Internal membrane fouling by proteins during microfiltration

The current study aimed to understand both external and internal membrane fouling by three proteins with different net charges, namely, negatively charged pepsin and bovine serum albumin (BSA), as well as positively charged lysozyme. Polycarbonate track-etched (PCTE) membranes were used. Per electrostatic attraction, the flux decline was the worst for lysozyme, which is attributed by the fouling model to the greatest pore blockage (α) and pore constriction (β), and by field-emission scanning electron microscope (FESEM) and optical coherence tomography (OCT) to the most extensive external fouling. Between pepsin and BSA, BSA gave worse flux decline despite its more negative net charge. The fouling model indicates that BSA gave greater pore blockage (α) and denser internal cake (Rc/Rm), while the quartz crystal microbalance with dissipation (QCM-D) indicates a rigid cake structure. Notably, despite monotonic flux decline with filtration, the OCT fouling voxel trends show significant fluctuations, which has not been reported before and thus signify the unique behavior of protein foulants in straight-through pores. Specifically, the trends below and above the −4.5 μm layer (i.e., 4.5 μm below the feed-membrane interface) are perfectly opposite, indicating the non-uniform protein deposits slipping downwards in the membrane pores as filtration progressed. The dynamic movements of the protein cakes unveiled here warrant more understanding in future studies.

Files

Metadata

Work Title Internal membrane fouling by proteins during microfiltration
Access
Open Access
Creators
  1. Huang Teik Lay
  2. Rique Jie En Yeow
  3. Yunqiao Ma
  4. Andrew L. Zydney
  5. Rong Wang
  6. Jia Wei Chew
License In Copyright (Rights Reserved)
Work Type Article
Publisher
  1. Journal of Membrane Science
Publication Date November 1, 2021
Publisher Identifier (DOI)
  1. https://doi.org/10.1016/j.memsci.2021.119589
Deposited November 23, 2021

Versions

Analytics

Collections

This resource is currently not in any collection.

Work History

Version 1
published

  • Created
  • Added OCT_protein_f.docx
  • Added Creator Huang Teik Lay
  • Added Creator Rique Jie En Yeow
  • Added Creator Yunqiao Ma
  • Added Creator Andrew L. Zydney
  • Added Creator Rong Wang
  • Added Creator Jia Wei Chew
  • Published
  • Updated
  • Updated
  • Updated