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Abstract 

The main objective of this research was to validate a mathematical model for the predictivity of 

refinery operators’ abnormal detection behaviors. Moreover, we examined operators’ visual 

behaviors in response to abnormal situations at different ages and with different task load, task 

complexities, and input devices. We found that participants had lower mean fixation durations 

and fixation/saccade ratios when they were in the condition of a touchscreen device. Moreover, 

we found that older adults had higher mean saccade durations and saccade amplitudes when they 

were in the condition of a touchscreen device. Finally, the mathematical model was found to be 

generalizable to different task loads and age groups. Our results show that visual behaviors can 

indicate specific internal states of participants, including their cognitive workload, attention, and 

situation awareness in a real-time manner. The findings provide additional support for the value 

of using visual behavior to assess responsiveness of oil refinery operators and for future 

applications of smart manufacturing monitoring systems. 

1. Introduction 

Smart manufacturing is transforming the oil refining sector into a connected, information-driven 

environment. To optimize production in the oil refining industry, researchers use various 

methods such as a machine-learning-based digital twin, Big Data, and Artificial Intelligence 

(Hassani & Silva, 2018; Mao et al., 2019; Min et al., 2019). Interconnections among human 

beings, objects, and systems are key components of the dynamic real-time optimization of 



Industry 4.0, which emphasizes the role of human beings in a smart manufacturing economy 

(Bahrin et al., 2016).  

In the oil refining industry, human operators are required to monitor the states of different types 

of gauges (e.g., flow, level, pressure) in a control room and to detect abnormal situations 

immediately to avoid plant incidents. Reduction of safety incidents in oil refining industry should 

be the first critical step in abnormal situation management (ASM) for smart process 

manufacturing. However, operators sometimes have difficulty detecting abnormal situations 

immediately, and human failures account for 80% of such accidents as the failure of the regulator 

system (Abílio Ramos et al., 2017; Kariuki & Löwe, 2007;  Zarei et al., 2017). To evaluate 

operators’ abnormal detection performance of human operators, various types of tools have been 

used, such as reaction time, abnormal detection accuracy, and Human Reliability Analysis 

(Abílio Ramos et al., 2020; Noah et al., 2014).  

Besides behavioral measures, human visual behaviors have the sensitivity and specificity to 

provide a broad picture of operators’ internal states such as cognitive workload, attention, and 

situation awareness (SA). In the current study, we validated a statistical model that predicts the 

timeliness with which an operator’s visual behaviors respond to abnormal situations in an oil 

refinery operating room. Moreover, we explored the effects of age, input device, task load and 

complexity on operators’ internal states. This study can give insights on improving production as 

well as reducing safety incidents in the oil refining industry. We also provide suggestions for 

future interface design tailored to operators at different ages to create a better individualized and 

connected environment.  

The rest of this paper is organized as follows. The remaining part of Section 1 gives the 

background for and an overview of the present study. Section 2 describes the methodology, 



including the experimental design and data analysis. The results are presented in Section 3 and 

discussed in Section 4. We conclude the paper in Section 5. 

1.1. Performance measurements in the detection of abnormal situations 

The behaviors of operators when detecting abnormal situations in oil refinery control rooms can 

be attributed to factors including operators’ characteristics (e.g., age) and control room 

environments (e.g., task load, task complexity, input device) (Bourdouxhe et al. 1999; Buddaraju 

2011; Noah et al. 2014; Noah et al., 2017). To quantify how these factors influence detection 

behaviors, existing studies have mainly focused retrospectively on detection behaviors of 

abnormal situations. Two main measures of behaviors are reaction time and detection accuracy. 

For example, Noah et al. (2014) evaluated three surface chart displays in an oil refinery and 

found that the surface chart display was superior to the others in response time and accuracy in 

detection of gauge state changes. More recently, Noah et al. (2017) measured operators’ response 

time to abnormal events and illustrated that the 4K-keyboard condition resulted in faster 

Detection + Navigation time than the 4K-touchscreen condition. 

While these behavior metrics quantify operators’ oil refinery control behaviors, they have the 

following limitations. First, behavior metrics capture operators’ overall behaviors after a task has 

been completed, but they do not capture the trajectory of an entire sequence of behaviors as a 

consecutive time-series. Second, although operators might not exhibit observable changes at the 

performance level, their cognitive states might be significantly altered and should be included in 

measures of their overall detection performance. Subjective self-reported measures can be used 

to assess operators’ internal states. However, self-reporting of internal states often conflicts with 

objective measurements, compromising its accuracy (Endsley 2019). One solution to this 



problem is to collect operators’ visual behaviors to examine their workload, attention, and SA, 

synchronically and continuously.  

1.2. Visual behavior measurements in oil refinery research 

With the advent of low-cost and non-invasive eye-tracking devices, one can collect operators’ 

visual behaviors to reflect their cognitive states as affected by age, task load, task complexity, 

and input device. Commonly used measurements of visual behaviors in oil refinery research 

include fixations, saccades, and pupil size.  

Recently, fixation duration and fixation numbers have been used in oil refinery studies (Huang et 

al., 2019; Salehi et al., 2018; Shi et al., 2021). Researchers have shown that number of fixations 

could be effective and continuous indicators of workload in a control room monitoring task 

(Huang et al. 2019). Moreover, Salehi et al. (2018) compared novices’ and experts’ visual 

behaviors captured in real-time monitoring when they were engaged in a task with regard to 

abnormal situation. They found that experts had better SA for higher fixation duration and higher 

fixation numbers in situations of significant drill pipe pressure variation. 

Saccade duration has the sensitivity to assess operators’ cognitive processing (Das et al. 2018). 

For example, Das et al. (2018) compared differences in saccade duration between consistent 

events (e.g., operators manipulating the same variable over a large time window) and 

inconsistent events. They found that saccade duration increased when the case study participant 

performed an inconsistent action, which could be attributed to increase in cognitive processing 

when the participant decided to take a different action. To our knowledge, saccade amplitude has 

not been measured in a petroleum plant. However, air traffic control researchers measured 

saccade amplitude in relation to monitoring tasks and found that saccade amplitude decreases as 

mental workload increases (Li et al. 2018).  



Pupil size is used to measure operators’ cognitive workload in the control room (Bhavsar et al,, 

2016; Kovesdi et al., 2018; Srinivasan et al., 2019). For example, Bhavsar et al. (2016) measured 

the diameter of control room operators’ pupils in real time during operations and found that pupil 

diameter was a good indicator of cognitive workload during the execution of tasks. 

Fixation/Saccade ratio has not been used in petroleum plant studies. We include this measure 

because it reflects the ratio of processing time divided by target-searching time (Holmqvist et al. 

2011).    

Previous studies on operators’ responses to abnormal situations mainly focused on performance 

measures such as accuracy and response time. Little is known about the effects of operators’ 

cognitive load, attention, and SA during abnormal situations, which can be assessed through 

visual behavior measurements. In addition, studies that reported the visual behaviors of operators 

in petroleum plants (Salehi et al. 2018; Srinivasan et al. 2019) did not focus on the visual 

behavior of operators in abnormal situations in terms of such factors as age, task load and 

complexity, and input devices, which were examined in this exploratory study.                                                                                                                                               

Visual data collected included fixation duration, fixation number, saccade duration, saccade 

amplitude, fixation/saccade ratio, and pupil size.  

1.3. Modeling operators’ behavior  

As the nature of manufacturing work is changing and imposing greater cognitive demands, there 

is a need to develop system models for measuring and predicting human performance in 

repetitive task operations (M. Abílio Ramos et al., 2020; Bommer & Fendley, 2018; Conati & 

Merten, 2007; Loboda, Brusilovsky, & Loboda 2010). For example, Bommer and Fendley (2018) 

presented a theoretical framework to measure mental workload in an Air Force MATB task. 

They used NASA-TLX, Workload Profile, fixation duration and human error probability to build 



a mathematical model that predicts workload peaks accurately. Moreover, Loboda et al.,  (2010) 

demonstrated that eye movement data improves the on-line assessment of user meta-cognitive 

behavior. They found that gaze-based measures show that adaptive visualization activates 

attention more than its non-personalized counterpart and is more interesting to students.  

Existing studies featuring modeling of operators’ behaviors have combined performance 

measurements (e.g., NASA-TLX) and visual behaviors, which fails to reflect operators’ internal 

states in real-time (Bommer & Fendley, 2018). Moreover, the accuracy of prediction using visual 

behaviors is less than 70% (Bednarik et al., 2013). Therefore, a model that measures operators’ 

internal states in real time and has high prediction accuracy is needed. In a paper in the book, 

Human-Automation Interaction (in press), we present a statistical model using fixations and 

saccades to predict the cognitive workload of the petroleum control room operators, which has 

over 95% accuracy. In the present study, we investigated if this prediction model can be applied 

to a population comprising different ages and a task with different task loads. We simplified the 

oil refinery monitoring task to ensure that participants focused only on the states of the gauges 

while monitoring without being distracted by the confounding elements of real interfaces. This 

design helped us to better quantify and understand operators’ internal states in detection of 

abnormal situations. 

Overall, our aim in this study was to investigate (1) the effects of input device and age on visual 

behavior; (2) if the visual behavior can reflect task complexity and load; and (3) whether the 

mathematical model can be generalizable to different age groups and task loads. 

2. Method 

 



2.1. Participants 

Thirty participants were recruited: 15 younger (20-30 years old) and 15 older (55-65 years old) 

adults). They were paid $25 each.  

2.2. Experiment design 

A four-factor (age, task complexity, task load, and input device) experiment with repeated 

measures on three factors was designed. In this design, each participant was measured at all 

levels of task complexity, task loads and input devices. Thus, each participant performed eight 

trials to accommodate all levels of the factors considered. A pilot study was conducted before the 

formal experiment to decide the levels of task complexity and load. Two gauge types selected to 

represent low and high task complexity (Figure 1) were flow and mixed (a mixture of level, 

pressure, flow and temperature). Each participant underwent two levels (low and high) of task 

load, which was defined in terms of the total number of abnormal situations that operators 

manage within a given time period. The total number of abnormal events in a high task load 

scenario is five times as large as in a low task load scenario. The input devices were touchscreen 

(direct input device) and mouse (indirect input device). All subjects performed the same set of 

scenarios, and the order of the treatments was randomized. Each trial in the eight-trial 

experiment, called an abnormal detection task, lasted for four minutes. Before the abnormality 

detection task, participants were given recognition training to ensure that they could recognize 

the gauges accurately and quickly.   

 



Figure 1: Examples trials of flow (left) and mixed gauges (right) 

2.3. Apparatus 

The study was conducted on a standard PC (Windows 10 installed), and a 23.8" monitor that was 

set to a resolution of 1600×900 pixels. An eye-tracker (Tobii X3-120) was used for recording the 

participants’ gaze data at a sampling rate of 120 Hz.  

2.4. Dependent measures 

Table 1 lists all the visual behavior measurements used in this study. 

Table 1. Dependent measures. 

 

 

 

 

 

We calculated the 

above-mentioned statistical measures using time windows during the abnormal situations. Each 

abnormal event was approximately 23 seconds long, beginning when the pointer of a gauge falls 

above or below the normal level and ending when the pointer returned to the normal level. Each 

low task load trial has four non-overlapping abnormal events within four minutes, while each 

high task load trial had 20 abnormal events with overlaps among them. 

2.5. Procedure 

Prior to arrival, the participants completed an online demographic questionnaire to confirm that 

they had normal or corrected normal vision. Upon their arrival, they were asked to sign consent 

Eye-Tracking Metric Definition 

Mean fixation durations Mean duration of fixations. 

Mean saccade durations Mean durations of saccades. 

Mean saccade amplitudes Mean distance travelled by a saccade from its onset to the offset. 

Fixation/Saccade ratios Comparison of search time to processing time. 

Total fixation numbers Number of times the subject fixated on the screen. 

Mean Pupil Size Pupil diameter or area 



forms, and then they participated in practice trials to ensure that they were able to recognize the 

gauge types and gauge states (normal, abnormal and alarm) quickly and accurately. Next, the 

participants started the experiment by pressing the SPACE button, and a screen with one of the 

randomly chosen eight trials appeared. Four trials were finished by touchscreen and four trials 

were finished by mouse. In each trial (Figure 2), the participants were asked to click on the 

gauge if it was abnormal. Finally, they were paid and excused from the experiment.  

 

Figure 2. An example of the alarm state. 

2.6. Data analysis 

As noted, each participant completed eight trials, yielding a total of 240 trials among 30 

participants. Due to some malfunctions during the simulation task, 41 trials were excluded, 

leaving 199 trials for analysis. A generalized linear mixed model (GLMM) was conducted using 

SPSS version 26 to examine effects on continuous dependent variables (Table 1). The age, task 

complexity, task load, and input device were used as fixed effects, and participants were treated 

as random effects to resolve non-independence in the model. The GLMM is robust against 

violations of assumptions of normality (Kachman 2000). The significance level alpha was set 



at .05. Next, a logistic regression model was applied to predict abnormal situations and validate 

the generalizability of our statistical model, which was introduced in our chapter of the book 

Human-Automation Interaction (in press). The logistic regression model used the Logit P(x) 

values calculated by plugging the numbers into the formula as the predictor. Our resulting model 

is:  

3. Logit P(x) = log [P(x) / (1− P(x))] = ln [P(x) / (1− P(x))] = 1.382740e-01 - 2.977335e-03 total fixation numbers 

+ 2.314954e-05 total fixation durations -3.351016e-02 fixation/saccade ratio - 2.668184e-03 fixation duration 

means + 2.659500e-05 total saccade durations - 2.274302e-02 saccade duration means + 9.710600e-02 saccade 

amplitude                                  Results 

Input Device 

During abnormal events, there was a significant main effect of input devices on mean fixation 

durations (F (1,198) = 18.979, p < .001). Participants had lower mean fixation durations when 

they were in the condition of touchscreen device (Figure 3). 

  



Figure 3. Mean fixation duration by input device. 

During abnormal events, there was a significant main effect of input devices on fixation/saccade 

ratios (F (1,198) = 19.642, p < .001). Participants had lower fixation/saccade ratios when they 

were in the condition of touchscreen device (Figure 4). 

 

 

Figure 4. Fixation/saccade ratio by input device. 

Input Device and Age 

There was a significant two-way interaction effects of input devices * age on mean saccade 

durations (F (1,198) = 10.470, p = .001). Older adults had higher mean saccade durations when 

they were in the condition of the touchscreen device (Figure 5). 



 

Figure 5. Mean saccade duration by age and input device. 

There was a significant two-way interaction effect of input device * age on saccade amplitudes 

(F (1,198) = 11.470, p = .001). Older adults had higher saccade amplitudes when they were in 

the condition of the touchscreen device (Figure 6).  

 

Figure 6. Saccade amplitude by age and input device. 

Abnormality Variable Binary Classification 



Consistent with our findings in our (in press) paper in Human-Automation Interaction, pupil size 

was significantly larger during the abnormal situations than the normal situations, indicating a 

higher cognitive workload during the abnormal situations. A binary logistic regression was 

applied to investigate if the Logit P(x) values could predict the abnormal events. The overall 

prediction accuracy was 75% for the low task load and 91.1% for the high task load. Moreover, 

in the low task load condition, the prediction accuracy was 76.7% for older adults and 69.7% for 

younger adults. In the high task load condition, the prediction accuracy was 91.6% for older 

adults and 94.3% for younger adults (Table 2). 

Table 2. Prediction accuracy for older and younger adults. 

Abnormal prediction low task load high task load 

Older 76.7% 91.6% 

Younger 69.7% 95.3% 

4. Discussion 

The analysis of eye-tracking measures gave us an indication of operators’ attention, cognitive 

workload, and SA throughout the abnormal detection process at both the overall level and the 

prediction level. During the abnormal situation scenarios, participants alternated between two 

types of input devices, touchscreen and mouse. Our results showed that participants had lower 

mean fixation durations when they were in the condition of the touchscreen device. Fixation 

duration is a sensitive indicator of SA (Salehi et al. 2018), implying lower SA in the touchscreen 

device condition. Moreover, participants had lower fixation/saccade ratios when they were in the 

touchscreen device condition, which might be explained by their lower SA in the touchscreen 

condition resulting in more time spent searching for than processing information, which is 

consistent with the fixation duration results.  



The two age groups, younger and older, were asked to do the same monitoring task. Older adults 

had higher mean saccade durations when they were in the touchscreen device condition. Thus, 

saccade duration indicated that participants experienced more cognitive processing with 

touchscreens (Das et al. 2018). Moreover, we found that older adults had higher saccade 

amplitudes when they were in the  touchscreen device condition, indicating that older 

participants had lower cognitive workload with touchscreens (Li et al. 2018). Though older 

adults required more cognitive processes to finish the task, it was noticed that they maintained 

lower levels of cognitive workload in dealing with abnormal situations when using touchscreens. 

With regard to model prediction, we found that the overall prediction accuracy of the 

mathematical model was 75% for the low task load and 91.1% for the high task load, which can 

be argued that this statistical model is generalizable to different task loads. Because the repetitive 

task operations in smart manufacturing impose more cognitive demands, there is a need to 

develop system models for measuring and predicting human performance (Bommer & Fendley, 

2018). Given that participants’ pupil size increased significantly in abnormal situations, 

indicating a higher cognitive load (Sharma et al. 2016), our model uses fixations and saccades to 

predict changes in cognitive workload. A person’s accurate SA has a direct and positive 

influence on performance (Endsley 2019). Our model combines fixation durations, saccade 

durations, fixation/saccade ratios, saccade amplitude, and fixation numbers that reflect human 

workload, attention, and SA, which can accurately reflect whether the participant will have a 

positive performance in the next few seconds. The prediction accuracy is lower for the low task 

load than the high task load. One possible reason is that participants felt less workload in the low 

task load trials and therefore had smaller changes in eye behavior in abnormal situations. 



We also applied the mathematical model to different age groups to investigate if it is 

generalizable to different populations. We found that with low task load, the prediction 

accuracies for older and younger adults were 76.7% and 69.7%, and with high task load, the 

prediction accuracies for older and younger adults were 91.6% and 94.3%. It can be argued that 

this mathematical model is generalizable to different populations such as older and younger 

adults.  

Limitations and future research 

We simplified the control room environment to focus on only abnormal detection behaviors of 

dynamic gauges in a controlled laboratory. Since the visual behavior measures collected were 

sensitive to various factors, the obtained results might be less applicable to prediction than those 

obtainable from a real environment. Future studies can replicate the experiment settings with 

operators in a naturalistic control room environment and to evaluate the robustness of the 

mathematical model. 

Conclusion 

This study tested a statistical model using visual behavior to predict human performance. 

Moreover, we examined the visual behavior of operators in abnormal situations in relation to age 

group, task load, task complexity, and input device. Our results showed that visual behaviors can 

indicate specific internal states of participants in different age groups and with different task 

loads. The findings demonstrate the value of using visual behavior in studies of oil refinery 

operators’ performance and offered a new model to predict the hazards in today’s smart 

manufacturing.  
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