Nanofluidic charged-coupled devices for controlled DNA transport and separation

Controlled molecular transport and separation is of significant importance in various applications. In this work, we presented a novel concept of nanofluidic molecular charge-coupled device (CCD) for controlled DNA transport and separation. By leveraging the unique field-effect coupling in nanofluidic systems, the nanofluidic molecular CCD aims to store charged biomolecules such as DNAs in discrete regions in nanochannels and transfer and separate these biomolecules as a charge packet in a bucket brigade fashion. We developed a quantitative model to capture the impact of nanochannel surface charge, gating voltage and frequency, molecule diffusivity, and gating electrode geometry on the transport and separation efficiency. We studied the synergistic effects of these factors to guide the device design and optimize the DNA transport and separation in a nanofluidic CCD. The findings in this study provided insight into the rational design and implementation of the nanofluidic molecular CCD.

Files

Metadata

Work Title Nanofluidic charged-coupled devices for controlled DNA transport and separation
Access
Open Access
Creators
  1. Reza Nouri
  2. Weihua Guan
License In Copyright (Rights Reserved)
Work Type Article
Publisher
  1. Nanotechnology
Publication Date August 20, 2021
Publisher Identifier (DOI)
  1. https://doi.org/10.1088/1361-6528/ac027f
Deposited November 16, 2021

Versions

Analytics

Collections

This resource is currently not in any collection.

Work History

Version 1
published

  • Created
  • Added Manuscript.pdf
  • Added Creator Reza Nouri
  • Added Creator Weihua Guan
  • Published
  • Updated
  • Updated