
Computational 3D Histological Phenotyping of Whole Zebrafish by X-ray Histotomography
Abstract: Organismal phenotypes frequently involve multiple organ systems. Histology is a powerful way to detect cellular and tissue phenotypes, but is largely descriptive and subjective. To determine how synchrotron based X-ray micro-tomography (micro-CT) can yield 3-dimensional whole-organism images suitable for quantitative histological phenotyping, we scanned whole zebrafish, a small vertebrate model with diverse tissues, at ~1-micron voxel resolutions. Using micro-CT optimized for cellular characterization (histotomography), brain nuclei were computationally segmented and assigned to brain regions. Shape and volume were computed for populations of nuclei such as those of motor neurons and red blood cells. Striking individual phenotypic variation was apparent from color maps of computed cell density. Unlike histology, histotomography allows the detection of phenotypes that require millimeter scale context in multiple planes. We expect the computational and visual insights into 3D tissue architecture provided by histotomography to be useful for reference atlases, hypothesis generation, comprehensive organismal screens, and diagnostics.
Files
Metadata
Work Title | Computational 3D Histological Phenotyping of Whole Zebrafish by X-ray Histotomography |
---|---|
Access | |
Creators |
|
Keyword |
|
License | CC BY-NC 4.0 (Attribution-NonCommercial) |
Work Type | Article |
Publisher |
|
Publication Date | May 7, 2019 |
Subject |
|
Language |
|
Publisher Identifier (DOI) |
|
Geographic Area |
|
Related URLs | |
Deposited | May 24, 2019 |
Versions
Analytics
Collections
This resource is currently not in any collection.