnetic field (∼< 1000 G) and significantly stronger wind (mass loss rate

∼ 10−7M�/ yr), raising now the possibility that the wind itself could influence the

field geometry in a way that is not considered in the simple fixed-field approach.

The simulation models presented here are based on an isothermal approxi-

mation of the complex energy balance, and so can provide only a rough estimate of

the level of shock heating and x-ray generation. But a key advantage over previous

approaches is that these models do allow for such a fully dynamical competition

between the field and flow. A central result is that the overall effectiveness of mag-

netic field in channeling the wind outflow can be well characterized in terms of single

‘wind magnetic confinement parameter’ η∗, defined in eqn. (3.7) below, and related

to the relative energy densities of field and wind (§3.3). The specifics of our numer-

ical MHD method are described in §3.2, while §3.4 details the results of a general

parameter study of hot-star winds with various degrees of magnetic confinement.

Following a discussion (§3.5) of the implications of these results for modeling hot-

star wind structure and variability, we finally conclude (§3.6) with a summary and

outlook for future work.

3.2 Numerical Method

3.2.1 Magnetohydrodynamic Equations

Our general approach is to use the ZEUS-3D (Stone and Norman 1992) nu-

merical MHD code to evolve a consistent dynamical solution for a line-driven stellar

2 However, note that even in this case the more-rapid radial decline in magnetic
vs. wind energy density means that the wind outflow eventually wins, drawing
out portions of the surface field into a radial, open configuration. Such open-
field regions can only be heuristically accounted for in the fixed-field modeling
approach.
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wind from a star with a dipolar surface field. As described further below, the ba-

sic ZEUS-3D code was modified for the present study to include radiative driving

terms, and to allow for specification of the lower boundary conditions. The code is

designed to be easily adapted to run in a variety of flow geometries (planar, cylin-

drical, spherical) in one, two, or three dimensions. Our implementation here uses

spherical polar coordinates with radius r, co-latitude θ, and azimuth φ in a 2D for-

mulation, which assumes all quantities are constant in azimuthal angle φ, and that

the azimuthal components of both field and flow vanish, Bφ = vφ = 0.

The time-dependent equations to be numerically integrated thus include the

conservation of mass,
Dρ

Dt
+ ρ∇ · v = 0, (3.1)

and the equation of motion

ρ
Dv

Dt
= −∇p +

1

4π
(∇× B) × B − GM(1 − Γ)r̂

r2
+ glines, (3.2)

where ρ, p, and v are the mass density, gas pressure, and velocity of the fluid flow,

and D/Dt = ∂/∂t+v·∇ is the advective time derivative. The gravitational constant

G and stellar mass M set the radially directed (r̂) gravitational acceleration, and

Γ ≡ κeL/(4πGMc) is the Eddington parameter, which accounts for the acceleration

due to scattering of the stellar luminosity L by free electron opacity κe, with c the

speed of light. The additional radiative acceleration due to line scattering, glines, is

discussed further below. The magnetic field B is constrained to be divergence free

∇ · B = 0, (3.3)

and, under our assumption of an idealized MHD flow with infinite conductivity (e.g.

Priest & Hood 1991), its inductive generation is described by

∂B

∂t
= ∇× (v × B). (3.4)
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The ZEUS-3D code can also include an explicit equation for conservation

of energy, but in the dense stellar winds considered here, the energy balance is

dominated by radiative processes that tend to keep the wind near the stellar effective

temperature Teff ( Drew 1989; Pauldrach 1987). In this initial study, we assume an

explicitly isothermal flow with T = Teff , which thus implies a constant sound speed

a =
√

kT/m, with k Boltzmann’s constant and m the mean atomic weight of the gas.

The perfect gas law then gives the pressure as p = ρa2. In such an isothermal model,

even the locally strong compressive heating that occurs near shocks is assumed to be

radiated away within a narrow, unresolved cooling layer (Castor 1987; Feldmeier et

al. 1997; Cooper 1994). We thus defer to future work the quantitative modeling of

the possible EUV and x-ray emission of any such shocks, although below (§5.3.4) we

do use computed velocity jumps to provide rough estimates of the expected intensity

and hardness of such shock emissions. (See figure 3.9.)

3.2.2 Spherically Symmetric Approximation for Radial Line-Force

The radiative acceleration glines results from scattering of the stellar radiation

in a large ensemble of spectral lines. In these highly supersonic winds this can be

modeled within the framework of the Sobolev (1960) approximation as depending

primarily on the local velocity gradient averaged over the directions of the source

radiation from the stellar disk. For 1D nonrotating winds, the line-force-per-unit-

mass can be written in the form (cf. Abbott 1982; Gayley 1995)

glines =
f

(1 − α)

κeLQ̄

4πr2c

(

dv/dr

ρcQ̄κe

)α

(3.5)

where α is the CAK exponent, and f is the (1D) finite disk correction factor, given

by CAK eqn. (50) (See also Friend and Abbott 1986, and Pauldrach, Puls, and

Kudritzki 1986). Here we choose to follow the Gayley (1995) line-distribution nor-

malization Q̄, which offers the advantages of being a dimensionless measure of line-

opacity that is independent of the assumed ion thermal speed vth, and with a nearly
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constant characteristic value of order Q̄ ∼ 103 for a wide range of ionization con-

ditions (Gayley 1995). This normalization is related to the usual CAK parameter

through k = Q̄1−α (vth/c)
α /(1 − α).

In the 2D wind models computed here, the line force (3.5) should in principle

be modified to take account of gradients in other velocity components, such as might

arise from, e.g., latitudinal flow along magnetic loops. Such latitudinal gradients

can modify the form of the radial finite-disk correction factor f , and can even lead

to a non-zero latitudinal component of the full vector line force. In a rotating stellar

wind, asymmetries in the velocity gradient between the approaching and receding

stellar hemisphere can even lead to a net azimuthal line force (Owocki, Cranmer,

and Gayley 1996; Gayley and Owocki 2000). For simplicity, we defer study of such

rotational and latitudinal affects to future work, and thus apply here just the radial,

1D form (3.5) for the line force, within a 2D, axisymmetric model of a non-rotating

stellar wind.

3.2.3 Numerical Specifications

Let us next describe some specifics of our numerical discretization and bound-

ary conditions. In our implementation of the ZEUS MHD code, flow variables are

specified on a fixed 2D spatial mesh in radius and co-latitude, {ri, θj}. The mesh

in radius is defined from an initial zone i = 1, which has a left interface at r1 = R∗,

the star’s surface radius, out to a maximum zone (i = nr = 300), which has a right

interface at r301 = 6R∗. Near the stellar base, where the flow gradients are steep-

est, the radial grid has an initially fine spacing with ∆r1 = 0.00026R∗, and then

increases by 2% per zone out to a maximum of ∆r299 = 0.11R∗.

The mesh in co-latitude uses nθ = 100 zones to span the two hemispheres

from one pole, where the j = 1 zone has a left interface at θ1 = 0o, to the other

pole, where the j = nθ = 100 zone has a right interface at θ101 = 180o. To facilitate

resolution of compressed flow structure near the magnetic equator at θ = 90o, the
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zone spacing has a minimum of ∆θ50 = 0.29o at the equator, and then increases by

5% per zone toward each pole, where ∆θ1 = ∆θ100 = 5.5o. Test runs with half the

resolution in radius and/or latitude showed some correspondingly reduced detail in

flow fine-structure, but overall the results were qualitatively similar to those for the

standard resolution.

Our operation uses the piecewise-linear-advection option within ZEUS (van

Leer 1977), with time steps set to a factor 0.30 of the minimum MHD Courant

time computed within the code (Courant et al. 1953). Boundary conditions are

implemented by specification of variables in two phantom zones. At both poles,

these are set by simple reflection about the boundary interface. At the outer radius,

the flow is invariably super-Alfvenic outward, and so outer boundary conditions

for all variables (i.e. density, and the radial and latitudinal components of both

the velocity and magnetic field) are set by simple extrapolation assuming constant

gradients.

The boundary conditions at the stellar surface are specified as follows. In

the two radial zones below i = 1, we set the radial velocity vr by constant-slope

extrapolation, and fix the density at a value ρo chosen to ensure subsonic base

outflow for the characteristic mass flux of a 1D, nonmagnetic CAK model, i.e. ρo ≈
Ṁ/(4πR2

∗a/5). Detailed values for each model case are given in Table 1. In our

2D magnetic models, these conditions allow the mass flux and the radial velocity to

adjust to whatever is appropriate for the local overlying flow (Owocki, Castor, and

Rybicki 1988). In most zones, this corresponds to a subsonic wind outflow, although

inflow at up to the sound speed is also allowed.

Magnetic flux is introduced through the radial boundary as the radial com-

ponent of a dipole field Br(R∗) = Bo cos(θ), where the assumed polar field Bo is a

fixed parameter for each model (see Table 1). The latitudinal component of mag-

netic field, Bθ, is set by constant slope extrapolation. The specification for the
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latitudinal velocity, vθ, differs for strong vs. weak field cases. For strong fields (de-

fined by the magnetic confinement parameter η∗ > 1; see §3.3), we again use linear

extrapolation. (We also find similar results using vθ = vrBθ/Br.) For weak fields

(η∗ ≤ 1), we simply set vθ = 0. Tests using each approach in the intermediate field

strength case (η∗ = 1) gave similar overall results.

This time-dependent calculation also requires us to specify an initial condition

for each of these flow variables over the entire spatial mesh at some starting time

t = 0. The hydrodynamical flow variables ρ and v are initialized to values for

a spherically symmetric, steady, radial CAK wind, computed from relaxing a 1D,

non-magnetic, wind simulation to an asymptotic steady state. The magnetic field

is initialized to have a simple dipole form with components Br = Bo(R∗/r)
3 cos θ,

Bθ = (Bo/2)(R∗/r)
3 sin θ, and Bφ = 0, with Bo the polar field strength at the stellar

surface. From this initial condition, the numerical model is then evolved forward in

time to study the dynamical competition between the field and flow. The results of

such dynamical simulations are described in §4.4.

3.3 Heuristic Scaling Analysis for Field vs. Flow Competition

3.3.1 The Wind Magnetic Confinement Parameter

To provide a conceptual framework for interpreting our MHD simulations, let

us first carry out a heuristic scaling analysis of the competition between field and

flow. To begin, let us define a characteristic parameter for the relative effectiveness

of the magnetic fields in confining and/or channeling the wind outflow. Specifically,

consider the ratio between the energy densities of field vs. flow,

η(r, θ) ≡ B2/8π

ρv2/2

≈ B2r2

Ṁv
(3.6)

=

[

B2
∗(θ)R∗

2

Ṁv∞

] [

(r/R∗)
2−2q

1 − R∗/r

]

,
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where the latitudinal variation of the surface field has the dipole form given by

B2
∗(θ) = B2

o(cos
2 θ + sin2 θ/4). In general, a magnetically channeled outflow will

have a complex flow geometry, but for convenience, the second equality in eqn. (3.6)

simply characterizes the wind strength in terms of a spherically symmetric mass loss

rate Ṁ = 4πr2ρv. The third equality likewise characterizes the radial variation of

outflow velocity in terms of the phenomenological velocity law v(r) = v∞(1−R∗/r),

with v∞ the wind terminal speed; this equation furthermore models the magnetic

field strength decline as a power-law in radius, B(r) = B∗(R∗/r)
q, where, e.g., for a

simple dipole q = 3.

With the spatial variations of this energy ratio thus isolated within the right

square bracket, we see that the left square bracket represents a dimensionless con-

stant that characterizes the overall relative strength of field vs. wind. Evaluating

this in the region of the magnetic equator (θ = 90o), where the tendency toward a

radial wind outflow is in most direct competition with the tendency for a horizontal

orientation of the field, we can thus define a equatorial ‘wind magnetic confinement

parameter’,

η∗ ≡ B2
∗(90

o)R∗
2

Ṁv∞

= 0.4
B2

100 R2
12

Ṁ−6 v8

, (3.7)

where Ṁ−6 ≡ Ṁ/(10−6 M�/yr), B100 ≡ Bo/(100 G), R12 ≡ R∗/(10
12 cm), and

v8 ≡ v∞/(108 cm/s). As these stellar and wind parameters are scaled to typical

values for an OB supergiant, e.g. ζ Pup, the last equality in eqn. (3.7) immediately

suggests that for such winds, significant magnetic confinement or channeling should

require fields of order ∼ 100 G. By contrast, in the case of the sun, the much

weaker mass loss (Ṁ� ∼ 10−14 M�/yr) means that even a much weaker global

field (Bo ∼ 1 G) is sufficient to yield η∗ ' 40, implying a substantial magnetic

confinement of the solar coronal expansion. This is consistent with the observed
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large extent of magnetic loops in optical, UV and x-ray images of the solar corona.

3.3.2 Alfven Radius and Magnetic Closure Latitude

The inverse of the energy density ratio defined in eqn. (3.6) also represents

the square of an Alfvenic Mach number MA ≡ v/vA, where vA ≡ B/
√

4πρ is the

Alfven speed. We can thus estimate from eqns. (3.6) and (3.7) that the Alfven

radius RA(θ) (at which MA(RA) ≡ 1) satisfies
[

RA(θ)

R∗

]2q−2

−
[

RA(θ)

R∗

]2q−3

= η∗
[

4 − 3 sin2(θ)
]

. (3.8)

Figure 3.1 plots solutions of this estimate of the polar (θ = 0; solid curve) and

equatorial (θ = 90o; dashed curve) Alfven radius versus the confinement parameter

η∗ for various values of the magnetic exponent q. The circles compare the actual

computed Alfven radii near the magnetic poles (filled) and equator (open) for our

MHD simulations, as will be discussed further below (§§3.4, 3.5.1).

This heuristic solution for the Alfven radius can be used (cf. BM97a) to

estimate the maximum radius of a closed loop.3 For an assumed dipole field, this

loop has surface footpoints at colatitudes θA satisfying

θA = arcsin

[
√

R∗

RA(θ = 0)

]

, (3.9)

which thus give the latitudes ±|90 − θA|o bounding the region of magnetic closure

about the equator.

The discussion in §5.1 examines how well these heuristic scaling arguments

match the results of the full MHD simulations that we now describe.

3.4 MHD Simulation Results

Let us now examine results of our MHD simulations for line-driven winds.

Our general approach is to study the nature of the wind outflow for various assumed

3 BM97a denote this as LA, for the value of their ‘magnetic shell parameter’ L
that intersects the Alfven radius.
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values of the wind magnetic confinement parameter η∗. We first confirm that, for

sufficiently weak confinement, i.e., η∗ ≤ 0.01, the wind is essentially unaffected by

the magnetic field. But for models within the range 1/10 < η∗ < 10, the field has a

significant influence on the wind. For our main parameter study, the variations in η∗

are implemented solely through variations in the assumed magnetic field strength,

with the stellar and wind parameters fixed at values appropriate to a typical OB

supergiant, e.g. ζ Pup, as given in Table 1. Following this, we briefly (§4.4) compare

flow configurations with identical confinement parameter, η∗, but obtained with

different stellar and wind parameters.

3.4.1 Time Relaxation of Wind to a Dipole Field

As noted above, we study the dynamical competition between field and wind

by evolving our MHD simulations from an initial condition at time t = 0, when a

dipole magnetic field is suddenly introduced into a previously relaxed, 1D spherically

symmetric CAK wind. For the case of moderately strong magnetic confinement,

η∗ =
√

10 (Bo = 520 G), figure 3.2 illustrates the evolution of magnetic field (lines)

and density (gray scale) at fixed time snapshots, t =0, 10, 25, 50, 100, and 450 ksec.

Note that the wind outflow quickly stretches the initial dipole field outward, opening

up closed magnetic loops and eventually forcing the field in the outer wind into

a nearly radial orientation. This outward field-line stretching implies a general

enhancement of the magnetic field magnitude in the outer wind, as evidenced in

figure 3.2 by the increased density of field lines at the later times. This global

relaxation of field and flow is completed within the first 50−100 ksec, corresponding

to about 2-4 times the characteristic flow crossing time, tflow = 5R∗/v∞ ' 25 ksec.

To ascertain the asymptotic behavior of flows with various magnetic con-

finement parameters η∗, we typically run our simulations to a time, t = 450 ksec,

that is much longer (by factor ∼18) than this characteristic flow time. Generally

we find that, after the initial relaxation period of ∼ 50 − 100 ksec, the outer wind
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remains in a nearly stationary configuration, with nearly steady, smooth outflow

along open field lines. However, for cases with sufficiently strong magnetic field

η∗ > 1, confinement by closed loops near the equatorial surface can lead to quite

complex flows, with persistent, intrinsic variability. Before describing further this

complex structure near the stellar surface, let us first examine the simpler, nearly

steady flow configurations that result in the outer wind.

3.4.2 Global Wind Structure for Strong, Moderate, and Weak Fields

Figure 3.3 illustrates the global configurations of magnetic field, density, and

radial and latitudinal components of velocity at the final time snapshot, t = 450 ksec

after initial introduction of the dipole magnetic field. The top, middle, and bottom

rows show respectively results for a weak, moderate, and strong field, characterized

by confinement parameters of η∗ = 1/10, 1, and 10.

For the weak magnetic case η∗ = 1/10, note that the flow effectively extends

the field to almost a purely radial configuration everywhere. Nonetheless, even in

this case the field still has a noticeable influence, deflecting the flow slightly toward

the magnetic equator (with peak latitudinal speed max(vθ) ' 70 km/s) and thereby

leading to an increased density and a decreased radial flow speed in the equatorial

region.

For the moderate magnetic strength η∗ = 1, this equatorward deflection

becomes more pronounced, with a faster latitudinal velocity component (max(vθ) '
300 km/s), and a correspondingly stronger equatorial change in density and radial

flow speed. The field geometry shows moreover a substantial nonradial tilt near the

equatorial surface.

For the strong magnetic case η∗ = 10, the near-surface fields now have a

closed-loop configuration out to a substantial fraction of a stellar radius above the

surface. Outside and well above the closed region, the flow is quasi-steady, though
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now with substantial channeling of material from higher latitudes toward the mag-

netic equator, with max(vθ) > 500 km/s, even outside the closed loop. This leads

to a very strong flow compression, and thus to a quite narrow equatorial “disk” of

dense, slow outflow.

This flow configuration is somewhat analogous to the “Wind Compressed

Disk” model developed for non-magnetic, rotating winds (Bjorkman and Cassinelli

1993; Owocki, Cranmer, and Blondin 1994). Indeed, it was already anticipated as

a likely outcome of magnetic channeling, e.g. by BM97b, and in the “WC-Fields”

paradigm described by Ignace, Bjorkman and Cassinell (1998). It is also quite

analogous to what is found for strong field channeling in other types of stellar wind

(Matt et al. 2000), including even the solar wind (Keppens and Goedbloed 1999

2000).

3.4.3 Variability of Near-Surface Equatorial Flow

In contrast to this relatively steady, smooth nature of the outer wind, the

flow near the star can be quite structured and variable in the equatorial regions. For

the strong magnetic field case η∗ = 10, the complex structure of the flow within the

closed magnetic loops near the equatorial surface is already apparent even in the

global contour plots in the bottom row of figure 3.3. To provide a clearer illustration

of this variable flow structure, Figure 3.4 zooms in on the near-star equatorial region,

comparing density (upper row, contours), mass flux (arrows), and field lines (lower

row) at an arbitrary time snapshot long after the initial condition (t > 400 ksec),

for three models with magnetic confinement numbers η∗ = 1,
√

10, and 10.

For the case of moderate magnetic field with η∗ = 1, note the appearance

of the high-density knot at a height ∼ 0.3R∗ above the equatorial surface. As is

suggested from the bow-shaped front on the inward-facing side of this knot, it is

flowing inward, the result of a general infall of material that had been magnetically

channeled into an equatorial compression, and thereby became too dense for the
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radiative line-driving to maintain a net outward acceleration against the inward pull

of the stellar gravity. This again is quite analogous to the inner disk infall found

in dynamical simulations of rotationally induced Wind Compressed Disks (Owocki,

Cranmer, and Blondin 1994).

Animations of the time evolution for this case show that such dense knots

form repeatedly at semi-regular intervals of about 200 ksec. A typical cycle begins

with a general building of the equatorial density through the magnetic channeling

and equatorial compression of wind outflow from higher latitudes. As the radiative

driving weakens with the increasing density, the equatorial outflow first decelerates

and then reverses into an inflow that collects into the dense knot. Once the equa-

torial density is emptied by the knot falling onto the surface, the build-up begins

anew, initiating a new cycle.

For the case of somewhat stronger field with η∗ =
√

10, the snapshot at the

same fixed time t = 400 ksec again shows evidence for an infalling knot, except that

now this has been forced by the magnetic tension of an underlying, closed, equato-

rial loop to slide to one hemisphere (in this case north), instead of falling directly

upon the equatorial stellar surface. Animations of this case show a somewhat more

irregular repetition, with knots again forming about every 200 ksec, but randomly

sliding down one or the other of the footpoint legs of the closed equatorial loop.

It is interesting that, even though our simulations are formally symmetric in the

imposed conditions for the two hemispheres, this symmetry is spontaneously broken

when material from the overlying dense equatorial flow falls onto, and eventually off

of, the top of the closed magnetic loop.

The strongest field case with η∗ = 10 shows a much more extensive mag-

netic confinement, and accordingly a much more elaborate configuration for mate-

rial re-accretion onto the surface. Instead of forming a single knot, the equatorially

compressed material now falls back as a complex “snake” of dense structure that
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breaks up into a series of dense knots, draining down the magnetic loops toward

both northern and southern footpoints. In the time animations for as long as we

have run this case, there is no clear repetition time, as the formation and infall of

knots and snake-segments are quite random, perhaps even chaotic.

It is worth noting here that in the two stronger magnetic cases, the closed

loops include a region near the surface for which the field is so nearly horizontal

that it apparently inhibits any net upflow. As a consequence, these loops tend to

become quite low density. This has an unfortunate practical consequence for our

numerical simulations, since the associated increase in the Alfven speed requires a

much smaller numerical time step from the standard Courant condition. Thus far

this has effectively limited our ability to run such strong field models for the very

extended time interval needed for clearer definition of the statistical properties of

the re-accretion process.

In contrast to this effective inhibition of radial outflow by the nearly hori-

zontal field in the central regions of a closed loop, note that in the outer portion of

the loop, where the field is more vertical, the radial line-driving is able to initiate

a supersonic flow up along the loop. But when this occurs along a field line that is

still closed, the inevitable result is that material from opposite footpoints is forced

to collide near the top of the loop. This effectively halts the outflow for that field

line, with the accumulating material near the top of the loop supported by both the

magnetic tension from below and the ram pressure of incoming wind from each side.

As the density builds, maintaining this support against gravity becomes in-

creasingly difficult. For the moderate field strength, the material from all such closed

flow tubes accumulates into a knot whose weight forces the loop top to buckle in-

ward, first nearly symmetrically but eventually off toward one side, allowing the

material to re-accrete toward that footpoint at the surface. For the strongest field,

the loops tend to remain nearly rigid, keeping the material from distinct closed flow
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Table 3.1: Summary Table
Model

η∗ =
√

10

Quantity η∗ =0 1

10

1√
10

1
√

10 10 low Ṁ θ1 Ori C

α 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.5

Q̄ 500 500 500 500 500 500 20 700

δ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1

R∗(10
12cm) 1.3 1.3 1.3 1.3 1.3 1.3 1.3 0.5

BPole(G) 0 93 165 295 520 930 165 480

ρ0(10
−11gmcm−3) 4.3 4.3 4.3 4.3 4.3 4.3 0.54 2.8

max(vr)(km s−1) 2300 2350 2470 2690 2830 3650 2950 2620

max(vθ)(km s−1) 0 70 150 300 400 1200 400 450

Ṁnet(10
−6M� yr−1) 2.6 3.0 2.8 2.5 2.2 1.8 0.22 0.3

tubes separate and suspended at loop tops with a range of heights, until this line of

material finally breaks up into segments (the “snake”) that fall to either side of the

rigid re-accretion tubes.

It is interesting to contrast this inferred outflow and re-accretion in the mag-

netic equator of a line-driven wind with what occurs in the solar coronal expansion.

For the solar wind, acceleration to supersonic speeds typically occurs at a height of

several solar radii above the surface. As such, magnetic loops that typically close

within such heights can generally maintain the gas in a completely hydrostatic strat-

ification. By contrast, in line-driven winds supersonic speeds are typically achieved

very near the stellar surface, within about 0.1R∗. A closed loop that starts from

a radially oriented footpoint thus simply guides this line-driven outflow along the

loop, instead of confining a hydrostatic stratification. For a strong field with suffi-

ciently high loop top, the eventual shock collision can have velocity jumps that are

a substantial fraction of the wind terminal speed, e.g. ∼ 1000 km/s. In the present

isothermal simulations, the heating from such shocks is assumed to be radiated away

over a narrow, unresolved cooling layer. In the discussion in §3.5.3.4, we estimate

some general properties of the associated x-ray emission.
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3.4.4 Comparing Models with Different Stellar Parameters but Fixed

η∗

The models above use different magnetic field strengths to vary the magnetic

confinement for a specific O supergiant star with fixed stellar and wind parameters.

To complement that approach, let us briefly examine models with a fixed confine-

ment parameter η∗ =
√

10, but now manifest through different stellar and/or wind

parameters. Specifically, figure 3.5 compares density contours (top) and field lines

(bottom) for our standard ζPup model (center panels), with a model in which the

mass loss rate is reduced by a factor 10 (left panels), and also with a model based

on entirely different stellar and wind parameters, intended roughly to represent the

O7 star θ1 Ori C (right panels). (Detailed parameter values are given in Table 1.)

Note that all three models have very similar overall form in both their density

contours and field lines, even though the associated magnitudes vary substantially

from case to case. This similarity of structure for models with markedly different

individual parameters, but configured to give roughly equal η∗, thus further rein-

forces the notion that this confinement parameter is the key determinant in fixing

the overall competition between field and flow.

3.5 Analysis and Discussion

3.5.1 Comparison of MHD Simulations with Heuristic Scaling Estimates

The above results lend strong support to the general idea, outlined in §3.3.1,

that the overall effect of a magnetic field in channeling and confining the wind

outflow depends largely on the single magnetic confinement parameter η∗. Let us

now consider how well these MHD simulation results correspond to the heuristic

estimates for the Alfven radius RA and magnetic closure colatitude θA defined in

§3.3.2.
Figure 3.6 plots contours of the Alfven radius obtained in the numerical

MHD simulations with various η∗. Reflecting the stronger field and so higher Alfven
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speed, the models with larger confinement parameter have a higher Alfven radius.

Note, moreover, that for all cases the Alfven radius generally decreases toward the

equator. In part, this just reflects the Alfven speed associated with the dipole surface

magnetic field, which has a lower strength near the magnetic equator.

But the comparison in figure 3.6 shows a systematic discrepancy between the

curves showing the expected Alfven radius from this dipole model and the points

showing the actual MHD results. Specifically, the dipole model underestimates the

MHD Alfven radius over the pole, and overestimates it at the equator.

For the polar wind, this can be understood as a consequence of the radial

stretching of the field. Figure 3.7 plots the radial variation of the polar field ratio

fpole(r) ≡
R2

∗Bo

r2B(r, 0)
(3.10)

for the various magnetic confinement parameters η∗. For comparison, a dipole field

(with B ∼ r−q and q = 3) would just give a straight line of unit slope (dashed line),

whereas a pure monopole, radial field (with q = 2) would give a horizontal line at

value unity, fpole = 1.

The results show that the MHD cases are intermediate between these two lim-

its. For the weakest confinement η∗ = 1/10, the curve bends toward the horizontal

at quite small heights, reflecting how even the inner wind is strong enough to extend

the polar field into a nearly radial orientation and divergence. For the strongest con-

finement η∗ = 10, the field divergence initially nearly follows the dashed line for a

dipole (q = 3), but then eventually also bends over as the wind ram pressure over-

whelms the magnetic confinement and again stretches the field into a nearly radial

divergence. The intermediate cases show appropriately intermediate trends, but in

all cases it is significant that the radial decline in field strength is generally less steep

than for a pure dipole, i.e. q < 3. The dotted line in figure 3.1 indeed shows that

the MHD results for the polar Alfven radii of the various confinement cases are in

much better agreement with a simple scaling that assumes a radial decline (power

68



index q = 2.6) that is intermediate between the dipole (q = 3) and monopole (i.e.

radial divergence, q = 2) limits.

Overall then, at the poles the radial stretching of field by the outflowing

wind has the net effect of reducing the radial decline of field, and thus increasing

the Alfven radius over the value expected from the simple dipole estimate of eqn.

(3.8).

By contrast, at the equator this radial stretching has a somewhat opposite

effect, tending to remove the predominantly horizontal components of the equatorial

dipole field, and thus leading to a lower equatorial field strength and so also a

lower associated Alfven radius, relative to the simple dipole analysis of §3.4.2. For

example, for the lowest confinement case η∗ = 1/10, the field is extended into a

nearly radial configuration almost right from the stellar surface, as shown by the

top left panel of figure 3.3; the equatorial polarity switch of this radial field thus

implies a vanishing equatorial Alfven speed, which thus means that contours of

Alfven radius must bend sharply inward toward the surface near the equator. For

the strongest confinement case η∗ = 10, the near-surface horizontal field within

closed magnetic loops about the equator remains strong enough to resist this radial

stretching by wind outflow; but the faster radial fall-off in magnetic vs. flow energy

means that the field above these closed loops is eventually stretched outward into

a radial configuration, thus again leading to a vanishing equatorial field and an

associated inward dip in the Alfven radius.

This overall dynamical lowering of the equatorial strength of magnetic field

further means that the latitudinal extents of closed loops in full MHD models are

generally below what is predicted by the simple dipole estimate of eqn. (3.9). Thus,

in previous semi-analytic models of BM97b, which effectively assume this type of

dipole scaling, a somewhat larger surface field is needed to give the assumed overall

extent of magnetic confinement.
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3.5.2 Effect of Magnetic Field on Mass Flux and Flow Speed

Two key general properties of spherical, non-magnetic stellar winds are the

mass loss rate Ṁ ≡ 4πρvrr
2 and terminal flow speed v∞. To illustrate how a stellar

magnetic field can alter these properties for a line-driven wind, figure 3.8 shows

the outer boundary (r = Rmax) values of the radial velocity, vr(Rmax, θ), and radial

mass flux density, ρ(Rmax, θ)vr(Rmax, θ), normalized by the values (given in Table 1)

for the non-magnetic, spherically symmetric wind case, and plotted as a function of

µ = cos(θ) for each of our simulation models with various confinement parameters

η∗.

There are several noteworthy features of these plots. Focussing first on the

mass flux, note that in all models the tendency of the field to divert flow toward

the magnetic equator leads to a general increase in mass flux there, with this equa-

torial compression becoming narrower with increasing field strength, until, for the

strongest field, it forms the spike associated with an equatorial disk. This higher

equatorial mass flux is associated with a higher density, since the equatorial flow

speeds are always lower, quite markedly so for the dense, slowly outflowing disk of

the strong field case.

Table 1 lists the overall mass loss rates, obtained by integration of these curves

over the full range −1 < µ < 1. For the strong field case, the mass loss is reduced

relative to the non-magnetic Ṁ , generally because the magnetic confinement and

tilt of the inner wind outflow has effectively inhibited some of the base mass flux.

Curiously, for the weakest magnetic confinement case η∗ = 1/10, there is actually a

modest overall increase in the mass loss. The reasons for this are not apparent, and

will require further investigation.
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3.5.3 Observational Implications of these MHD Simulations

3.5.3.1 UV Line-Profile Variability

It is worth emphasizing here that these dynamical results for the radial flow

speed have potentially important implications for interpreting the observational ev-

idence for wind structure and variability commonly seen in UV line profiles of hot

stars (e.g., the so-called Discrete Absorption Components; Henrichs et al. 1994;

Prinja and Howarth 1986; Howarth and Prinja 1989). In particular, an increasingly

favored paradigm is that the inferred wind structure may arise from Corotating In-

teraction Regions (CIRs) between fast and slow speed wind streams. This requires a

base perturbation mechanism to induce latitudinal variations in wind outflow prop-

erties from the underlying, rotating star (Mullan 1984; Cranmer and Owocki 1996).

Based largely on the analogy with solar wind CIRs – for which the azimuthal vari-

ations in speed are clearly associated with magnetic structure of the solar corona

(Zirker 1977; Pizzo 1978) –, there has been a longstanding speculation that surface

magnetic fields on hot stars could similarly provide the base perturbations for CIRs

in line-driven stellar winds (Mullan 1984; Shore & Brown 1990, Donati 2001).

However, until now, one argument against this magnetic model for hot-star-

wind structure was the expectation, based largely on the Macgregor (1988) analysis,

that a sufficiently strong field would likely lead to anomalously high-speed streams,

in excess of 5000 km/s, representing the predicted factor of two or more enhancement

above the speed for a non-magnetic wind (Owocki 1994; BM97a). By comparison,

the wind flow speeds inferred quite directly from the blue edges of strong, saturated

P-Cygni absorption troughs of UV lines observed from hot stars show only a modest

variation of a few hundred km/s, with essentially no evidence for such extremely

fast speeds (Prinja et al. 1998).

The full MHD results here are much more in concert with this inferred speed

variation, even for the strongest field model, for which the fastest streams are not
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much in excess of ∼3000 km/s. Moreover, in conjunction with the reduced flow

speeds toward the magnetic equator, there is still quite sufficient speed contrast to

yield very strong CIRs, if applied in a rotating magnetic star with some substantial

tilt between magnetic and rotation axes. Through extensions of the current 2D mod-

els to a full 3D configuration, we plan in the future to carry out detailed simulations

of winds from rotating hot-stars with such a tilted dipole surface field, applying

these specifically toward the interpretation of observed UV line profile variability.

3.5.3.2 Infall within Confined Loops and Red-Shifted Spectral Features

In addition to the slowly migrating discrete absorption components com-

monly seen in the blue absorption troughs of P-Cygni profiles of UV lines, there are

also occasional occurrences of redward features in either absorption (e.g., in τ Sco;

Howk et al. 2000) or emission (e.g., in λ Eri and other Be or B supergiant stars;

Peters 1986; Smith, Peters, and Grady 1991; Smith 2000; Kaufer 2000). Within

the usual context of circumstellar material that is either in an orbiting disk or an

outflowing wind, such redshifted spectral features have been difficult to understand,

since they require material flowing away from the observer, either in absorption

against the stellar disk, or in emission from an excess of receding material radiating

from a volume not occulted by the star. In general this thus seems to require mate-

rial infall back toward the star and onto the surface. Indeed, there have been several

heuristic models that have postulated such infall might result from a stagnation of

the wind outflow, for example due to clumping (Howk et al. 2000), or decoupling

of the driving ions (Porter and Skouza 1999).

In this context, the dynamical MHD models here seem to provide another,

quite natural explanation, namely that such infall is an inevitable outcome of the

trapping of wind material within close magnetic loops whenever there sufficiently

strong wind magnetic confinement, η∗ ≥ 1. In principle, such interpretations of

observed red-shifts in terms of infall within closed magnetic loops could offer the

72



possibility of a new, indirect diagnostic of stellar magnetic properties. For example,

the observed redshift speed could be associated with a minimum required loop height

to achieve such a speed by gravitational infall. In future studies, we thus intend to

generate synthetic line absorption and emission diagnostics for these MHD confine-

ment models, and compare these with the above cited cases exhibiting redshifted

spectral features.

3.5.3.3 Effect on Density-Squared Emission

In addition to such effects on spectral line profiles from scattering, absorption,

or emission lines, the extensive compression of material seen in these MHD models

should also lead to an overall enhancement of those types of emission, both in lines

and continuum, for which the volume emission rate scales with the square of the

density. Specific examples include line emission from both collisional excitation

or recombination, or free-free continuum emission in the infrared and radio. In

principle, the former might even lead to a net emission above the continuum in the

hydrogen Balmer lines, and thus to formal classification as a Be star, even without

the usual association of an orbiting circumstellar disk. Such a mechanism may in

fact be the origin for the occasional occurrence of hydrogen line emission in slowly

rotating B stars, most notably β Ceph, for which there has indeed now been a

positive detection of a tilted dipole field of polar magnetic around 300 G (Donati

et al. 2001; Henrichs et al. 2000). Again, further work will be needed to apply the

dynamical MHD models here toward interpretation of observations of density-square

emissions from hot stars that seem likely candidates for substantial wind magnetic

confinement.
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3.5.3.4 Implications for x-ray Emission

Particularly noteworthy among the potential observational consequences of

these MHD models are the clear implications for interpreting the detection of some-

times quite hard, and even cyclically variable, x-ray emission from some hot stars.

As noted in the introduction, there have already been quite extensive efforts to model

such x-ray emission within the context of a fixed magnetic field that channels wind

flow into strong shock collisions (BM97a,b). In contrast, while the isothermal MHD

models here do not yet include the detailed energy balance treatment necessary for

quantitative modeling of such shocked-gas x-ray emission, they do provide a much

more complete and dynamically consistent picture of the field and flow configuration

associated with such magnetic channeling and shock compression.

Indeed, as a prelude to future quantitative models with explicit computations

of the energy balance and x-ray emission, let us briefly apply here an approximate

analysis of our model results that can yield rough estimates for the expected level

of compressional heating and associated x-ray production. The central idea is to

assume that, within the context of the present isothermal models, any compressive

heating that occurs is quickly balanced by radiative losses within a narrow, unre-

solved cooling layer (Castor 1987; Feldmeier et al. 1997; Cooper 1994). For shock-

type compressions with a sufficiently strong velocity jump, this radiative emission

should include a substantial component in the x-ray bandpass.

Applying this perspective, we first identify within our simulation models

locations of locally strong compressions, i.e. where there are substantial zone to zone

decreases in flow speed along the direction of the flow itself. Taking into account

that the quadratic viscosity within the Zeus code typically spreads any shocks over

about 3 or 4 zones, we can use this to estimate an associated total shock jump in the

specific kinetic energy ∆v2/2. We then apply the standard shock jump conditions
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to obtain a corresponding estimate of post-shock temperatures (BM97b),

Ts ≈ 2.7 × 105 K
−∆v2/2

(100 km/s)2
. (3.11)

Figure 3.9c shows contours of Ts computed in this way for the strong con-

finement case η∗ = 10. Note that quite high temperatures, in excess of 107 K, occur

in both closed loops near the surface, as well as for the open-field, equatorial disk

outflow in the outer wind. For the closed loops, where the field forces material

into particularly strong, nearly head-on, shock collisions, this is as expected from

previous fixed-field models (BM97a,b).

But for the open-field, equatorial disk outflow, the high-temperature com-

pression is quite unexpected. Since the flow impingent onto the disk has a quite

oblique angle, dissipation of just the normal component of velocity would not give

a very strong shock compression. But this point of view assumes a “free-slip” post-

shock flow, i.e., that the fast radial flow speed would remain unchanged by the

shock. However, our simulations show that the radial speed within the disk is much

slower. Thus, under the more realistic assumption that incoming material becomes

fully entrained with the disk material, i.e. follows instead a “no-slip” condition,

then the reduction from the fast radial wind speed implies a strong dissipation of

radial flow kinetic energy, and thus a quite high post-shock temperature.

To estimate the associated magnitude of expected x-ray emission, we first

compute the local volume rate of compressive heating, obtained from the negative

divergence of the local kinetic energy flux,

q ≡ −∇ · (vρv2/2) ≈ −ρv · ∇v2/2 . (3.12)

The contours of q plotted in figure 3.9d again show that strong compressions are

concentrated toward the magnetic equator, with again substantial levels occurring

in both the inner, closed loops, as well as in the equatorial disk outflow.
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Let us next combine these results to estimate the x-ray emission above some

minimum threshold energy E, weighting the emission by a “Boltzmann factor” that

declines exponentially with the ratio of this energy to the shock energy kTs,

qE ≡ q e−E/kTs . (3.13)

Using the conversion that a soft x-ray energy threshold of E = 0.1 keV corresponds

roughly to a temperature of 1.1×106 K, the contours in figure 3.9e show that soft x-

rays above this energy would again be produced in both the inner and outer regions

of the equatorial disk.

Figures 3.9 d and e show that the volume for flow compression and associated

x-ray emission is quite limited, confined to narrow disk about the magnetic equator.

Nonetheless, the strength of this emission can be quite significant. For example,

volume integration of the regions defined in figure 3.9d give a total rate of energy

compression Lc ∼ 1036 erg/s, which represents about 25% of the total wind kinetic

energy, Lw ∼ Ṁv2
∞/2 ∼ 4 × 1036 erg/s.

This is consistent with the fraction of mass loss in the slowly outflowing,

equatorial disk, which has a value Ṁeq ∼ 5 × 10−7 M�/yr, or about the same 25%

of the total wind mass loss rate Ṁ ∼ 2 × 10−6 M�/yr. The terminal speed within

this disk, veq ∼ 1000 km/s, is about a third of that in the wind, v∞ ∼ 3000 km/s,

implying nearly an order magnitude lower specific kinetic energy. The ‘missing’

energy associated with this slow disk outflow thus represents roughly the total wind

flow kinetic energy dissipated by the flow into this slow disk.

Finally, integration of the Boltzmann-weighted emission in figure 3.9e gives

an estimate for the soft x-ray emission above 0.1 keV of Lx ∼ 1035 erg/s. This

is substantially higher than the canonical x-ray emission associated with intrinsic

wind instabilities, Lx ∼ 10−7Lbol ∼ 4× 1032 erg/s. This supports the general notion

that hot-stars with anomalously large, observed x-ray luminosities might indeed be

explained by flow compressions associated with wind-magnetic channeling.
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While this analysis thus provides a rough estimate of the x-ray emission prop-

erties expected from such MHD models of wind magnetic confinement, we again em-

phasize that quantitative calculations of expected x-ray emission levels and spectra

requires an explicit treatment of the wind energy balance. In chapter 6 we make our

first attempt to include full energy equation to study adiabatic line-driven winds.

3.6 Chapter Summary

We have carried out 2D MHD simulations of the effect of stellar dipole mag-

netic fields on radiatively driven stellar winds. The simulations in this chapter are

based on idealizations of isothermal flow driven outward from a non-rotating star

by a strictly radial line-force. The principal results are summarized as follows:

1. The general effect of magnetic field in channeling the stellar wind depends on

the overall ratio of magnetic to flow-kinetic-energy density, as characterized by

the wind magnetic confinement parameter, η∗, defined here in eqn. (3.7). For

typical stellar and wind parameters of hot, luminous supergiants like ζ Pup,

moderate confinement with η∗ ∼ 1 requires magnetic fields of order 100 Gauss.

The results of standard, spherically symmetric, non-magnetic wind models are

recovered in the limit of very small magnetic confinement, η∗ ≤ 0.01.

2. For moderately small confinement, η∗ = 1/10, the wind extends the surface

magnetic field into an open, nearly radial configuration. But even at this

level, the field still has a noticeable global influence on the wind, enhancing

the density and decreasing the flow speed near the magnetic equator.

3. For intermediate confinement, η∗ = 1, the fields are still opened by the wind

outflow, but near the surface retain a significant non-radial tilt, channeling

the flow toward the magnetic equator with a latitudinal velocity component

as high as 300 km/s.
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4. For strong confinement, η∗ = 10, the field remains closed in loops near the

equatorial surface. Wind outflows accelerated upward from opposite polarity

footpoints are channeled near the loop tops into strong collision, with charac-

teristic shock velocity jumps of up to about 1000 km/s, strong enough to lead

to hard (> 1 keV) x-ray emission.

5. Even for strong surface fields, the more rapid radial decline of magnetic vs.

wind-kinetic-energy density means the field eventually becomes dominated by

the flow, and extended into an open configuration.

6. The compression of open-field outflow into a dense, slowly outflowing equa-

torial disk can lead to shocks that are strong enough to produce quite hard

x-ray emission, a possibility that was completely unaccounted for in previous

fixed-field analyses that focussed only on x-ray emission within closed loops

(BM97a,b).

7. In contrast to these previous steady-state, fixed-field models, the time-dependent

dynamical models here indicate that stellar gravity pulls the compressed, stag-

nated material within closed loops into an infall back onto the stellar surface,

often through quite complex, intrinsically variable flows that follow magnetic

channels randomly toward either the north or south loop footpoint.

8. Compared with expectations of previous semi-analytic, heuristic analyses, the

dynamical simulations here show some distinct differences in the overall prop-

erties of field and flow, for example with a narrower region of equatorial con-

finement, and an Alfven radius that is lower at the pole and higher at the

equator.

9. Finally, these MHD simulations have many properties relevant to interpreting

various kinds of observational signatures of wind variability and structure, e.g.
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UV line discrete absorption components; red-shifted absorption or emission

features; enhanced density-square emission; and x-ray emission.

In the future, we plan to extend our simulations to include non-radial line-

forces, an explicit energy balance with x-ray emission, and stellar rotation. We

then intend to apply these simulations toward quantitative modeling of the various

observational signatures of wind structure that might be associated with magnetic

fields in hot stars.
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Figure 3.1: Variation Alfven radius RA with magnetic confinement parameter η∗.
The points indicate MHD simulation model results above the pole
(upper set) or near the magnetic equator (lower set). The lines show
estimates from the magnetic field approximation of eqn. (3.8), applied
at the equator (θ = 90o; dashed line), or at the pole (θ = 0o), using
radial decline power index for pure dipole (q = 3; solid line) or modified
by wind radial expansion (q = 2.6; dotted line).
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Figure 3.2: Snapshots of density (as logarithmic color-scale) and magnetic field
(lines) at the labeled time intervals starting from the initial condition
of a dipole field superposed upon a spherically symmetric outflow,

for a case of moderate magnetic confinement η∗ =
√

(10) (BPole =

520G). The intervals of field lines emanating from the star are chosen
to preserve the relationship of field-line density with the strength of
magnetic field.
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Figure 3.3: Comparison of overall properties at the final simulation time (t =
450 sec) for 3 MHD models, chosen to span a range of magnetic
confinement from small (top row; η∗ = 1/10), to medium (middle
row; η∗ = 1), to large (bottom row; η∗ = 10). The leftmost panels
show magnetic field lines, together with the location (bold contour)
of the Alfven radius, where the radial flow speed equals the Alfven
speed. From left to write, the remaining columns show contours of
log(density), radial velocity, and latitudinal velocity.

82



η*=1η*=1/10
0.3

-0.3

0.0

1.0 1.6

η*=10

1.0 1.61.0 1.6r/R*

0.3

-0.3

0.0

Figure 3.4: Contours of log(density) (upper row) and magnetic field lines (lower
row) for the inner, magnetic-equator regions of MHD models with
moderate (η∗ = 1; left), strong (η∗ =

√
10; middle), and strongest

(η∗ = 10; left) magnetic confinement, shown at a fixed, arbitrary time
snapshot well after (t ≥ 400 ksec) the initial condition. The arrows
represent the direction and magnitude of the mass flux, and show
clearly that the densest structures are undergoing an infall back onto
the stellar surface. For the moderate magnetic confinement η∗ = 1,
this infall is directly along the equator, but for the higher confinements
η∗ =

√
10 and 10, the equatorial compressions that form at larger

radii are deflected randomly toward the north or south as they fall
in toward the closed field near the surface. The intent here is to
illustrate how increasing magnetic confinement leads to an increasing
complexity of flow and density structure within closed magnetic loops.
This complexity is most vividly illustrated in the time animations
available in the electronic version of the paper.
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Figure 3.5: Contours for log of density (color-scale) and magnetic fields (lines) in
the inner regions of 3 MHD models with a fixed magnetic confinement
parameter η∗ =

√
10, but obtained using different stellar and wind

parameters, chosen to correspond to an O-type supergiant like ζ Pup
with normal (left) or factor-ten lower mass loss rate (middle), or to
a late-O giant like θ1 Ori C (right). The overall similarity of the
three models illustrates the degree to which the global configuration
of field and flow depends mainly on just the combination of stellar,
wind, and magnetic properties that define [via eqn. (3.7] the magnetic
confinement parameter η∗.
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Figure 3.7: The measure of faster-than-r2 decline of the polar magnetic field, as
represented by the function fpole defined in eqn. (3.10), and applied
to the 5 MHD simulations with magnetic confinement ranging from
strong (η∗ = 10; uppermost curve) to weak (η∗ = 10; lowermost curve).
For the ideal MHD cases here of field-frozen flow, this also represents
the degree of faster-than-r2 expansion of flow tube area. The dotted
curves plot the heuristic area-expansion function defined by Kopp and
Holzer [discussed in chapter 4, eqn. (4.27)], with R1 = 1 R∗, and the
parameters fmax = 2.43, 1.98, 1.73, 1.44 and 1.23, and σ/R∗ = 1.13,
0.98, 0.89, 0.79, and 0.73, chosen to best fit to the five cases from
η∗ =10 to 1/10. The dashed curve shows the variation for a pure
dipole field.
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values for the non-magnetic (B = η∗ = 0) case.
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Figure 3.9: For the strong magnetic confinement case η∗ = 10, contours of a.
log(density), b. magnetic field lines, c. shock temperature [estimated
from eqn. (3.11)], d. compressive heating [computed from eqn.(3.12)],
and e. soft x-ray emission [estimated from eqn. (3.13), with E =
0.1 keV]. The 3 contour levels correspond to log(ρ) = -12, -13, and -14
(g/cm3) in panel a; to Ts = 1, 11, and 21 MK in panel (C); and to q
(or qE) of 0.15, 0.9, and 1.5 erg/cm3/s in panels (d) and (e).
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Chapter 4

THE EFFECT OF MAGNETIC FIELD TILT AND

DIVERGENCE ON WIND MASS FLUX AND FLOW

SPEEDS

4.1 Introduction

In chapter 3 we presented numerical magnetohydrodynamic (MHD) simu-

lations of the effect of stellar dipole magnetic fields on line-driven wind outflows

from hot, luminous stars. We showed that the overall degree of influence of the

field on the the wind depends largely on a single, dimensionless, ‘wind magnetic

confinement parameter’, η∗ (= B2
eqR

2
∗/Ṁv∞), which characterizes the ratio between

magnetic field energy density and kinetic energy density of the wind. We showed

that regardless of the strength of η∗ the outer wind always wins over magnetic fields

simply because the field energy declines faster than the wind kinetic energy. Thus,

far away from the stellar surface the field lines are stretched out in a radial configu-

ration. For weak confinement η∗ ≤ 1, the field is fully opened throughout the whole

computational domain. But for stronger confinement η∗ > 1, the magnetic field

remains closed only over a limited range of latitude and height above the equatorial

surface.

In this chapter we are concerned mostly with the open field region of the outer

wind, far away from the stellar surface. We show that the wind flow is characterized

by a faster-than-radial expansion that leads to a modest increase in terminal speeds
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(< 30 − 40% at the poles) compared to 1D non-magnetic case, consistent with

observational constraints.

4.2 Motivation

This analysis has been motivated mainly by the work of MacGregor (1988)

who argued that the faster-than-radial divergence of magnetic flux tubes can lead to

substantial (3-4 fold) increase in terminal velocities of line-driven winds compared

to that of the non-magnetic spherical case.

MacGregor’s analysis extended previous studies of rapid areal divergence in

the solar wind to the case of line-driven stellar winds. Notably, Kopp and Holzer

(1976, hereafter KH) explored the case where the hydrodynamic properties of the

expanding solar corona deviated significantly from spherically symmetric outflows in

the sense that the geometrical cross-section of a magnetic flux tube increased with

the distance r away from the sun faster-than-r2 in the coronal hole region, which

naturally lead to high speed and low density solar wind outflow from there. They

chose a divergence function f(r) such that f(R�) = 1 and then increased smoothly

to some maximum value fmax. The exact form of this function is given further below

in §4.4.2.
MacGregor (1988) applied the KH model to line-driven hot-star winds and

concluded that rapid divergence may lead to significantly higher speed winds. In

this context, the lack of observational evidence of such high speed winds would imply

absence of magnetic fields in hot stars in general. This would have been contrary to

some recent positive detections of stellar magnetic fields in non-peculiar hot stars

as we discussed in the previous chapter, (e.g. about 400 G dipole field in β Cep

(Donati et al. 2001)).

On the other hand, our dynamical simulations of hot-star winds (chapter

3; ud-Doula and Owocki 2002) show that magnetic fields of order 1000 G in the

prototypical O supergiant star ζ Pup, lead to a rather modest increase in stellar
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wind speeds. To reconcile these seemingly contradictory results, we re-examine the

MacGregor analysis, and find that omission of the so called finite disk correction

factor in MacGregor’s analysis was a key reason that lead to such high speed winds.

In the analysis to follow, we show that the finite disk correction along with rapid

divergence and mass flux as a function of latitude can explain the latitudinal mod-

ulation of hot-star winds found in our self-consistent MHD simulations. We also

show that the mass flux along a flow tube tilted with respect to radial direction is

reduced by the square of the cosine of the tilt angle.

4.3 1D CAK Wind

Let us first study the simple, radial 1D CAK wind, and how rapid divergence

and finite disk correction affect such a flow. We then discuss what happens if the

flow, guided by the magnetic flux tubes, is tilted by some angle with respect to the

radial direction.

4.3.1 Simple, Radial Flow

We already discussed the simple, radial 1D CAK wind outflow in a point

source approximation in §2.6. We showed that the equation of motion for a 1D

CAK wind can be expressed as,

Cwα = w + 1 (4.1)

where w is the acceleration in the unit of effective gravity and C is a constant that

determines the mass loss rate. The solution of the above equation leads to the CAK

maximal mass loss rate,

ṀCAK =
L

c2

α

1 − α

[

Q̄Γ

1 − Γ

](1−α)/α

(4.2)

with the velocity law,

v(r) = v∞

(

1 − R∗

r

)1/2

, (4.3)
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where, v∞ =
√

α/(1 − α)vesc is the terminal speed of the wind. This underestimates

observed terminal velocities for most hot stars. In the next section we discuss an

extension of this model that takes into account the finite size of the star for the

calculation of the line-driving.

4.3.2 The Effect of Finite disk Correction Factor

A star cannot be treated as a point-like source in general, particularly near

the surface. To account for the finite size of the star one has to include a finite

disk correction factor (eqn 2.88; CAK eqn 50), fd, which is a complicated function

of radius, velocity and velocity gradient [see §2.7]. In 1D steady state CAK wind

approximation, fd enters the equation of motion through the line force term [see

eqn 2.84]. Thus the eqn (4.1) can be rewritten as:

Cfd wα = w + 1. (4.4)

This equation, in principle, can be solved for an arbitrary α. But for illustrative

purposes in what follows we shall assume α = 1/2 since this will allow us to obtain

an analytical solution. Let us define x ≡ √
w, then we have,

Cfd x = x2 + 1. (4.5)

This has two solutions:

x± =
Cfd ±

√

C2f 2
d − 4

2
(4.6)

Here the constant C ∼ 1/Ṁα, still unknown, determines the mass loss rate. For

high Ṁ or small C there are no solutions, while for small Ṁ or high C there are

two solutions [see figure 2.6]. The critical solution lies in between these two, and

corresponds to the maximal mass loss rate CAK solution. It requires that Cfd wα

curve intersect 1 + w line tangentially, i.e.,

Ccf
critical
d αwα−1 = 1 . (4.7)
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In practice the value of fd increases away from the stellar surface. It starts typically

with fd ≈ 1/(1 + α) ∼ 2/3 near the stellar surface, rises above unity around the

isotropic expansion point, then finally approaches unity at large radii [see figure 2.7].

It is the minimum value of fd that constrains the mass loss rate, so we can assume

f critical
d = 1/(1+α). Thus, using eqn (4.4) we get Cc = (1+α)/ [αα(1 − α)1−α]. For

α = 1/2, we get Cc = 3 which now fixes the critical mass loss rate, ṀCAK . If we

substitute the value of Cc in eqn (4.6), then we obtain

x± =
3fd ±

√

9f 2
d − 4

2
. (4.8)

In order to find a unique solution to the above we have to resolve two key issues:

the mass loss rate and the resultant terminal velocity. The maximal mass loss rate

has already been assumed by requiring Cc = 3 for the special case of α = 1/2 which

implies a lower maximal mass loss rate than in the simpler wind flow case without

the finite disk correction fd.

Since the mass loss rate has been determined, the terminal velocity of the

wind can be estimated. As mentioned earlier, fd varies with the distance r. The

wind at higher radii experiences more radial photons, and a higher value of fd. This

can lead to a stronger acceleration of the wind far away from the stellar surface.

This can be easily demonstrated by setting the asymptotic value fd = 1 in equation

4.8 which leads to the solution wc
+ = x2

+ = [(3 +
√

5)/2]2 ≈ 7 and wc
− = x2

− ≈ 0.75.

The value of x± above is a measure of how much acceleration is available to the outer

wind compared to the effective gravity; it also represents two families of ‘shallow’

(x−) and ‘steep’ (x+) solutions available to the 1D CAK wind. None of these two

families can provide a global solution for the wind (Feldmeier and Shlosman 2000).

The shallow solution does not reach the infinity, while the steep solution fails to

converge to low subsonic speeds at the stellar atmosphere. The critical CAK wind

starts with the shallow solution at the subsonic part of the wind, and then switches

to a steep one. Thus the wind adopts the steep x+ solution in the outer region.
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Since x2
+ is directly proportional to acceleration, x+ can be related directly

to the terminal velocity obtained by the wind. For the CAK wind without the finite

disk correction and with α = 1/2, we get x+ = x− = 1 implying, as we showed in

§2.6, a terminal velocity equal to the escape speed. In this case of the CAK wind

with the finite disk correction, the outer wind gets an extra ‘leveraging’ (Gayley

2000) due to enhanced acceleration that can lead to terminal velocities ∼ 3 times

the escape speed, measured by x+. So, the net result of the finite disk correction is

to lower the mass loss rate and accelerate the wind to higher terminal speeds.

For the more general case with 0 < α < 1, fd lowers the mass loss rate by

typically a factor of about two and increases the terminal velocity by a factor of

2-3 compared to CAK wind solution without the finite disk correction (Pauldrach,

Puls, & Kudritzki 1985; Friend & Abbott 1985).

4.3.3 The Effect of Rapid Divergence on Mass Loss

4.3.3.1 Definition

Let us first define an areal divergence factor, f . Suppose a magnetic flow

tube has a cross-sectional area A1 at radius R∗, and A2 at another radius r. The

flux tube is not necessarily radial, and the areal divergence factor can be a function

of latitude and radius, f = f(r, θ). Taking into consideration that the area for a

fixed solid angle increases as r2, we can define

f(r, θ) ≡ A2

A1

R2
∗

r2
(4.9)

Since the divergence of magnetic field is zero,

∇ · B = 0, (4.10)

the magnetic flux through A1 and A2 must be equal, i.e.

B∗(R∗, θmin)A1 = B(r, θmax)A2 , (4.11)
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where θmin and θmax are the latitudes of the flux tube at R∗ and r respectively. Thus

the definition of f becomes:

f(r, θ) ≡ B∗(R∗, θmin)R2
∗

B(r, θmax) r2
. (4.12)

4.3.3.2 The Role of Rapid Divergence in Wind Flow

The role of the rapid divergence factor, f , is to dilute the flow and increase

its velocity. It can be incorporated into the momentum equation (2.68) through the

conservation of mass:

ρ =
Ṁ

4πr2fv
. (4.13)

Thus eqn 4.1 becomes:

Cfαwα = w + 1 (4.14)

The form of the above equation is very similar to what was derived in §4.3.2 in the

analysis of the finite disk correction (fd) effects, but with f now raised to the α

power. Since the critical solution occurs near the stellar surface where by definition

f = 1, the solution, at the base, is similar to 1D CAK wind solution in the point-star

approximation with Cc = 2 for the special case of α = 1/2. This implies that the

maximal mass loss rates are similar as well. However, because the rapid divergence

factor f may vary with the distance r, this new wind solution will differ from the

1D CAK case far away from the stellar surface. The two possible solutions [see eqn

(4.6)] are:

x± = (f/2)1/2 ±
√

f − 1 (4.15)

Even for the modest value of f = 2, the ‘+’ solution adopted by the wind, w+ = x2 is

equal to 4. This implies that the acceleration of the outer wind is four times that of

the effective gravity, which naturally may lead to high terminal speeds, a few times

vesc. We conclude from this analysis that rapid divergence, if acting independently,

does not change the maximal mass loss rate, but increases the terminal velocities of

the wind significantly.
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This is essentially what MacGregor (1988) concluded in his analysis where

he considered the effect of rapid divergence alone, ignoring the finite size of the star.

As we shall see next, this is a key reason he obtained terminal speeds as high as

three times that of CAK wind in the point-star approximation.

4.3.4 Combined Effect of Finite Disk and Rapid Divergence

In this section we examine the combined effects of the finite size of a star

and the faster-than-radial divergence of the magnetic flux tubes on the wind flow.

Taking into account these two factors, the eqn (4.1) becomes:

Cfdf
αwα = w + 1 . (4.16)

Near the surface of the star f ≈ 1 by definition, while, as we argued earlier, fd ≈
1/(1 + α). Therefore, the value of Cc remains unchanged compared to the CAK

solution with finite disk correction alone implying the same maximal mass loss rate.

For our sample case with α = 1/2, eqn (4.6) becomes:

x± =
3fdf

α ±
√

9f 2
d f 2α − 4

2
(4.17)

=
3fdf

1/2 ±
√

9f 2
d f − 4

2

=
fd

√
f

2

(

3 ±
√

9 − 4

f 2
d f

)

. (4.18)

This corresponds to the x+ = 4 or w+ ≈ 16 solution in the outer wind for a modest

value of f = 2! This kind of leveraging will naturally lead to high terminal speeds,

as high as 4 times the escape speed.

Relative to the case without the finite disk correction factor, these terminal

speeds are very high. On the other other hand, if we compare the very same terminal

speeds with the case with the finite disk correction factor, the relative change is

rather modest, of order only (4 − 3)/3 = 33%. The reason for this is that the finite
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disk correction alone makes the wind very fast, and although an additional rapid

divergence factor f makes it even faster, the relative change is small.

4.3.5 Mass Loss for tilted flow

In this section we examine how the mass loss rate is affected if the flow

is tilted with respect to the normal to the stellar surface. We assume that the

magnetic flux tube that guides the wind flow is tilted by an angle θ with respect to

the radial direction. For simplicity let us assume that the flow is planar and there

is no horizontal dependence of the flow. We define vertical direction to be in the

z-direction, with ẑ the unit vector. Because in the limit of infinite conductivity, a

fluid parcel is tied to the field line, the velocity v = vsŝ, where ŝ is the unit vector

along the field (flow) line. We also define ẑ · ŝ = cos θ ≡ µ. This implies that

ŝ = µ ẑ +
√

1 − µ2 x̂, with the horizontal unit vector x̂ perpendicular to the vertical

direction.

In general, the advective derivative of velocity along an arbitrary direction ŝ

can be expressed as:

(v · ∇)(v · ŝ) = vs(̂s · ∇)(vs)

= µ vs
∂vs

∂z
+
√

1 − µ2
∂vs

∂x

= µ vs
∂vs

∂z
, (4.19)

where the last expression assumes that there is no variation in velocity in the hor-

izontal direction, so that ∂vs/∂x = 0. The momentum equation (2.68) along ds

becomes:

(v · ∇)(v · ŝ) = −(1 − Γ)
GM

r2
(ẑ · ŝ) +

Q̄κeF

c
(ẑ · ŝ) 1

1 − α

[

ẑ · ∇[ẑ · v]

Q̄κeρc

]α

, (4.20)

with the radius r =
√

z2 + x2. The LHS represents the inertia along ds, and the

RHS represents real forces acting on the fluid parcel. Note that in the optical depth
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part of the line force ẑ represents the direction of the incoming photon, which by

our assumption is purely radial or vertical in this case.

Equation (4.20) can be rewritten as:

µ vs
∂vs

∂r
= −(1 − Γ)

GM

r2
µ +

Q̄κeL

4πr2c
µ

1

1 − α

[

µ∂vs/∂z

Q̄κeρc

]α

. (4.21)

If we use the mass loss rate along the tilted direction, Ṁs = 4πr2ρvs to replace the

density ρ in the above equation, we have:

µ vs
∂vs

∂z
= −(1 − Γ)

GM

r2
µ +

Q̄κeL

4πr2c
µ

1

1 − α

[

4πr2µvs∂vs/∂z

Q̄κeṀsc

]α

. (4.22)

Now let us divide this by µ and use the definition

w ≡ r2vsdvs/dz

GM(1 − Γ)
. (4.23)

Then the momentum equation equation can be recast in the form

w = −1 + Cµαwα , (4.24)

where C has been defined earlier (eqn 2.70) and is related to the maximal CAK

mass loss rate. The equation (4.24) becomes mathematically identical to eqn (2.68)

under the substitution C ′ = C µα. As such, if we further assume Ṁs = 4πr2ṁs with

ṁs = ρvs, we obtain:

ṁs =
Fµ

c2

α

1 − α

[

Q̄Γ

1 − Γ

](α−1)/α

(4.25)

where F is the radiation flux along dz. Clearly, the mass flux has been reduced

by factor µ compared to that of a purely radial spherically symmetric outflow (eqn

4.2). Moreover, in terms of radial mass flux for these tilted tubes, the projection of

ds onto dz will yield another factor µ, i.e.

ṁr = µ2ṁspherical . (4.26)

This has the consequence that, if we have a flow tube that is initially (near the

stellar surface) inclined by angle cos−1 µ, then the mass flux through the tube will be

reduced by factor µ2 compared to the spherical non-magnetic flow. Such reduction

in mass flux can lead to higher terminal speeds, as our dynamical simulations show.
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4.4 Results

The right panel of figure 3.8 in chapter 3 shows wind flow speeds as a function

of the cosine of the co-latitude, µ = cos(θ) for various values of η∗ at the outer

boundary of our computational domain, Rmax = 6R∗ normalized by the values for

the corresponding non-magnetic model. Note the clear variation of the flow speed

as a function of the latitude. The relatively low flow speeds at the magnetic equator

are the consequence of the enhanced density due to magnetic channeling of the

wind material and the reduced line-force. Here we attempt to explain the cause

of this latitudinal modulation of the wind flow. We emphasize that this is only a

qualitative analysis and we do not expect to obtain a precise numerical agreement

with the MHD results.

4.4.1 Open Field Region

Figure 4.1 shows the cosine of co-latitude of a fluid parcel that is initiated at

the stellar surface at the co-latitude θmin and leaves the outer boundary at θmax. We

find θmin by fixing θmax and tracing the fluid parcel back to its origin at the stellar

surface, e.g. for a purely radial outflow θmin = θmax. This figure gives an estimate of

how much bending or deviation from radial flow any given flux tube undergoes. As

a secondary result, one can also estimate the size of the magnetic closure latitude,

as defined in §3.3.2, from the sharp transition near µmax = cos θmax = 0.

A question may arise whether our outer boundary at Rmax = 6R∗ is far

enough to provide an asymptotic value for µmax. For the line-driven winds we study

here, at radial distance r = 6R∗, the wind reaches nearly the terminal speed. In

addition, as we argued in chapter 3, the wind always wins over magnetic fields and

stretches the field lines into a nearly radial configuration. Thus we do not believe

that moving the outer boundary further will affect µmax in a significant way. The

advantage of using µmax as our independent variable, as we do in the subsequent

plots in this chapter, is that it gets rid of most of the chaotic behavior of the wind
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associated with the magnetically confined or the “closed field lines” wind region.

This allows us to focus on the flow within the range of the open field region.

4.4.2 Rapid Areal Divergence Factors

In ideal MHD cases the field and flow lines are closely tied together, and

as such the non-radial divergence of magnetic field lines represents the divergence

of the flow as well. Figure 4.2 shows maximum such divergence factor fmax =

f(Rmax, θmax) plotted as a function of µmax = cos(θmax) for various cases of η∗ as

noted in the caption.

Higher η∗ yields higher fmax at the poles. Note that fmax decreases towards

the magnetic equator. In equation 4.15 we showed that the ‘leveraging’ factor that

is responsible for an enhanced flow speed in the outer wind is directly proportional

to f or fmax. As such this latitudinal variation of f could be the key reason behind

the latitudinal variation of wind flow speed for low η∗ cases, as shown in figure

3.8. But this assertion fails to account for the higher speeds at midlatitudes for the

strongest magnetic confinement η∗ = 10 case. To explain this, we need to consider

the latitudinal variation of mass flux density in addition to the variation of f , as we

do in §4.4.3.
But let us first examine how the rapid divergence factor f varies as a func-

tion of radius r. Specifically, we focus on the ray along the poles and compute

fpole = f(r, θ = 0) as a sample case for illustrative purposes. Figure 4.3 shows fpole

computed from our dynamical MHD simulations for all the five cases.

It is worthwhile to compare these dynamically obtained divergence factors to

the divergence assumed by MacGregor (1988), which was based on a heuristic form

introduced originally by Kopp and Holzer (1976) in the solar wind context

f(r) =
fmax exp[(r − R1)/σ] + 1 − (fmax − 1) exp[(R∗ − R1)/σ]

exp[(r − R1)/σ] + 1
. (4.27)
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Specifically, this analysis assumed that the rapid divergence would be confined to

a quite narrow range of radius (σ = 0.1R∗) centered on some radius (R1 = 1.25 −
2.5 R∗) distinctly above the stellar surface radius R∗. By comparison, our dynamical

simulations indicate the divergence is generally most rapid right at the wind base

near the stellar surface (implying R1 ≈ R∗), and extends over a quite large radial

range (i.e., σ > 1R∗). MacGregor (1988) assumed values of the asymptotic net

divergence, fmax = 1.25 − 2.0, that are quite comparable to the divergence factors

found at the outer boundary of our MHD simulation models, fpole(Rmax) = 1.25−2.5.

4.4.3 Mass Flux at the Stellar Surface

In this section we study how the mass flux density, ṁ = ρvr varies in our

simulations as a function of colatitude at the stellar surface. Figure 4.4 shows ṁ

at Rmin along the magnetic flux tubes plotted versus µmax for the five MHD cases

we presented in chapter 3. For all the cases, mass flux density declines from the

poles towards the magnetic equator. This is a direct consequence of the tilt of

the magnetic flux tubes at the base that the wind flow follows, as we show below.

Note, however, that the polar value of mass flux is enhanced compared to the non-

magnetic spherical wind. This enhancement is proportional to η∗ or correspondingly

to the magnetic field strength. The reason behind this polar enhancement of mass

flux is not clear at this stage of our research, and will require further investigation.

We recover the limit of a spherical wind for the model with the weak magnetic

confinement η∗ = 0.01.

Figure 4.5 shows the ratio Br/B = µ which defines the tilt angle θ for the

wind flow at the base, plotted again as a function of µmax. For a pure dipolar field

case, the initial state of our MHD models here, these curves are purely sinusoidal,

but because we compute our models self-consistently, the wind modifies the field.

The comparison between the overall shapes of these curves to those of the mass flux
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densities reveals a clear similarity suggesting a close relationship between them; we

show below that this indeed is the case.

In §4.3.5, we argued that the mass flux density ṁ(R∗, θ) ∝ µ2. This reflects

the fact that although both gravity and photon flux are reduced along the tilted

direction, ds, the nonlinear nature of the line force lowers the mass flux density. To

verify this, in figure 4.6 we plot mass flux density scaled by µ2. Unlike in figure

4.4 where the mass flux density varied by as much as 30-40 % from its polar value,

ṁ/µ2 here varies by only a few percent at the most, with the maximum variation

occurring near the equatorial region where the wind can behave rather chaotically,

as was shown in chapter 3.

4.5 Discussion

Based on the solar analogy, MacGregor (1988) analyzed the effect of rapid

divergence f , as defined in equation 4.27, on a line-driven stellar wind, assuming

a simple 1D, radially oriented flow tube, as expected near the polar axis of an

open magnetic field. He concluded that, because the line-driving acceleration scales

inversely with density [glines ∼ 1/ρα; see eqn. (3.5)], the lower density associated

with faster divergence would lead to substantially faster terminal speeds, up to

a factor three faster than in a spherical wind, for quite reasonable values of the

assumed flow divergence parameters. By comparison, the polar flow speed increases

found in our full MHD models here are much more modest, about 30-40% in even

the strongest field case, η∗ = 10.

As was pointed out in §4.4.2, there are some differences between the assumed

functional form and our calculated divergence function (along polar axes). These

detailed differences in radial divergence do have some effect on the overall wind

acceleration, and thus on the asymptotic flow speed. But it appears that a key

reason behind the MacGregor (1988) prediction of a very strong speed enhancement

was the neglect of the finite-disk correction factor for the line-force (Friend and
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Abbott 1986; Pauldrach, Puls, and Kudritzki 1986). With this factor included, and

using the MHD simulations to define both the divergence and radial tilt-angle of

the field and flow, we show that a simple flow-tube analysis is able to explain fairly

well our numerical simulation results for not only the polar speed, but also for the

latitudinal scaling of both the speed and mass flux. In particular, we find that the

even stronger increase in flow speed seen at mid-latitudes (1/4 < |µ| < 3/4) in the

strongest field model (η∗ = 10) does not reflect any stronger divergence factor, but

rather is largely a consequence of a reduced base mass flux associated with a non-

radial tilt of the source flow near the stellar surface. As the flow becomes nearly

radial somewhat above the wind base, the lower density associated with the lower

mass flux implies a stronger line-acceleration and thus a faster terminal speed along

these mid-latitude flow tubes.

4.5.1 Rapid Areal Divergence vs Finite Disk Correction in Enhance-

ment of Flow Speed

In §4.3.2 we noted that the solution adopted by the wind x+ ∝ v∞. In this

section, we compare the wind solution (x+) with only finite disk correction included

to the wind solution that includes the combined effect of both finite disk correction

and rapid divergence, and show that the relative differences are comparatively small.

Let us first define a quantity ζ, that is an estimate of the relative change in

terminal speeds for these two cases:

ζ ≡ xr
+(θmax)

xfd
+

(4.28)

where xfd
+ is the solution for the case with fd alone, whereas xr

+ includes rapid

divergence fmax(θmax) as well. For each value of µmax we compute fmax then solve

for x+ using equation (4.18) under the assumption that far away the finite disk

correction factor fd ≈ 1. Note that xfd
+ corresponds to the non-magnetic spherical

wind, i.e. fmax = 1.
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Figure 4.7 plots ζ versus µmax representing the ratio between the modified

flow speed to the non-magnetic spherical wind case. These plots overestimate the

flow speed at the poles while underestimating it at the midlatitudes, which is the

most apparent for the case with the highest magnetic confinement η∗ = 10 case.

This can be explained by considering the mass flux density variation as a

function of latitude at the base. As mentioned earlier, the polar mass flux density for

magnetic cases is enhanced compared to the non-magnetic case, while it is reduced

for tilted flows at the midlatitudes. This altered mass flux changes the effective

fmax, and we can redefine a modified divergence factor:

fmod(θmax) = fmax(θmax)
ṁspherical

r

ṁr(R∗, θmin)
(4.29)

where ṁspherical
r is the mass flux for the non-magnetic case. With divergence factor

thus modified, we recalculate ζ, and plot this in figure 4.8.

The agreement with the dynamical MHD results now is significantly better.

The polar values of the wind flow agree within a few percent, and also, at least

qualitatively, higher midlatitudinal flow speeds for the η∗ case are accounted for.

Here, we made a number of simple assumptions, e.g. we assumed fmax to be constant

throughout the wind. In practice f varies with the distance r which may influence

the flow speed in a way that we did not consider here.

4.6 Conclusion

In this chapter, we analyzed the role of faster-than-r2 divergence of field and

finite disk correction factor in accelerating line-driven winds to high speeds. Our

conclusions are summarized below:

1. The finite disk correction alone can increase the terminal speed of the line-

driven wind by a factor 2-3.

2. The mass flux rate for a tilted flow is reduced by the square of the cosine of

the tilt-angle (µ2) with respect to the radial outflow.
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3. The divergence function obtained from our numerical MHD models differ from

the heuristic form used by Kopp and Holzer (1976). Our computed area

functions are most-rapid right at the wind base and extend over a quite large

radial distance. But the net divergence assumed by MacGregor (fmax = 1.25−
2.0) is comparable to the divergence factors found at the outer boundary of

our simulations (fmax = 1.25 − 2.5)

4. The high speed winds obtained by MacGregor’s (1988) analysis of rapid areal

divergence function applied to line-driven winds was mainly due to neglect

of the finite disk correction. We showed that once this factor is included, the

wind reaches high speeds, and the addition of rapid divergence makes relatively

small impact. Our numerical results show a modest increase in flow speeds

at the outer boundary, of only 30-40 %. This modest level of wind velocity

modulation is much more in concert with observed blue edges of absorption

troughs in UV wind lines from hot stars.
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Figure 4.1: The measure of how much a magnetic flux tube diverges from radial
configuration expressed through µmin = θmin and µmax = θmax. For
a given µmax flow tube is traced back to the stellar surface, and µmin

is found. The five lines represent the five MHD models discussed in
the text, η∗ = 10,

√
10, 1, 1/

√
10 and 1/10 with the uppermost curve

corresponding to η∗ = 10 and the lowermost to η∗ = 1/10 cases, the
intermediate cases are in between in the above order. For a purely
radial configuration the corresponding curve is a diagonal.
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Figure 4.2: Rapid divergence fmax plotted vs µmax for five MHD cases with, η∗ =
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√
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√
10, 1/10 from top to bottom. Note that the highest

values occur along the poles.
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Figure 4.3: The measure of faster-than-r2 decline of the polar magnetic field, as
represented by the function fpole defined in eqn. (3.10), and applied
to the 5 MHD simulations with magnetic confinement ranging from
strong (η∗ = 10; uppermost curve) to weak (η∗ = 10; lowermost curve).
For the ideal MHD cases here of field-frozen flow, this also represents
the degree of faster-than-r2 expansion of flow tube area. The dot-
ted curves plot the heuristic area-expansion function defined by Kopp
and Holzer [eqn. (4.27) here], with R1 = 1 R∗, and the parameters
fmax = 2.43, 1.98, 1.73, 1.44 and 1.23, and σ/R∗ = 1.13, 0.98, 0.89,
0.79, and 0.73, chosen to best fit to the five cases from η∗ =10 to 1/10.
The dashed curve shows the variation for a pure dipole field.
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Figure 4.4: The mass flux density, ṁ = ρvr normalized by the corresponding non-
magnetic value at Rmin plotted against µmax for the five MHD models
with magnetic confinement parameters η∗ = 1/10, 1/

√
10, 1,

√
10 and

10. For the non-magnetic spherical wind case ṁ = 1.
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Figure 4.5: The ratio of Br/B which represents the cosine of tilt angle, µ for
a flow tube emanating from the stellar surface plotted as a func-
tion of µmax. Five curves, starting from the uppermost, repre-
sent the five MHD models with magnetic confinement parameters
η∗ = 1/10, 1/

√
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10 and 10 respectively.
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Figure 4.6: The mass flux density scaled by µ2 for the five MHD models with
magnetic confinement parameters η∗ = 1/10, 1/sqrt10, 1,

√
10 and 10.

Note that these are essentially constants, consistent with the claim
that ṁr ∼ µ2 for a flow tilted by angle cos−1(µ) from the radial flow.
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Figure 4.7: Predicted radial flow speed at Rmax = 6R∗ scaled by the value for
the non-magnetic spherical wind case based on simple consideration
of only rapid divergence factor fmax for various cases of η∗. Note that
because the mass flux density is higher at the poles compared to the
spherical case, this prediction overestimates (since it is using lower
mass flux than it should). Likewise, the midlatitudinal flow speeds
are underestimated since they are using higher mass flux then they
should. See figure 4.4.
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non-magnetic model. Note that flow speeds are now in much better
agreement.
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Chapter 5

THE EFFECTS OF FIELD-ALIGNED ROTATION ON

THE MAGNETICALLY CHANNELED LINE-DRIVEN

WINDS

In the previous two chapters (3 & 4), we discussed how the surface magnetic

fields can affect the line-driven winds of a star with no rotation. We showed that

the degree to which the wind is influenced by the magnetic fields depends largely

on a dimensionless, ‘wind magnetic confinement parameter’, η∗.

Here, we examine how the stellar rotation can affect such winds. As a first

attempt, we assume that the rotation is aligned with the axis of the magnetic field.

Rotation that is tilted with respect to the field axis, requires a full 3-D treatment,

which is beyond the scope of this thesis and is left for future study.

5.1 Introduction

It is well known that the hot stars are rapid rotators. Numerous spectroscopic

studies (e.g. Conti and Ebbets 1977; Fukuda 1982) indicate that normal OB-type

stars are characterized by typical rotational velocities in excess of 100 km/s, and

some are observed to have projected rotational speeds of upto 400 km/s.

Hydrodynamical calculations suggest that the terminal velocities of line-

driven winds should decrease with the increase of rotational velocities (Castor 1979;

Friend & Abbott 1986). The centrifugal force reduces the effective gravity, which
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increases the mass loss rate; since the same luminosity drives the denser wind, the

terminal velocity is reduced.

The radiation force is an efficient mechanism to lift the stellar material off

the surface, but it is not efficient in providing angular momentum to that material.

In the context Be stars, defined as very rapidly rotating (possibly close to critical

rotation) main-sequence B stars which have shown Hα emission at least once in

their lifetimes, Bjorkman & Cassinelli (1993) proposed a Wind Compressed Disk

(WCD) model, wherein conservation of angular momentum tends to focus the wind

material into a density enhanced disk-like equatorial region. However, dynamical

simulations of Owocki et. al. (1994) showed that the material from the rotating star

lacks the necessary angular momentum to form a stable Keplerian orbit that would

define a disk. Instead, the material flows through the WCD, with the inner portion

falling back onto the star while the outer portion flows out as an equatorial wind.

This scenario is contrary to the observed dense, nearly stationary Keplerian disks

(Hanuschik 1996; Hummel 1998; Rivinius et al. 2001) inferred from the optical and

IR emission lines as well as the IR continuum excess of Be stars due to gaseous cool

disk (Waters & Marlborough 1994).

An efficient mechanism to impart angular momentum to outflowing material

is the moment arm of a stellar magnetic field. There have previously been attempts

to model magnetic field effects on line-driven winds of rotating hot-stars. Friend

and MacGregor (1984) extended the model of Weber and Davis (1967, discussed in

chapter 2) to line-driven CAK winds to study how a monopolar base magnetic field

at the surface of a rotating star can affect the rotational properties of the equatorial

material outflow. Just as in the solar wind case, they found that the magnetic

fields can spin up the hot-star wind, but they did not discuss this in the context of

formation of a disk.

Recently, Cassinelli et al. (2002, in press) proposed a magnetically torqued
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disk model for Be stars wherein they prescribe an azimuthal velocity of the flow as

a function of radius, vφ(r) and from that they estimate the strength of the stellar

surface magnetic field necessary to create a disk. In our models we calculate the

azimuthal velocity self-consistently, but fix the surface magnetic field. As discussed

earlier in chapter 3, our 2D dynamical simulations of line-driven winds from hot-

stars with a dipolar surface magnetic fields, showed that if the field is strong enough

(measured by η∗), magnetic field lines channel the wind outflow toward a collision

at the top of a closed loop, leading to a density-enhanced equatorial region. Now

we wish to investigate what happens to these regions when stellar rotation is taken

into account.

5.2 Method

5.2.1 Oblateness due to Rotation

Let us first examine the effects of rotation on the shape of the star itself,

and show that, for the range of rotation rates used for our models here, stellar

deformation is relatively unimportant.

For a uniformly rotating star, the gravitational potential can be approximated

by,

Φ(r, θ) = −GM∗

r
− 1

2
Ω2r2 sin2 θ , (5.1)

where Ω is the angular speed of the star. In particular, for the polar radius, r = Rp,

we can write,

−GM∗

Rp

= −GM∗

R∗

− 1

2
Ω2R2

∗ sin2 θ , (5.2)

with R∗ = R∗(θ) defining the stellar surface. This can be solved once Rp and the

stellar angular speed Ω are specified.

Let us now compare Rp with R∗(90
o) = Re as a function of Ω. After dividing

both sides by −GM∗/R∗ the above equation (5.2) can be rewritten as,

Re

Rp

= 1 +
(

1

2
Ω2R2

∗

)

/
(

GM∗

R∗

)

. (5.3)
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This can be simplified if we define a “critical” (or “break-up”- a misnomer but often

used in the literature), angular velocity Ωc at the equator such that the centrifugal

force balances the gravity, i.e. Ωc =
√

(2GM∗/Re),

Re

Rp

= 1 +
1

2

Ω2

Ω2
c

. (5.4)

For a star that is rotating with half of the critical rotation, the equatorial radius is

only 12.5 % larger than the polar radius, i.e. if Ω = 0.5 Ωc then Re/Rp = 1.125.

Throughout this work we will assume Ω ≤ 0.5 Ωc and ignore the modest effect of

this oblateness.

In addition, for simplicity we ignore any effect of gravity darkening (von

Zeipel 1924) which would reduce the radiation flux at the equator relative to the

pole.

5.2.2 Equations of Magnetohydrodynamics

Our approach here is to increase the level of complexity of physics from

that of the previous chapter by adding rotation in the formulation of our problem.

We, again, use the numerical code ZEUS-3D to evolve a self-consistent dynamical

solution for a line-driven wind from a hot star with a dipolar surface field, but now

include rotation that is aligned with the axis of the magnetic field. We run our

code in spherical polar coordinates with radius, r, co-latitude θ, and azimuth φ.

We assume all the quantities are constant in azimuthal angle φ, but within a 2.5-D

formulation include the rotational velocity vφ and the azimuthal magnetic field Bφ.

As in the previous chapters, the time-dependent equations to integrate in-

clude the conservation of mass,

Dρ

Dt
+ ρ∇ · v = 0 , (5.5)

where ρ, and v are the usual mass density, and velocity of the fluid flow, and

D/Dt = ∂/∂t + v · ∇ is the advective time derivative. The equation of motion
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now includes the centrifugal and Coriolis forces that arise essentially from geometric

considerations,

ρ
[

Dv

Dt
+ 2Ω × v + Ω × (Ω × r)

]

= −∇p+
1

4π
(∇×B)×B− GM(1 − Γ)r̂

r2
+glines,

(5.6)

where Ω is the angular velocity of the stellar rotation (assumed to be independent

of the latitude). The meanings of the other symbols have already been given in

section 3.2, but they are repeated here for convenience. The gravitational constant

G and stellar mass M set the radially directed (r̂) gravitational acceleration, and

Γ ≡ κeL/(4πGMc) is the Eddington parameter, which accounts for the acceleration

due to scattering of the stellar luminosity L by free electron opacity κe, with c the

speed of light. The additional radiative acceleration due to line scattering, glines,

derived in chapter 2, has the form,

glines =
fd

(1 − α)

Q̄κeL∗

4πr2c

(

∂vr/∂r

ρcQ̄κe

)α

, (5.7)

where Q̄ is a constant of the order ∼ 1000 and fd is the finite disk correction given

by equation (2.88). The magnetic field B is constrained to be divergence free

∇ · B = 0, (5.8)

and, under our assumption of an idealized MHD flow with infinite conductivity (e.g.

Priest & Hood 1991), its inductive generation is described by

∂B

∂t
= ∇× (v × B). (5.9)

In principle, we should also include an equation for the energy balance, but as

was argued earlier, hot-star winds can often be well approximated as an isothermal

flow with the temperature T = Teff and the perfect gas equation of state,

P = ρa2 , (5.10)

where a =
√

kT/m is the sound speed. In the next chapter we will consider hot-star

winds that are adiabatic with polytropic index, γ = 5/3.
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5.2.3 Numerical Specifications

The specifics of our numerical discretizations and boundary conditions are

essentially identical to the ones presented in chapter 3, with only two additional

quantities, the rotational velocity, vφ and azimuthal component of the magnetic

field, Bφ to be considered at the boundary. As such, instead of repeating what

has already been described in full detail, here we merely summarize the numerical

specifications of our simulations.

The mesh is similar to that used in the non-rotating case (§3.2.3). In the

radial direction it has nr = 300 zones that spans from r1 = rmin = R∗, the surface of

the star, to the maximum radius of our computational domain at r301 = rmax = 6R∗.

The radial mesh has a finer spacing near the surface with ∆r1 ≈ 0.0003R∗ and

then increases by 2% per zone. The mesh in co-latitude, on the other hand, uses nθ

zones that spans from θ = 0o to θ = 180o covering the two hemispheres from pole to

pole. The resolution of the grid is increased near the magnetic equator at θ = 90o

by assigning minimum zone spacing of ∆θeq = 0.3o and then increasing it by 5% per

zone towards each pole.

Our implementation of ZEUS-3D code uses the piecewise-linear-advection

option (van Leer 1977) with time steps set to a factor 0.30 of the minimum MHD

Courant time determined by the code itself. The boundary conditions at the two

poles are set by simple reflection criterion. At the outer radius of our computational

domain, all the MHD quantities are set by linear extrapolation assuming constant

gradients.

At the stellar surface the density is fixed at a value ρ0 ≈ Ṁ/(4πR2
∗a/5)

where Ṁ is the characteristic mass loss rate of a 1D, nonmagnetic CAK model, and

a is the isothermal sound speed. The radial velocity, vr, is set by constant slope

extrapolation. This allows the mass flux into the computational domain to adjust

self-consistently. The radial flow in most zones is usually subsonic, although inflow
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or outflow of up to the sound speed is permitted. We introduce the magnetic flux

through the radial boundary as the radial component component of a dipole field

Br(R∗ = B0 cos(θ) where B0 is the fixed polar field strength different for each model

as specified in Table 5.1. The latitudinal component of magnetic field, Bθ is set

by constant slope extrapolation. For strong field cases, characterized by magnetic

confinement parameter η∗ > 1, the latitudinal velocity component is likewise linearly

extrapolated, while for weak field cases, i.e. for η∗ ≤ 1 we set vθ = 0.

The main difference here from the boundary conditions for non-rotating mag-

netic models discussed in chapter 3 lies in the explicit inclusion now of the azimuthal

components of the velocity and the magnetic fields. For non-rotating models, we

set, naturally, vφ = 0 and Bφ = 0. Here, vφ at the surface is fixed to a value of the

stellar rotation assuming a rigid body rotation. On the other hand, Bφ is set by a

constant slope extrapolation.

The hydrodynamical flow variables, ρ and vr are initialized to values for a

spherically symmetric, steady, radial CAK wind, obtained from relaxing a 1D, non-

magnetic wind simulation. The latitudinal component of the velocity, vθ is set to

zero everywhere, and the azimuthal component, vφ is set to zero everywhere except

at the stellar surface where vφ = vrot, the rotation speed of the star. Detailed values

for this are listed in table 5.1. The magnetic field is initialized to have a simple

dipole form with Br = B0(R∗/r)
3 cos θ, Bθ = (B0/2)(R∗/r)

3 sin θ, and Bφ = 0, with

B0 the polar field strength at the stellar surface. From this initial condition, the

numerical model is then evolved forward in time.

5.3 Rotation Parameter

In chapter 3, we showed that a single dimensionless wind magnetic confine-

ment parameter, η∗ ≡ 0.4 (B2
100 R2

12/Ṁ−6 v8) (eqn 3.7), which characterizes the ratio

between the magnetic field energy density and the kinetic energy density, controls

how much the magnetic field influences the wind. In this chapter we show that
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rotational effects can be characterized with an additional parameter, expressed as

the stellar rotation in the units of ‘critical’ rotation (defined below).

The increase of the stellar rotational speed increases the centrifugal force.

Given a fixed rate of rotation of the star, Ω and under the assumption of a rigid

body rotation, let us compute a critical radius rc where the centrifugal force balances

the effective force of gravity,

v2
φ

rc

=
Ω2r2

c

rc

= geff

=
GM∗(1 − Γ)

r2
c

. (5.11)

Simple algebraic manipulation yields,

Ω =
√

GM∗(1 − Γ) r−3/2
c . (5.12)

In particular, if we assume that the critical radius occurs at the stellar surface, this

will yield the critical rotational angular speed,

Ωc =
√

GM∗(1 − Γ) R−3/2
∗ . (5.13)

Defining the stellar rotation rate in terms of Ωc,

ω ≡ Ω

Ωc

, (5.14)

we can now write,

ω =
(

rc

R∗

)−3/2

(5.15)

or
rc

R∗

= ω−2/3 . (5.16)

From chapter 3 equation 3.6 we find that at the equator where θ = 900 the

ratio between the magnetic field and kinetic energy densities can be written as

η(r, 90o) = η∗
(r/R∗)

2−2q

(1 − R∗/r)
, (5.17)
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where q is the exponent in the magnetic field strength power-law decline, e.g. q = 3

for a pure dipole field. Let us ignore the (1−R∗/r) term in the above equation and

define the Alfven radius rA such that η(rA) = 1. Then,

1 = η∗ (rA/R∗)
2−2q , (5.18)

or
rA

R∗

= η
1

2q−2
∗ . (5.19)

Physically, rA represents the maximum radius where the magnetic fields still dom-

inate over the wind and can be directly related to the co-rotation radius. On the

other hand, rc is the maximum radius of co-rotation beyond which a rigidly-rotating

fluid parcel is flung away by the centrifugal force.

Let us imagine a stellar model where rc = rA. Then the equations 5.16 and

5.19 yield,

ω = η
−3

4(q−1)
∗ . (5.20)

For a dipole magnetic field this reduces to ω = η
−3/8
∗ (q = 3), and for a monopole-like

field ω = η
−3/4
∗ (q = 2).

Figure 5.1 shows these two curves (red and blue respectively) plotted against

log η∗, superimposed with the values of ω and η∗ (dots) for all our isothermal MHD

simulations. This curves serve us as a guiding lines for the simulations to be pre-

sented in this chapter. We shall see that the models that are below the red curve

will be similar to the zero-rotation models discussed in chapter 3 & 4. On the other

hand, the models that lie about the blue curve will be noticeably different in na-

ture, and, as we will show, the extent of the last closed loop for those models will

be limited by the co-rotation radius rc. The models that lie in between the red and

blue curves are the intermediate cases.
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5.4 Simulation Results and Discussion

Our approach is to study the nature of the line-driven wind for various as-

sumed values of η∗ in combination with the rotation speed ω. For small values of

ω ≤ 1/20 the rotation has no dynamical effect on the wind. But for larger values,

ω > 1/4 the wind is affected significantly. We do not consider rotation ω > 1/2

since that requires consideration of oblateness and gravity darkening. The models

with 1/20 < ω < 1/4, differ little from their zero-rotation counterparts discussed in

chapter 3 & 4.

For our parameter study, we vary η∗ solely through the variations in the

assumed field strength. All the wind and stellar parameters are fixed to that of a

typical OB supergiant, e.g. ζ Pup, in accordance with the previous chapters (see

Table 3.4.3).

We evolve our models forward in time from an initial condition t = 0 when a

dipole magnetic field is suddenly introduced into a spherically symmetric 1D CAK

wind. To ensure asymptotic behavior of the flow, we run most of our models for

about 900 ksec, which is very large compared to a characteristic flow crossing time,

tflow = 5R∗/v∞ ≈ 25 ksec. The rotation of the star is implemented by fixing the

boundary value of the azimuthal velocity to that of a rigidly and uniformly rotating

sphere. As noted earlier, we ignore the stellar deformation due to rotation itself.

For all the cases with different magnetic confinement parameter, η∗, just as in

the non-rotational models discussed in chapter 3, the wind outflow quickly stretches

the initial dipole field outward, opening up the closed magnetic loops in the outer

wind into a nearly radial configuration. For modest values of ω the rotation has

very little dynamical effect on the wind, but for ω ∼ 1/2 even for models with the

lowest values of η∗ = 1/10 the rotation can change the global structure of the wind

compared to the equivalent model with no rotation. This is reflected in the increase

of the net mass loss rates and the decrease of the terminal speeds.
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The behavior of the wind in the inner part, near the surface, is more complex

and depends largely on the value of η∗ and the rotation speed ω. For the models

with small values of η∗ < 1 the field lines are stretched almost radially outward by

the wind even in the inner part. But the finite departure from the radial configu-

ration forces finite diversion of the wind material towards the equator leading to an

enhancement of the density. The rotation and the associated Coriolis forces increase

the equatorward deflection of the wind material. Thus, in general, in the equatorial

region is denser for the rotational models compared to the zero-rotation cases. This

is similar to the WCD model of Bjorkman and Cassinelli.

For the models with sufficiently strong values of η∗ > 1, confinement of the

wind by the magnetic closed loops near the stellar surface in combination with the

high rotation speed can lead to quite complex flow pattern and interaction of the

wind with the field lines. Before we describe this complex interaction near the

surface of the star, let us discuss the effect of rotation on the global properties of

the wind next.

5.4.1 Global Wind Structure of the Wind

5.4.1.1 The Models with Fixed Rotation but Different Magnetic Con-

finement Parameter

For the final time snapshot of the simulations, figure 5.2 compares the global

wind structure of density (logarithmic color-scale) and the radial outflow for models

without and with rotation (ω = 1/2 or Vrot = 250 km/s at the equator) for the values

of magnetic confinement η∗ =1/10, 1 and 10 at . For all the models magnetic field

lines (solid lines) are stretched outward into a radial configuration which reaches

an asymptotic state within about 100 ksec of simulation time. To ensure that our

simulations do not depend on the initial condition, these models were run for about

t = 900 ksec.
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For the weak magnetic field case (η∗ = 1/10) with no rotation, the deflection

of the wind material towards the magnetic equator leads to an enhanced density

and decreased radial flow speed in the equatorial region. The inclusion of rotation

(ω = 1/2) makes these even more pronounced since the conservation of the angular

momentum leads to an increased deflection of the flow towards the equator. Thus,

compared to the polar value the equatorial density is enhanced by factor six, as

opposed to factor two in the zero-rotation case. The radial velocity at the equatorial

region for the rotational case, is lower as well, about 1400 km/s vs 1900 km/s for

the non-rotational case. These differences are mainly consequences of the enhanced

mass loss rate since the rotation reduces the effective gravity leading to higher mass

loss rates.

Similarly, for the moderate and strong magnetic confinement cases, η∗ = 1, 10,

the rotation enhances the density in the equatorial region while decreasing the radial

outflow velocity. This difference in the density enhancement vanishes as we increase

the magnetic confinement parameter, η∗. The reason is that the higher η∗ confines

larger region of the wind outflow near the surface at the equator where the rotation

is the most effective. The wind outflow emanating from higher latitudes has little

azimuthal velocity, and as such the effect of rotation is inhibited.

We already discussed the latitudinal flows of the wind for the non-rotational

case in chapter 3, and we find that the inclusion of rotation does not change the

latitudinal flow pattern significantly. Figure 5.3, which compares latitudinal veloci-

ties vφ of the rotational models (η∗ = 1/10, 1 and 10) with zero-rotation cases as a

color-scale demonstrates this fact. Note, however, the tendency is for the rotation

to lower the latitudinal velocity. This is consistent with the generalized 2D Weber

and Davis models calculated by Sakurai (1985), who shows that there is a poleward

deflection of the wind due to buildup of the toroidal magnetic fields. The direct

comparison is not an easy task since Sakurai used split-monopole magnetic field,

125



while we use a dipole field.

5.4.1.2 The Models with Fixed Magnetic Confinement but Different Ro-

tations

Figure 5.4 shows the hydrodynamic quantities ρ, vr, vθ and vφ as color-scale

plots for the models with magnetic confinement η∗ =
√

10 (BPole = 520G) and

rotation ω = 0, 1/4 and 1/2. The left column shows the global structure of density

as a logarithmic color-scale superimposed with the magnetic field lines (solid lines)

projected onto r−θ plane. The global configuration of the field and wind structures

are very similar. For the model with the highest rotational speed (ω = 1/2 or

Vrot = 250km/s) the equatorial density is enhanced compared to the two other

models. This leads to the lower outflow velocities in that region (the second column).

There is hardly any difference in the latitudinal flow velocities for these three models

since they all have very similar magnetic field configurations. In the ideal MHD

approximation the fluid follows the field lines, thus the net deflections towards the

equator are also comparable. In the open field regions the azimuthal velocities

for the two rotational models are nearly angular momentum conserving. In the

magnetically closed region near the surface about the magnetic equator, the wind

material co-rotates with the star, but eventually the wind dominates over the field

and the fluid flows out conserving angular momentum.

5.4.2 Co-rotation and Variability of the Near-Surface Wind Flow

For the cases with the magnetic confinement η∗ > 1 the flow near the surface

of the star is quite structured and variable. Figure 5.5 shows snapshots of magnetic

field lines (solid lines) and density (as logarithmic color-scale) for the case of mod-

erately strong magnetic confinement parameter, η∗ = 6.4 (BPole = 800G), zoomed

in on the near-star equatorial region at time intervals long after the initial condi-

tion (t > 500 ksec). The dashed line represents the maximum radius of co-rotation
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(r = 1.6R∗) beyond which a fluid parcel is gravitationally unbound. The magnetic

fields channel the wind material towards the equator where a dense disk-like struc-

ture is formed. Since the line-force is inefficient for dense plasma, this structure

eventually falls down due the gravitational pull. The material below the dashed line

falls inward (as suggested by arrows for clarity) forming knots.

Note, however, that the knots formed above the dashed line are flung outward.

The reason is that these knots are spun up by the magnetic fields up to critical

rotation speed, so that the resultant outward centrifugal force is larger than the

inward pull of gravity. Thus these centrifugally driven dense knots tear through the

field lines and get ejected. This can be seen more clearly from the figure 5.6, where

the azimuthal velocity of the wind material is shown as a color-scale plot in the

unit of co-rotation velocity, χ ≡ vsimulation
φ /Ωr sin θ. Thus the material flowing with

χ = 1 is rigidly rotating with the star. Clearly, the material above the dashed line

reaches the maximum co-rotation velocity and thereby is flung away.

Note, also, that there is some rarefied material above the dense equatorial

region that spins counter to the direction of stellar rotation. Perhaps this is a

numerical artifact, but very little mass is involved. Therefore, we just ignore it for

now. The precise reasons for this will require further investigation.

The animations of time sequences of the models with magnetic confinement

η∗ =
√

10 (BPole = 520G) and rotation ω = 1/4 and ω = 1/2 show that for

the model with the higher rotational speed, the inner wind behaves much as the

model described above (BPole = 800G case), i.e the dense knots are formed, and

the material below the co-rotation radius falls back onto the star while the material

above it is flung away. The case with the lower rotation speed is somewhat different;

the knots do not tear through the field lines, but instead all fall back onto the stellar

surface, just as in the zero-rotation case discussed in earlier chapters. The reason is

that, here, the magnetic confinement is not high enough to keep material co-rotating
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up to the co-rotation radius, which occurs for the ω = 1/4 case at r ≈ 2.5R∗. In

the case of ω = 1/2 the co-rotation radius is only r ≈ 1.6R∗, and the field is strong

enough to co-rotate the material up to that radius. This can be well illustrated by

animations, but is difficult to illustrate on paper.

In the somewhat different case of x-ray pulsars binary systems powered by

mass exchange accretion onto a neutron star, Illarionov & Sunyaev (1975) and Stella,

White & Rosner (1986) show that for strong enough surface magnetic field of a

rotating star, the centrifugal force can inhibit or even quench the accretion via the

“propeller” mechanism. Despite the different contexts, the physical mechanisms

involved is actually somewhat analogous to the results for our rotating magnetized

winds. In our simulations, the wind material is collected from the star itself, and then

is spun up by the magnetic field to super-Keplerian velocities, leading to episodic

mass ejecta and preventing the formation of a steady disk. In the case of the

“propeller” model of Stella, White & Rosner, the material is collected from the

companion star (usually O or B star) via accretion which then is spun up by the

field. Sufficiently strong magnetic field reverses the direction of the accretion flow

by spinning accreting material to high enough velocities so that it is flung away

outward (from the neutron star).

5.4.3 Azimuthal Components of the Flow and Field

The top row of the figure 5.9 shows azimuthal velocity recast in the unit

of co-rotation (χ ≡ vφ/Ωr) plotted as color-scale for the models with magnetic

confinement η∗ = 1/10,
√

10 and 10 and the rotation ω = 1/2 (Vrot = 250 km/s).

For the lowest magnetic confinement case, there is no co-rotation anywhere in the

computational domain since the field is too weak to force the wind to co-rotate.

For the highest magnetic confinement case, the region within the closed loop

co-rotates with the star. However, because the outward centrifugal force beyond

the co-rotation radius is larger than the inward pull of the gravity, the co-rotation
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radius limits the last closed magnetic loop. This is apparent in figures 5.5 and 5.7

where solid lines represent the co-rotation radius, and clearly the closed magnetic

loops do not cross this distance.

The magnetic fields here act as a moment arm and provide significant amount

of momentum to the wind. One may ask if the field could launch the wind material

into a Keplerian orbit. The results above demonstrate that the wind obtains large

angular momentum while being driven radially outward by the stellar radiation.

Thus the radial outflow velocity prevents the spun up material to settle into a

Keplerian orbit. Consequently, our simulations show a dense equatorial outflow in

lieu of a Keplerian disk.

For all the rotational models, far away from the star azimuthal velocity falls

off as ∼ 1/r asymptotically, conserving the angular momentum. This is not surpris-

ing since we already argued in chapter 3 that wind always wins over the field simply

because the field strength declines significantly faster than the wind ram pressure.

On the other hand, the azimuthal component of the magnetic field along a

given radial ray (i.e. fixed θ) also falls off as ∼ 1/r. Because the radial component

declines as ∼ 1/r2 (radial configuration), this implies that far away from the star

the field lines are wrapped in spiral patterns. This is analogous to the generalized

Weber and Davis model (Sakurai 1985) for split-monopole surface magnetic field.

5.4.4 Radial Outflow and Mass Loss Rates

Figure 5.10 shows the radial outflow velocity (top panel) and the mass flux

density (bottom panel) at the maximum radius of our computational domain, r =

6R∗ for models with fixed rotational velocity (ω = 1/2) and the magnetic confine-

ment ranging from η∗ = 1/10 to 10 in increment of
√

10 as a function of µ = cos θ.

For all the cases the flow velocity decreases and the mass flux density increases

towards the equator.
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This can be explained qualitatively by figure 5.11, where the mass flux density

near the stellar surface (r = R∗) is plotted against µ = cos θ. The pole in this

figure corresponds to µ = 1. We note that the model with the lowest confinement

η∗ = 1/10 has the lowest mass flux rate at the pole (blue curve) but the highest

near the equator. It is hardly surprising since for such a low confinement the wind

dominates over the wind right from the surface and stretches the field lines into a

radial configuration. Therefore the only effect that increases the mass flux is the

reduced effective gravity due to increased rotation towards the equator. The higher

mass flux at the equator leads to lower outflow velocity.

The cases with higher confinement parameters are somewhat more complex.

The field lines are nearly radial only near the pole, but near the surface about the

equator the magnetic field is able to control the wind, and force the flow at a tilted

angle. We already have shown in chapter 4 that the mass flux for the tilted flow is

reduced by factor of the square of the cosine of the angle. As such, for these cases

the effect of the rotation competes with the effect of the tilted flow.

Figure 5.12 shows total integrated mass loss rates for the same models as a

function of the magnetic confinement parameter for different rotational models. The

top curve shows the mass loss rates in the unit of 10−6M�/yr for the models with

Vrot = 250km/s, and the bottom one for Vrot = 125km/s. There is a clear trend

of decrease of the mass loss rate with the increase of the strength of the magnetic

field. This seems contrary to what Friend and MacGregor (1984) concluded in their

analysis of rotating magnetic wind models that combined the Weber and Davis

(1967) description of a rotating magnetic solar wind with the CAK theory of line-

driven winds in a point source approximation. They found that the mass loss rate

increases with the increase of the field strength. Poe and Friend (1986) extended

these models to include the finite disk correction factor, and arrived essentially to

the same conclusion.
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These rotating magnetic wind models were limited to the equatorial plane

and were essentially 1D in nature. When the mass loss rates were computed, it was

assumed that mass flux was spherically symmetric. In our dynamical 2D rotating

magnetic wind models, higher surface dipole-like magnetic fields confines larger area

around the equatorial region, as was shown in chapter 3. The effective gravity is the

lowest at the equator due to the highest effect of the centrifugal force there, thus

the mass loss rate would have been the highest at the equatorial region if the wind

were not confined by the fields.

5.4.5 Angular Momentum Loss

The wind from a rotating star carries away angular momentum. In this

section, we attempt to estimate how much angular momentum is lost from the star,

and what the characteristic spin-down time scale is.

In the Weber and Davis (1967) model, where the wind is limited to the

equatorial plane, the angular momentum loss rate is approximately,

dJ

dt
≈ 2

3
ṀΩr2

A , (5.21)

where rA is the Alfven radius. The characteristic braking time thus is,

τ =
J

dJ/dt
≈ 3IΩ

2ṀΩr2
A

≈ 3ιMR2
∗

2Ṁr2
A

, (5.22)

with the moment of inertia of the star, I assumed to be,

I = ιMR2
∗ . (5.23)

Here, ι is a constant that depends on the density distribution of the star, e.g. for a

uniform sphere with mass, M , ι = 2/5 and I = (2/5) ∗MR2. Realistically, ι ≈ 1/10

for most stars which usually have dense cores.

In our numerical 2D simulations, we can directly compute the rate of angular

momentum loss first by defining j, the flux of angular momentum loss rate,

j(r) ≡ ṁ(r)vφ(r)r (5.24)
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where ṁ(r) ≡ ρvr, and then integrating it over the whole space occupied by the

wind,

J =
∫

j dV . (5.25)

The estimated values of τ for our various models is listed in Table 5.1. Note that

if we assume ι = 1/10 the characteristic braking time scale is of order ∼ 1 Myr

only for most of our MHD models. Note also that for the models with η∗ ≤ 1 and

the same rotational velocities, the characteristic braking time scales are comparable

since the field is too weak to force the wind to co-rotate, and the momentum gained

by the wind depends mainly on the surface rotation.

5.4.6 Observational Implications

As discussed in chapter 3, the stellar winds of hot stars are variable on large

scale due to the presence of persistent structures. They often manifest themselves

through the so called Discrete Absorption Components (DACs) which are absorption

features in the wind that have an apparent slow outward acceleration. The time-

series observations of UV lines with IUE (see e.g. Kaper 1999) suggest that DACs

are longitudinally extended and spiral shaped structures with recurrence time-scale

closely related to the rotation period. This implies that the cause of DACs may

be rooted in the processes in the underlying star. One obvious candidate is the

magnetic field in association with the stellar rotation.

Our MHD models presented here, although 2D in nature, may provide some

hints if the magnetic fields can be responsible, at least, in part for some of the large

scale variability inferred from the UV lines. We showed earlier that for high enough

magnetic confinement and rotation, the dense material at the top of the closed loops

tears through the field lines due to the centrifugal force. Such structures appear ring-

like in 2D formulation, but for the rotation tilted w.r.t. the magnetic axis, these
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Table 5.1: Summary of Mass-Loss Rates

BPole η∗ ωc max(rcor) max(vr) max(vθ) Ṁnet τ
(G) (R∗) (km/s) (km/s) (10−6M�/yr) (106yr)

93 1/10 1/2 1.6 2330 70 3.52 13.75 ι
295 1 1/2 1.6 2560 265 3.45 13.75 ι

520
√

10 0 - 2830 400 2.20 -

520
√

10 1/4 2.5 2800 385 2.33 28.4 ι

520
√

10 1/2 1.6 2720 340 3.38 14.25 ι
800 6.4 1/4 2.5 3000 950 1.88 16.5 ι
800 6.4 1/2 1.6 2860 880 2.07 14.5 ι
930 10 1/20 4.6 3600 1500 1.60 165.5 ι
930 10 1/2 1.6 2920 1000 2.62 16.25 ι
1860 40 1/4 2.5 4330 3500 1.17 21.25 ι

may appear as dense, slow blob-like structures. However, the simulation of such

structures requires full 3D formulation, which we leave for future study.

All the observational implications associated with the zero-rotation MHD

models, discussed in §3.5.3, apply here as well. As such, we will not repeat the

analysis.

5.5 Chapter Summary

In this chapter we studied how rotation can influence the magnetically chan-

neled line-driven stellar winds discussed in chapter 3 and 4. As an initial study,

we ignored the effects of oblateness, gravity darkening and limb darkening. Our

simulations were based on idealization of isothermal flow driven by radial line-force.

Our conclusions can be summarized as follows:

1. The degree of the overall influence of rotation depends largely on the rotation

speed ω expressed in the unit of critical velocity, in combination with the wind
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magnetic confinement parameter, η∗. Regardless of the confinement parame-

ter, for the models with ω ∼ 1/20 and typical stellar and wind parameters of

ζ Pup-like O-supergiant, the rotation has very little effect.

2. In general, rotation enhances the equatorial density and reduces the equatorial

flow velocity. For small confinements, η∗ ≤ 1 and rotation ω = 1/2 the

equatorial density is noticeably enhanced compared to the zero-rotation cases.

Higher density leads to slower equatorial outflow.

3. For strong magnetic confinements for which the Alfven radius is smaller than

the co-rotation radius, the simulations are similar to the non-rotational cases.

The field remains closed in loops near the equatorial surface. Wind outflows

accelerated upward from opposite polarity footpoints are guided towards a

strong collision near the loop tops. The material that is stagnated as a result

of this, is eventually pulled back by gravity onto the star in a complex flow

pattern. Unlike, for the strong confinement cases for which the Alfven radius

is larger, the stagnated material doesn’t reach the co-rotation radius, and thus

is not flung away outward.

4. For strong magnetic confinements for which the Alfven radius is larger than the

co-rotation radius, the situation is quite different from the the zero-rotation

case. Some of the material that is stagnated within the closed loops and

lies above the co-rotation radius, is spun up to speeds such that the outward

centrifugal force is larger than the inward pull of gravity. Consequently, this

material punches through the field lines and is flung away bullet/ring-like

patterns. On the other hand, the material that lies below the co-rotation

radius, is pulled back by the gravity. Thus the co-rotation radius sets an

upper limit to the radius of the last closed loop for strong confinement cases.
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5. For strong confinements, η∗ > 10 rotation has limited influence on the global

wind structure since the region with the highest rotation speeds near the equa-

tor is magnetically confined. The global wind structure is determined by the

outflow from high latitudes where rotation speed is less by sin θ factor. How-

ever, some episodic mass ejections, where the material accumulated at the top

of the magnetic closed loops is flung outward centrifugally, makes these models

somehow more variable compared to non-rotational cases.

6. The magnetic field acts as a moment arm in providing angular momentum to

the wind. However, it is not an efficient mechanism to launch material into

a Keplerian orbit. A key reason behind this is the significant radial outflow

velocities of the spun up material. In order to keep the material in a Keplerian

orbit, other physical considerations must be taken into account, e.g. shut off

the line force for the dense co-rotating material which can easily be achieved

if the gas is very hot. Thus, in our isothermal MHD simulations of line-driven

winds, dense slowly outflow equatorial disk-like structure is formed.

7. The stellar wind from a rotating hot star carries away significant amount of

angular momentum. Our simulations show that the characteristic spin-down

time is about a few million years for ζ Pup-like O-supergiants with surface

magnetic fields of a few hundred Gauss and rotation ω = 1/2.
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Figure 5.1: The rotation rate ω vs log η∗ which defines the parameter space of our
study in this chapter. The solid lines represent the maximal rotation
rate for which co-rotation and Alfven radii are equal (eqn (5.20) for
assumed monopole like magnetic field (top, blue) and dipole like field
(bottom, red). The dots are the values of ω and η∗ used in our simu-
lations. The results of representative simulations are presented in the
text.
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solid lines in the left two columns represent field lines.
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Figure 5.5: Snapshots of density (as logarithmic color-scale) and field lines (solid
lines) at the labeled time intervals chosen to show how some of the
dense wind material channeled by the field towards the equator falls
back onto the star and some of the material that got spun up to
high speeds, tears through the field lines and is flung away. This
depends on whether the fluid parcel is located below or above the
maximum radius of co-rotation (dashed line) beyond which a fluid
parcel is gravitationally unbound due the centrifugal force. This model
was evolved from the initial condition of a dipole field superimposed
upon a spherically symmetric wind of a fast rotating (ω = 1/2 or
Vrot = 250km/s) star with moderate magnetic confinement, η∗ = 6.4
(BPole = 800G).
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lines) at the labeled time intervals chosen to show again how some of
the dense wind material channeled by the field towards the equator
falls back onto the star and some of the material that got spun up
to high speeds, tears through the field lines and is flung away. This
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Chapter 6

MAGNETICALLY CHANNELED ADIABATIC

LINE-DRIVEN WINDS

The magnetically channeled line-driven winds discussed earlier (chapters 3-5)

were assumed to be isothermal. We argued that the radiative processes in hot-star

winds are very rapid compared to dynamical processes, and the UV photo-ionization

keeps the wind at near the stellar effective temperature (Drew 1989; Pauldrach

1987). This idealization is valid, as we shall see below, for dense winds near the

star, within a few stellar radii from the surface. But we are also interested in less

dense winds and low density regions of a dense wind, far from the star. To model

such low density regions, one has to consider a full energy equation including the

radiative cooling term.

As an initial attempt, we first consider an adiabatic wind with no cooling.

Although physically not a plausible case for high Ṁ winds, this represents the

other extreme of an isothermal wind model, where the wind is assumed to cool

instantaneously. Here we do not carry out a full parameter study of the adiabatic

hot-star winds, but instead present some adiabatic counterparts of the isothermal

models, and show that for strong magnetic confinements they are very different from

each other.

6.1 Radiative Cooling

In order to understand the importance of radiative cooling in hot-star winds,

it is necessary to examine the nature of shocks first. A shock is a very complex
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non-equilibrium flow that results from collision of gases of different velocities. It

can heat up the gas to very high temperatures estimated to be,

Tshock ≈ 1.5 × 105
(

v0

100 kms−1

)

K , (6.1)

where v0 is the velocity jump of the shock (Castor 1987; Babel and Montmerle

1997b). In the MHD models presented in this thesis the velocity jumps of the shock

can be of the order 300 − 1000 km/s. This corresponds to the gas temperature of

order 106 − 107 K.

There are a number of processes that occur in a region of a shocked gas. In

the isothermal idealization the problem is simplified by assuming that the gas cools

instantaneously, leaving the gas temperature unchanged. In practice, the pre-shock

kinetic energy of the gas is converted into internal energy. The resultant thermal

energy ionizes and excites the atoms. This leads to an out of equilibrium state. The

gas has to cool in order to return to a steady state.

A hot gas can cool various ways. The adiabatic cooling due to expansion

is relatively unimportant and the radiative cooling has to be considered. A proper

cooling calculation must include many different ionic species with all the possible

lines (Raymond, Cox and Smith 1976; MacDonald and Bailey 1981). One key

quantity is the characteristic cooling time,

τcool = kT/neΛ(T ) (6.2)

where kT is the average energy of the gas, ne is the electron number density and Λ(T )

the computed cooling function at temperature T . The cooling time, τcool, can be used

to characterize how fast the radiative processes are compared to competing time-

scales. Clearly, low τcool implies that there is little accumulation of heat, and thus

the idealization of a constant temperature wind is valid. To justify our assumption

of isothermality of hot-star winds, we require that τcool be much smaller than the

characteristic flow crossing time, τflow ≡ R∗/v.
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The exact value of Λ(T ) depends on detailed assumptions about the com-

position of plasma, which usually is assumed to be optically thin. For most as-

trophysical fluids, we can estimate Λ as a function of temperature, T . Detailed

calculations of typical astrophysical fluids show that the cooling function Λ has a

maximum, Λmax ≈ 10−22 erg cc/sec, at temperature near 105K (Raymond, Cox and

Smith 1976), where the cooling is dominated by collisional excitation of abundant

lithium-like atoms. Below this temperature, Λ can be fitted roughly by a linear

function, i.e. Λ ∝ T . For temperatures above about 3 × 105K, Λ declines slowly as

a power law, Λ ∝ T−1/2. Figure 6.1 shows an example of such a cooling function

adopted from Raymond, Cox and Smith (1976).

6.1.1 Column Density for Cooling Layer in a Shock

Mathematically, a shock is idealized by discontinuities in density, pressure,

temperature and velocity dictated by the hydrodynamic equations of motion, like

the mass, momentum and energy conservation laws. In reality, such discontinuities

occur over small but non-zero length and time scales. As noted earlier, the charac-

teristic time scale for the fluid to go from initial to the final state is assumed to be

short relative to other competing dynamical timescales. This is equivalent to the re-

quirement that the characteristic length scale of the shock front be small compared

to the flow length scales (Zel’dovich and Raizer 1967). These length scales can be

related to the particle column densities, N =
∫

n dl where n is the particle number

density.

Let us first estimate the column density for a shock needed for cooling. From

equation (6.2) we have τcool ∝ T/Λ(T ), and from the cooling function (see figure 6.1)

we have Λ(T ) ∝ T−1/2 for T > 3×105K. This implies that the characteristic cooling

time, τcool ∝ T 3/2 for this range of temperatures. We know that the temperature
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T ∝ v2
0 (eqn. 6.1) leading to τcool ∝ v3

0. We can relate this to the column density by

Ncool = n lcool ∝ n τcoolv0 . (6.3)

This implies that Ncool ∝ v4
0. Numerically, for the range of temperatures 106−107 K,

Ncool ≈ 7 × 1017
(

v0

100 kms−1

)4

cm−2 (6.4)

(Castor 1987).

Recent Chandra observations show that the x-ray emission from θ1 Ori C and

τ Sco is quite hard, of the order a few keV which corresponds to the velocity jump

shock v0 ≈ 1000 km/s and temperatures of ∼ 15 MK (Cohen and Gagne, private

communication). The characteristic cooling column density for such a shock to cool

is Ncool ≈ 7 × 1021 cm−2. This number will be a reference value in the analysis that

follows next.

6.1.2 Competing Wind Column Density

Let us next estimate the column density for the ambient wind, Nwind. The

assumption of isothermality is valid for Nwind � Ncool. By definition the column

density of the wind at radius r is,

Nwind ≡
∫ ∞

r
n dr

=
Ṁ

4πv∞m

∫ ∞

r

dr

r2(1 − R∗/r)β
, (6.5)

where m is the mean molecular weight. In the second line of the above equality, we

used ρ = nm = Ṁ/4πr2v with an assumed β-velocity law v(r) = v∞(1 − R∗/r)
β.

For the simple cases of β = 0 and β = 1, this can be integrated analytically. For

β = 1 case,

Nwind(r) =

[

Ṁ

4πv∞mR∗

]

[

ln (1 − R∗/r)
−1
]

, (6.6)

and for β = 0 case,

Nwind(r) =

[

Ṁ

4πv∞mR∗

]

[

R∗

r

]

. (6.7)
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The spatial variation is isolated within the right square bracket and is plotted in

figure 6.2 where the top curve represents the β = 1 and the bottom one represents

β = 0 case. Note that for radii, 2 > x = r/R∗ > 1 this spatial dependence is of order

unity, while at large radii they become arbitrarily small. Clearly, Nwind(r) � Ncool

for large radii for all winds regardless of the wind and stellar parameters, implying

that the adiabatic approximation is valid for the outer wind. However, for the

inner wind, Nwind(r) is approximately equal to the constant term in the left square

bracket, which therefore can determine whether the particle column density of the

wind is high enough to validate the approximation of an isothermal wind. Thus, we

define a characteristic wind particle density,

N∗ ≡
Ṁ

4πv∞mR∗

. (6.8)

For the standard ζ Pup model with Ṁ ∼ 2.6−6M�/yr, m = 1.0 × 10−24gm and

v∞ ∼ 2500 km/s this gives N∗ ∼ 5 × 1022cm−2. This is comparable to Ncool ∼
7× 1021 cm−2, typical of 1000 km/s shocks, implying that radiative cooling may be

important.

For dense winds with N∗ � 7 × 1021 cm−2 the assumption of an isothermal

wind is a good one. For the less dense winds with N∗ � 7×1021 cm−2 the adiabatic

approximation is more appropriate. For the winds in the intermediate regime, full

energy equation with a proper cooling function is necessary.

6.1.3 Thermal Conduction

Another mechanism for cooling hot gas is via thermal conduction, which we

ignore in this work, but which can be important under certain circumstances. In a

classic paper, Spitzer (1962) showed that in an unmagnetized plasma, the thermal

conduction has a diffusion constant, κSp ∼ λ vt ∝ T 5/2 n−1, where λ and vt are the

mean free path and the thermal speed of electrons with number density n. This is
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related to the thermal conductivity, K = n kB κSp, which can be approximated by

K ≈ 10−6T 5/2 in cgs units.

In order to understand the relative importance of the thermal conduction in

hot-star winds, let us do the following dimensional analysis. Consider the equation

for the internal energy e with thermal conduction included,

ρ
D

Dt

(

e

ρ

)

= −p∇ · v −∇ · (K∇T ) , (6.9)

where v is the characteristic flow velocity. If the characteristic length scale is L,

then we can compare the conduction to the adiabatic expansion term on the RHS:

x =
KT/L2

pv/L
∼ 10−6T 7/2/L

ρvk/µ
(6.10)

where µ is the mean molecular weight, and k is the Boltzmann constant. For

typical values of Ṁ = 3 × 10−6M�/yr, temperature T = 40, 000 K and length scale

L = R∗ ∼ 1012 cm, this ratio is very tiny, on the order x ∼ 10−10, implying that the

thermal conduction can be ignored for most of the wind.

However, for the magnetically channeled wind outflows modeled in this the-

sis, the situation can be quite different, most notably behind strong shocks, where

temperatures can exceed 107 K, implying a thermal conductivity that can be more

than 10 orders of magnitude higher than in the mean wind. Given this, and the gen-

erally lower density and lower characteristic length scales in such regions, thermal

conduction could significantly alter their structure, e.g. by smoothing out tempera-

ture contrast. Unfortunately, proper inclusion of conduction in shock-heated regions

can be quite complex (see, e.g., Lyu & Kan 1986 and Saxton & Wu 2001). As it

thus seems beyond the scope of this thesis, it will be left for future study.

6.2 Line-Force for Non-Isothermal Models

The ionization state of shock-heated gas can change with the increase of

temperature. This can affect the line force, which depends strongly on the number
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of lines available. Let us describe how the line force is modified in such a non-

isothermal hot-star wind.

In all our work thus far, we used 1D radial CAK line-force of the following

form (see eqn 2.87):

glines =
f

(1 − α)

κeLQ̄

4πr2c

(

dv/dr

ρcQ̄κe

)α

. (6.11)

The meaning of all the symbols here have been discussed in §2.5.4 and §3.2.2. It

was assumed that the ionization state of the plasma remained constant throughout

the wind. But the adiabatic wind models we deal with here can become quite hot,

leading to a change in the ionization state which in turn can reduce the line force

due to fewer available lines. Here we approximate this reduction in the strength of

the line force by adding a temperature weighted exponential factor to equation 6.11,

glines =
f

(1 − α)

κeLQ̄

4πr2c

(

dv/dr

ρcQ̄κe

)α

e1−T/Teff , T ≥ Teff . (6.12)

where T is the local temperature of the gas, assumed equal to at least the effective

temperature of the star, Teff . We assume that the photo-ionizing heating does not

allow the gas to cool below the effective temperature of the star, T ≥ Teff .

Note that, for high temperatures the radiation force approaches zero asymp-

totically. This implies that once the gas becomes hot, the line-force is inefficient in

driving, leading to possible stagnation.

6.3 Energy Equation

An important component of the adiabatic MHD models of hot-star winds is

the energy equation. Because of the radiative processes, the energy equation needed

to integrate is,

ρ
D

Dt

(

e

ρ

)

= −p∇ · v + H − Q , (6.13)

where e is the specific internal energy, e = p/(γ − 1), Q is an arbitrary cooling

term assumed to be zero for the moment, and H is an external heating term. For
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the adiabatic case H = Q = 0. In our case, we assume that the stellar luminosity

keeps the wind at least at Teff . Numerically, this is implemented by setting a

floor temperature T = Teff whenever T falls below Teff . The pressure p ∝ ργ for

T > Teff , with polytropic index γ (= 5/3).

6.4 Initialization of Simulations

The numerical specifications for grids and boundary conditions are identical

to the ones discussed in chapter 6 with only one additional quantity, the temperature

of the gas at the base to be specified which we implement at two ghost zones by

fixing the temperature to the stellar effective temperature, Teff .

In the adiabatic models, shocks heat the gas, and despite the adiabatic cooling

due to expansion, with no radiative losses, the gas cannot cool down easily. Thus it

is important to specify initial conditions in such a way as to minimize the amount

of initial shocks. The isothermal 2D MHD models presented in chapter 3 & 4 were

initialized by a spherically symmetric wind that was previously relaxed in a 1D

simulation. Here, we evolve in time the adiabatic 2D MHD models from an initial

condition at time t = 0 when all the MHD variables like density, flow velocity and

magnetic field components are set equal to the values obtained from the end state

of the corresponding isothermal models (t = 450 ks) with identical stellar and wind

parameters. To ensure that our results do not depend on the initial condition, we

run our model for at least 900 ksec which is very long compared to a characteristic

flow crossing time, tflow = 5R∗/v∞ ≈ 25 ksec.

6.5 Results and Discussion

Let us now examine the results of our 2D MHD adiabatic models for line-

driven winds. The stellar and wind parameters for our models are chosen to allow

direct comparison with the earlier simulations, but again the results here can be

re-scaled to different sets of η∗ and ω values for different stars. All the models here
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use the stellar and wind parameters characteristic to ζ Pup, as listed in Table 3.1.

We first confirm that for sufficiently weak magnetic confinements (η∗ ≤ 1/10) the

results are very similar to the corresponding isothermal models with identical stellar

and wind parameters.

But we find that the models with moderate to strong confinement are very

different from isothermal ones. In fact, the magnetic confinement η∗ = 1 seems to

define a sharp transition between these two different regimes.

In the isothermal models the combination of η∗ and the rotation parameter ω

was important in determining the properties and configuration of the wind. In the

adiabatic cases, the magnetic confinement parameter seems to be more important,

as we shall see below. The amount of hot gas trapped within magnetic closed loops

is determined by η∗, and when the trapped gas becomes very hot, the resultant

sound speed can be comparable to flow speeds, implying that, as is the case in the

solar corona, a static stratification is possible.

6.5.1 Adiabatic Models with Zero Rotation

Our approach is to evolve a self-consistent solution for a line-driven wind that

takes into account an adiabatic energy equation (eqn. 6.13) with a floor temperature

at T = Teff . To determine if the new solution is different from the isothermal model,

we initialize the simulation with the end state of the isothermal run, i.e. at time

t = 0 we set all the MHD variables like density, flow velocity and magnetic field

components equal to the values obtained from the end state of the corresponding

isothermal models (t = 450 ks) with the same stellar and wind parameters.

We find that for a magnetic confinement less than unity (1 < η∗), the adia-

batic models differ very little from the isothermal models with identical stellar and

wind parameters discussed in chapter 3. To demonstrate this, figure 6.3 shows log-

arithmic color-scale of density for the isothermal (left panel) and adiabatic (right
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panel) models with η∗ = 1/
√

10 = 0.3 with no rotation at time t = 450 ksec. In

both cases the models relax to a steady state after about t = 160 ksec.

However, for confinements η∗ ≥ 1, the adiabatic models are very different.

Figure 6.4 shows time snapshots of density (left column; logarithmic color-scale)

and temperature (right column; logarithmic color-scale) of the adiabatic model with

magnetic confinement η∗ = 1 (B0 = 295G) and zero rotation at labeled time inter-

vals. The top row, the initial state for the adiabatic model, shows the final state

for the isothermal model with identical stellar and wind parameters discussed in

chapter 3.

Thus figure 6.4 illustrates the evolution of magnetic field lines (solid lines),

density and temperature after the introduction of the adiabatic equation of state

with γ = 5/3. This sudden change leads to numerous shocks, especially near the

magnetic equator where outflows accelerated upward from opposite polarity foot-

points are channeled into collision. This naturally heats the gas, which in turn

reduces the line force (see eqn 6.12) since the ionization state of the plasma is in-

creased. As a result, the hot gas stalls, which allows the field lines to reconnect as

the wind flow is not strong enough to keep the field lines of opposite polarity apart.

This process continues as more and more of the hot gas gets trapped in the ever

growing magnetically confined region. The gas in the upper region of the closed

loops is hotter than in the lower region (shock velocity jumps are higher leading to

more heat release); it is also rarefied to keep the hydrostatic pressure balance within

the closed region. The whole process is rather complex, and can be best illustrated

through animations.

Figure 6.5 shows the final time snapshot (t = 900 ksec) of the thermal pres-

sure, p (logarithmic color-scale, dyne/cm2) for the same adiabatic model with mag-

netic confinement η∗ = 1 and zero rotation. The gas within the closed loops is static

with nearly constant pressure. This is in contrast to the isothermal models, where

158



a hydrostatic corona is not possible due to low sound speed, and the gravity pulls

the compressed, stagnated material within closed loops into an infall back onto the

stellar surface through quite complex flow patterns. Here, the rarefied gas gets very

hot, and thus the sound speeds are high relative to gravitational escape speed. The

relatively low densities and low flow speeds, implying low kinetic energy density,

allow the closed magnetic loops to remain static.

For the isothermal models, the magnetic field influences the wind by enhanc-

ing the density and decreasing the flow speed near the magnetic equator. In the

case of the adiabatic winds, we find that the equatorial region is rarefied with still

decreased flow speed. Figure 6.6 shows the mass flux (= ρvr) (top panel) and the

radial velocity (bottom panel) for the adiabatic model with η∗ = 1 and no rotation

at the maximum radius of our computational domain, r = Rmax = 6R∗ normalized

to the values of the isothermal non-magnetic case. The integrated net mass loss

rate for this model is about Ṁ = 6.8 × 10−7 M�/yr, which is about 1/4 of the

mass loss rate for the corresponding isothermal case with identical stellar and wind

parameters.

In isothermal models, the density jumps across shocks can be arbitrarily high,

while for the adiabatic models with the polytropic index γ = 5/3 the the density

jump is at most factor 4 only (Zel’dovich and Raizer 1966). Thus, for isothermal

models it is possible to have a very thin and dense equatorial disk-like structure.

For the adiabatic models, the nature of shocks limits how dense the equatorial

compression can be. In addition, because the blotted out magnetic closed loops

inhibit mass outflow from the stellar surface, the open region above the loops is

filled in by material flowing from a limited area in the mid-latitudes. This implies

that relatively small amount of mass fills in a large volume, leading to the rarefied

equatorial regions seen in our simulations.

A natural question to ask next is: how does the above solution depend on the
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initial condition? There is no simple answer to this question since the amount of hot

gas can depend strongly on the initial condition. However, we tested our simulations

using a different set of initial conditions, e.g. using 1D relaxed CAK solution to

initialize 2D spherically symmetric wind; and we arrived to similar solutions. Figure

6.7 shows the final time snapshot of density and temperature (logarithmic color-

scale) superimposed with the magnetic field lines (solid lines) for two models with

η∗ = 1 and no rotation that were initialized differently. The first model (top panels)

was initialized with the end state of the isothermal run with identical stellar and

wind parameters, the standard approach in the models presented in this chapter.

While the second model (bottom panels) was initialized with a previously relaxed,

1D spherically symmetric CAK wind along with a dipole magnetic field. Clearly,

the overall wind structures are similar. Note that the low density regions at the top

of the loops are very hot since small amount of heat can lead to high temperatures.

It appears that the magnetic confinement parameter η∗ is the key value that

determines the overall properties of the solution, although the details may be de-

pendent on the initial condition.

6.5.2 Adiabatic Models With Rotation

Let us now examine how rotation can affect the adiabatic hot-star wind

models. Figure 6.8 shows time snapshots of density (left column; logarithmic color-

scale) and temperature (right column; logarithmic color-scale) of the adiabatic model

with magnetic confinement η∗ = 1 (B0 = 295 G) and rotation ω = 1/2 (250 km/s)

at labeled time intervals. The top row represents the final state for the isothermal

model with identical stellar and wind parameters discussed in chapter 3, and which

is also the initial condition for the simulations here. The ranges for the density and

temperature have been chosen to match the ranges of the figure for the adiabatic

model without rotation (figure 6.4) to facilitate the direct comparison. Overall

evolutions of the magnetic field (solid lines), density and temperature are similar to
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the adiabatic case with no rotation. However, there are noticeable differences, e.g.

the extent of the last magnetic closed loop is significantly smaller compared to the

adiabatic model with no rotation.

The gas trapped within the closed loops co-rotates with the star, and if the

outward centrifugal force is larger than the inward pull of gravity, the gas can tear

through the field lines. However, the maximum radius of the closed loops here can

extend beyond the co-rotation radius rc because of the low density of the wind within

the closed loops, which does not provide enough kinetic energy density necessary to

break through the field lines.

Note that the highest temperatures within the magnetically confined region

is lower than in the case with no rotation. The main reason is that the rotation

reduces the effective gravity lowering the outflow velocities implying lower shock

velocity jumps. This leads to lower shock temperatures.

The figure 6.9 shows the mass flux (= ρvr) (top panel) and the radial velocity

(bottom panel) for the adiabatic model with η∗ = 1 and rotation ω = 1/2 (250

km/s) at r = Rmax normalized to the values of the isothermal non-magnetic case.

The integrated net mass loss rate for this model is about Ṁ = 1.3 × 10−6 M�/yr,

which is about 1/3 of the mass loss rate for the corresponding isothermal case with

identical stellar and wind parameters, and about 1/2 of the non-magnetic case.

This also supports the general notion that rotation increases the mass loss rates and

lowers the outflow velocities.

Figure 6.10 shows time evolution of density (left column) and temperature

(right column) of another adiabatic model with magnetic confinement η∗ = 6.4

(B0 = 800 G) and rotation rate ω = 1/2 (250 km/s). The magnetic field configura-

tion reaches an equilibrium within ∼300 ksec. Again, rotation plays an important

role in shaping the field lines; it reduces the extent of the closed loops compared

to the adiabatic models with zero rotation. However, compared to the isothermal
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model with identical stellar and wind parameters (top row), the extent of the last

closed loop is significantly larger. Qualitatively, this model is very similar to the

model described above, and as such we shall not repeat the analysis.

There is a noteworthy feature in all the adiabatic models that we discuss

next. It seems that the gas outflowing near the the magnetic closure latitude, gets

heated up through, perhaps magnetic reconnection or some other processes we are

yet unable to determine. In any case, this leads to formation of hot ‘lobes’ that in the

case of the models with significant rotation, are episodically ejected on dynamical

timescales, ∼ 50 ksec. Figure 6.11 illustrates such an ejection event for the model

with η∗ = 6.3 and rotation ω = 1/2. The top row shows the density and the bottom

row shows the temperature (logarithmic color-scale) at labeled time intervals chosen

to make the point more clearly. We do not understand this process very well at the

moment and so further investigation is required.

6.5.3 Implication for X-ray Emission

The MHD models discussed here can be used for interpreting the detection of

x-ray emission from some hot stars. In chapter 3 we applied an approximate analysis

of our isothermal MHD model results to yield a rough estimates for the expected

level of compressional heating and associated x-ray emission. Here, the results of our

adiabatic MHD models allow us to determine x-ray production directly, although it

is still not fully consistent since by assumption there is no heat loss (adiabatic), even

then we wish to compute x-ray emission. For a fully self-consistent x-ray production

calculation we need models that take into account the full energy equation with an

accurate cooling function.

The volume rate of x-ray emitted from a hot gas of temperature T is directly

proportional to the density squared, Υ ∝ ρ2. It is appropriate to truncate the x-ray

emission to a level that corresponds roughly to the maximum shock energy Ex we
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are interested in (Owocki and Cohen 1999). Thus,

Υ ∝ ρ2 e−Ex /kT6 , (6.14)

where T6 is temperature of the gas in million degrees, and Ex is a given threshold

x-ray energy.

Figure 6.12 shows time snapshots of the measure of x-ray emission above 5

MK (Ex = 0.43 keV) for the adiabatic models with η∗ = 1 and zero rotation (left

panels) and 250 km/s rotation (right panels) at labeled time intervals, plotted as

logarithmic color-scale. The most x-ray production occurs near the base where the

wind is the densest. But the hottest gas, the possible source of the hardest x-rays, at

the top of closed loops is rarefied (see e.g figure 6.4), and thus emits very little x-ray.

This is a different scenario from the x-ray production estimate for the isothermal

models (see Figure 3.9) where most of the emission comes from loop tops and the

dense equatorial outflow region.

The adiabatic models of hot-star winds here suggest that the cases with the

magnetic confinement η∗ < 1 have no x-ray emission, while for the cases with η∗ ≥ 1

x-rays are produced mostly near the stellar surface. Because the whole region about

the magnetic equator is evacuated, absorption will be reduced if viewed along the

equator.

6.6 Conclusion

We have carried out preliminary study of the adiabatic hot-star winds. Be-

cause we have not included an accurate cooling function necessary for the proper

treatment of the energy equation, we do not claim this study to be complete. We

summarize our initial results below:

1. The assumption of an isothermal hot-star wind is valid for the dense winds

with the characteristic wind column densities, N∗ � 7 × 1021 cm−2. For the

less dense winds with N∗ � 7×1021 cm−2 the adiabatic approximation is more
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appropriate. For the winds with N∗ in the intermediate regime, full energy

equation along with a proper cooling function must be considered.

2. In the isothermal hot-star wind model, it was assumed that the hot gas radi-

ated away energy instantaneously. In the adiabatic models, the gas does not

cool at all. Thus the adiabatic model of hot-star winds represents the oppo-

site extreme of the idealization of an isothermal wind. In practice, one should

consider something intermediate, i.e. take into account full energy equation

with an accurate cooling function.

3. For the adiabatic models with the magnetic confinement parameter η∗ < 1,

the solutions are similar to the corresponding isothermal models with identical

stellar and wind parameters.

4. The adiabatic models with the magnetic confinement parameter η∗ ≥ 1 are

dramatically different from their isothermal counterparts. The confinement

parameter η∗ = 1 marks a sharp boundary for this transition.

5. Our simulations show that for the adiabatic models with the magnetic confine-

ment parameter η∗ ≥ 1, the magnetically confined region is greatly extended

compared to their isothermal counterparts. These regions are filled in with

very hot (up to order 100 MK) low density gas that is in hydrostatic equi-

librium. This is in contrast to isothermal confined region where hydrostatic

atmospheres are not possible due to relatively low sound speeds, and stellar

gravity pull of the compressed, stagnated material within closed loops into an

infall back onto the stellar surface through quite complex flow patterns.

6. For the adiabatic models with zero rotation, unlike in the isothermal cases,

there is no compressed dense, slowly outflowing equatorial disk. Instead, the

region above the magnetic closed loops is very low density.
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7. The net mass loss rate for the adiabatic models is reduced compared to the

isothermal models.

8. Because most of the hottest gas within and above the closed loops is low den-

sity, the x-ray emission from these regions is negligible. However, a significant

amount of soft x-ray may be emitted near the surface about the magnetic

equator where the gas is very dense.

In the future, we plan to extend this study to include an accurate cooling

function, and carry out more quantitative analysis of our results.
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Figure 6.1: A sample cooling curve adopted from Raymond, Cox and Smith (1976).
The solid line curve represents the total cooling function that include
forbidden line cooling (short dashes), semiforbidden line cooling (long
dashes), and bremhstahlung (long-short dashes).
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Figure 6.2: Spatial (x = r/R∗) dependence of N∗ for the case with β = 1 (top
curve) and β = 0 (bottom curve). Note that for 2 > x > 1 both
functions are of order unity.

167



1 2 3 4 5
-3

-2

-1

0

1

2

3

η*=0.3; B0=165 G isothermal

1 2 3 4 5
-3

-2

-1

0

1

2

3
-12.0

-12.6

-13.2

-13.8

-14.4

-15.0

adiabatic log(ρ) (gm/cc)

Figure 6.3: Time snapshots (t = 450 ksec) of density (logarithmic color-scale)
of the isothermal (left) and the adiabatic model (right) with η∗ =
1/
√

10 = 0.3 and no rotation. They both reach a steady state, and
are very similar. The aim here is to show that the isothermal and
adiabatic models are similar for η∗ < 1.
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Figure 6.4: Time snapshots of density (left column; logarithmic color-scale) and
temperature (right column; logarithmic color-scale) of the adiabatic
model with magnetic confinement η∗ = 1 and zero rotation at labeled
time intervals. The top row shows the final state for the isothermal
model with identical stellar and wind parameters discussed in chapter
3. The hot and rarefied gas within the closed loops are nearly isobaric
(see Figure 6.5).
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Chapter 7

SUMMARY AND FUTURE WORK

7.1 Summary of the Thesis

The goal of this dissertation was to study the effect of the magnetic fields

on line-driven hot-star winds. In this section we summarize the main conclusions of

the thesis.

In chapter 1, we highlighted the reasons why we think that the subject of

line-driven winds of early type stars is interesting. In chapter 2 we introduced the

theory of line-driven winds along with a brief discussion of gas-pressure-driven solar

wind . Thus we laid out the theoretical framework for the research chapters that

follow.

In chapter 3 we presented numerical magnetohydrodynamic (MHD) simula-

tions of the effect of stellar dipole magnetic fields on line-driven wind outflows from

hot, luminous stars. Unlike previous fixed-field analyses, we took full account of the

dynamical competition between field and flow. We showed that the key result is that

the overall degree to which the wind is influenced by the field depends largely on a

single, dimensionless, ‘wind magnetic confinement parameter’, η∗ (= B2
eqR

2
∗/Ṁv∞),

which characterizes the ratio between magnetic field energy density and kinetic en-

ergy density of the wind.

For weak confinement η∗ ≤ 1, the field is fully opened by the wind outflow,

but nonetheless for confinements as small as η∗ = 1/10 can have a significant back-

influence in enhancing the density and reducing the flow speed near the magnetic
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equator. For stronger confinement η∗ > 1, the magnetic field remains closed over

a limited range of latitude and height about the equatorial surface, but eventually

is opened into a nearly radial configuration at large radii. Within closed loops,

the flow is channeled toward loop tops into shock collisions that are strong enough

to produce hard X-rays, with the stagnated material then pulled by gravity back

onto the star in quite complex and variable inflow patterns. Within open field

flow, the equatorial channeling leads to oblique shocks that are again strong enough

to produce X-rays, and also lead to a thin, dense, slowly outflowing ‘disk’ at the

magnetic equator. Overall, the results in chapter 3 provide a dynamical groundwork

for interpreting many types of observations – e.g., UV line profile variability; red-

shifted absorption or emission features; enhanced density-squared emission; X-ray

emission – that might be associated with perturbation of hot-star winds by surface

magnetic fields.

Our simulations show that the polar flow is characterized by a faster-than-

radial expansion that is more gradual than predicted by earlier one-dimensional flow

tube analyses (MacGregor 1988) and leads to a much more modest increase in the

terminal speed (< 30%), consistent with observational constraints. In chapter 4 we

show that a key reason behind the MacGregor (1988) terminal speed prediction of

up to a factor of 3 faster than a spherical wind was the neglect of the finite-disk

correction factor. In our analysis we include both the finite-disk correction and the

divergence factors. With these two factors and radial tilt angle of the field and flow

included, we are able to explain our numerical results not only for the polar speed,

but also for the latitudinal scaling of both the speed and mass flux. In particular,

we find that the even stronger increase in flow speed seen at mid-latitudes in the

strongest field model (η∗ = 10) does not reflect any stronger divergence factor, but

rather is largely a consequence of a reduced base mass flux associated with a non-

radial tilt of the source flow near the stellar surface. As the flow becomes nearly
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radial somewhat above the wind base, the lower density associated with the lower

mass flux implies a stronger line-acceleration and thus a faster terminal speed along

these mid-latitude flow tubes.

Following this analysis, as a natural extension, we discuss the effects of field-

aligned rotation on magnetically channeled line-driven winds in chapter 5. We find

that the degree of the overall influence of rotation depends largely on the rotation

speed ω expressed in the unit of critical velocity, in combination with the wind mag-

netic confinement parameter, η∗. Regardless of the value of magnetic confinement,

for the models with ω ∼ 1/20 the rotation has very little effect. In general, rotation

enhances the equatorial density and reduces the equatorial flow velocity.

For strong magnetic confinements for which the Alfven radius is smaller than

the co-rotation radius, the simulations are similar to the non-rotational cases. The

field remains closed in loops near the equatorial surface. Wind outflows accelerated

upward from opposite polarity footpoints are guided towards a strong collision near

the loop tops. The material that is stagnated as a result of this, is eventually pulled

back by gravity onto the star in a complex flow pattern.

For strong magnetic confinements for which the Alfven radius is larger than

the co-rotation radius, the situation is quite different from the the zero-rotation

case. Material that is stagnated within the closed loops and lies above the co-

rotation radius, is spun up to speeds such that the outward centrifugal force is

larger than the inward pull of gravity. Consequently, this material punches through

the field lines and is flung away. On the other hand, the material that lies below the

co-rotation radius, is pulled back by the inward gravity. Thus the co-rotation radius

sets an upper limit to the radius of the last closed loop for strong confinement cases.

Although the magnetic field acts as a moment arm in providing angular mo-

mentum to the wind, our numerical simulations show that, at least in the isothermal
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gas approximation, it does not launch material into a Keplerian orbit. Other physi-

cal considerations need to be taken into account in order to form a stable Keplerian

disk.

In the idealization of the isothermal winds, we assumed that hot gas heated

in a shock radiates away its energy instantaneously. The other extreme of this

scenario is the adiabatic case assuming absolutely no radiative losses. We present

a few preliminary models of such winds in chapter 6. We show that the adiabatic

models with the magnetic confinement parameter η∗ < 1 are very similar to their

isothermal counterparts. But the adiabatic models with η∗ ≥ 1 are very different.

The magnetically confined region in these models is greatly extended compared to

their isothermal counterparts. These regions are filled in with very hot (up to order

100 MK) low density gas that is in hydrostatic equilibrium, in contrast to isothermal

models where hydrostatic atmospheres are not possible due to relatively low sound

speeds, and stellar gravity pull of the compressed, stagnated material within closed

loops into an infall back onto the stellar surface through quite complex flow patterns.

We conclude that the magnetic confinement parameter η∗ marks a sharp boundary

for this transition.

We note that the assumption of isothermality of hot-star winds is reasonably

valid for dense winds with Ṁ ≥ 10−6M�/yr. To model the less dense winds properly

one needs to consider full energy balance with an accurate cooling function. This is

a key topic for future research.

7.2 Future Plans

The work presented in this thesis is just a step towards better understanding

of the role of magnetic fields in channeling and modulating hot-star winds. As an

initial study, we made a number of assumptions some of which were necessitated by

limited time and computer resources, and some others to keep the physics simple.
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In all our computations in this thesis, we assumed purely radial, 1D form (see

eqn 3.5) for the line force, within a 2D, axisymmetric model of a non-rotating stellar

wind. In the 2D wind models discussed here, the line force should in principle be

modified to take account of gradients in other velocity components, such as might

arise from, e.g., latitudinal flow along magnetic loops. Such latitudinal gradients

can lead to a non-zero latitudinal component of the full vector line force. In a

rotating stellar wind, asymmetries in the velocity gradient between the approaching

and receding stellar hemisphere can even lead to a net azimuthal line force (Owocki,

Cranmer, and Gayley 1996; Gayley and Owocki 2000).

We believe the effects of such non-radial forces are not likely to be significant

in the context of magnetically channeled winds. However, they are important in

the context of the WCD models wherein the latitudinal flow velocities were small

compared to the radial values, and latitudinal forces of order only ∼ 10 % can in-

fluence the wind significantly and inhibit the the disk formation (Owocki, Cranmer,

and Gayley 1996). In the 2D MHD models here, the latitudinal velocities can be

a substantial fraction of the radial flow, and so non-radial forces should not be as

important. In addition, the magnetic field tension may inhibit the effects of these

forces. Our limited tests which do take account of gradients in all directions, con-

firm this notion. However, more rigorous and quantitative analyses are required in

future.

Another topic for our near future study is the effect of tilted rotation (with

respect to the magnetic axis) on magnetically channeled hot-star winds. Our MHD

simulations show that even for the models with the strongest magnetic fields, the

fastest streams are not much in excess of ∼3000 km/s. In conjunction with the

reduced flow speeds toward the magnetic equator, there is sufficient speed contrast

to yield very strong CIRs, if applied in a rotating magnetic star with some substan-

tial tilt between magnetic and rotation axes. Through extensions of the current 2D
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models to a full 3D configuration, we plan in the future to carry out detailed simula-

tions of winds from rotating hot-stars with such a tilted dipole surface field, applying

these specifically toward the interpretation of observed UV line profile variability.

Most of our work here was based on the idealization of an isothermal gas.

We mentioned earlier that to model hot-star winds properly one needs to consider

full energy balance with an accurate cooling function. Although the approximation

of isothermality may be well justified near the base of dense winds, it fails for the

low density wind in the outer regions. In this thesis we presented some models

of adiabatic hot-star winds with no cooling, but we plan to augment this study

by including an appropriate cooling function in the future. This will enable us

to compare our computed x-ray with the observed x-ray emissions from hot stars

obtained by Chandra.

Currently, we are actively collaborating to analyze Chandra x-ray data for

θ1 Ori C and τ Sco in order to find a way to analytically parameterize the velocity,

density, and emissivity of x-ray emitting “magnetospheres” (closed loop regions)

based on MHD simulations presented in this thesis (collaborators: David Cohen,

Marc Gagne and their undergraduate students).
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