An Investigation on the Geometric Effects of a Vertical-Downward Elbow on Two-Phase Flow

Philip Graybill

Grove City College Mechanical Engineering

Andrew Hardison

Robert Morris University Mechanical Engineering

Advisor: Dr. Seungjin Kim

Penn State University
Mechanical and Nuclear Engineering

July 30, 2015

Generously sponsored by the Toshiba-Westinghouse Fellows Program

This presentation investigates the geometric effects of a vertical-downward elbow on two-phase flow.

Background

Objective

Single-Phase Flow CFD Modeling

Two-Phase Flow Investigation

Researching geometric effects on two-phase flow can improve the safety of thermal-hydraulic reactor systems.

Geometry and pipe orientation dramatically affect two-phase flow.

The experimental facility at Penn State enables data collection for a vertical-downward elbow. Vertical-**Downward** Width≅ 29.5 ft. **Elbow** Height≅ 10 ft. Water **Test Section** Flow Direction Elbow Radius = 6 in. Pipe Diameter = 2 in. The experimental facility at Penn State enables data collection for a vertical-downward elbow.

Combinatorial Test Facility

Vertical-Downward Elbow

The objective of this research is to investigate the impacts of a vertical-downward elbow.

Single-phase flow in the facility was modeled with CFD to better understand the general elbow effects.

A four-sensor conductivity probe collects local data as it moves across the pipe with a specialized measurement port.

A four-sensor conductivity probe collects local data as it moves across the pipe with a specialized measurement port.

New experimental data was collected at 0D and 3D after the vertical-downward elbow.

Void fraction is measured with the conductivity probe in order to better understand two-phase flow structure.

Void fraction is measured with the conductivity probe in order to better understand two-phase flow structure.

The void fraction distribution reveals a single peak after the vertical-downward elbow.

Run 7 Volumetric liquid flux: 4.00 m/s Volumetric gas flux: 0.23 m/s

The void fraction distribution reveals a single peak after the vertical-downward elbow.

Run 8

Volumetric liquid flux: 4.00 m/s Volumetric gas flux: 0.35 m/s

When compared, void fraction distribution and secondary flow show different flow characteristics.

Run 7

Volumetric liquid flux: 4.00 m/s

Volumetric gas flux: 0.23 m/s

When compared, void fraction distribution and secondary flow show different flow characteristics.

Run 8

Volumetric liquid flux: 4.00 m/s Volumetric gas flux: 0.35 m/s

Swirling has a different impact after the vertical-downward elbow in comparison to the vertical-upward elbow.

Swirling has a different impact after the vertical-downward elbow in comparison to the vertical-upward elbow.

Our reasearch provides new data and results for the verticaldownward elbow for future reactor safety.

ADDITIONAL SLIDES

Acknowledgements

Special thanks to **Toshiba Westinghouse** for generously funding this Undergraduate Fellows Program.

Lori Miraldi

Lecturer in Communication Arts and Sciences
Department of Communications Arts and Sciences
The Pennsylvania State University
lorimiraldi@psu.edu

Dr. Seungjin Kim

Associate Professor of Mechanical and Nuclear Engineering Department of Mechanical and Nuclear Engineering The Pennsylvania State University skim@psu.edu

Questions?

Shouxu Qiao

Ph. D. Student The Pennsylvania State University szq105@psu.edu

Recommendations for future work

- Obtain more data for database of different flow rates and locations.
- Develop predictive models for two-phase flow around restrictions.
- Implement new models to reactor system analysis code for higher safety.

References

- A. Das, S.M. Ishtiaque, S.N. Singh, and A. Gupta, "Optimization of fluid flow inside blowroom transport duct using CFD," Journal of the Textile Institute, pp. 1–12, 2014.
- Kim, S., Fu, X. Y., Wang, X., & Ishii, M. (2000). Development of the miniaturized four-sensor conductivity probe and the signal processing scheme. International Journal of Heat and Mass Transfer, 43(22), 4101-4118. doi:10.1016/S0017-9310(00)00046-6
- Crawford, N. M., Cunningham, G., & Spence, S. W. T. (2007). An experimental investigation into the pressure drop for turbulent flow in 90° elbow bends. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 221(2), 77-88. doi:10.1243/0954408JPME84
- Ishii, M., Hibiki, T., & SpringerLink (Online service). (2006). Thermo-fluid dynamics of two-phase flow. New York, N.Y: Springer Science+Business Media.
- Yadav, M. S., & Kim, S. (2013). Interfacial area transport across vertical elbows in air-water two-phase flow. Pennsylvania State University. University Park, Pa.
- Yadav, M., & Kim, S. (2013). EFFECTS OF 90-deg VERTICAL ELBOWS ON THE DISTRIBUTION OF LOCAL TWO-PHASE FLOW PARAMETERS. Nuclear Technology, 181(1), 94-105.
- Yadav, M., Worosz, T., Kim, S., Tien, K., & Bajorek, S. (2014). Characterization of the dissipation of elbow effects in bubbly two-phase flows. International Journal of Multiphase Flow, 66, 101-109. doi:10.1016/j.ijmultiphaseflow.2014.07.0
- Kim, J., Yadav, M., & Kim, S. (2014). Characteristics of secondary flow induced by 90-degree elbow in turbulent pipe flow. Engineering Applications of Computational Fluid Mechanics, 8(2), 229-239. doi:10.1080/19942060.2014.11015509

This slide shows the measurement principle of the four-sensor conductivity probe.

 Measurement principle: conductivity difference between gas and liquid phases

The state-of-the-art four-sensory conductivity probe creates minimal distortion of bubbles.

4000 fps

These images show the size and configuration of the four-sensor conductivity probe.

Acupuncture needle and 0.5 mm pencil lead

A mesh was generated for the loop geometry; this mesh was used as an input to the CFD solver.

Accurate solutions require a well-constructed mesh.

A mesh-sensitivity test confirmed that our results are grid-independent.

We have created high quality mesh to ensure accurate modeling

Structured O-mesh

Geometry accurately represents the test facility

A mesh-sensitivity test demonstrates that our solution is gridindependent.

The solution methods for our research compare well with previous research.

Kim, J., Yadav, M., & Kim, S. (2014). Characteristics of secondary flow induced by 90-degree elbow in turbulent pipe flow.

Fig. 3 Computational mesh near pipe exit.

Our results for the vertical-upward elbow were compared with previous research to confirm the accuracy of our simulations.

Secondary flow induced by elbow is seen to dissipate across nondimensional length through Swirl Intensity.

Swirl Intensity (I_s) is defined as:

$$I_{s} = \frac{\int \left[\vec{U} - (\vec{U} \cdot \hat{n})\hat{n}\right]^{2} dA}{U_{b}^{2} \int dA}$$

Fig. 17 Decay of swirl intensity along straight pipe after elbow with Rc = 2D.

Fig. 18 Decay of normalized swirl intensity along pipe after elbow with Rc = 3D.

Kim et al. (2014) correlation:

$$\frac{I_s}{I_{s0}} = \exp(-\beta_s \frac{L}{D})$$

where β =0.21

Swirl Intensity measures the magnitude of secondary flow, which dissipates after an elbow.

Swirl Intensity dissipates 90% by 15D after an elbow in CFX simulations.

Swirl Intensity Comparsion (4 m/s)

Swirl Intensity dissipates 90% by 15D after an elbow in CFX simulations.

Swirl Intensity dissipation is independent of elbow orientation.

The CFX simulations match the Swirl Intensity decay of OpenFOAM results.

CFD models were analyzed at 0D, 3D, 10D, and 50D after the vertical-downward elbow.

CFD models were analyzed at 0D, 3D, 10D, and 50D after the vertical-downward elbow.

CFD models were analyzed at 0D, 3D, 10D, and 50D after the vertical-downward elbow.

Pressure distribution changes at 0D, 1D, and 3D after the vertical-downward elbow (4m/s)

The area average void fraction and elbow strength of our data is comparable to previous research.

	Current	Mena	% Difference
RUN 7			
<α> [-]	0.047	0.066	28.8%
σ [-]	0.4821	0.5638	14.5%
RUN 5			
<α> [-]	0.031	0.034	8.82
σ [-]	0.2464	0.2422	1.73
RUN 8			
<α> [-]	0.046	0.05	8.00
σ [-]	0.2642	0.2585	2.21

The area average void fraction and elbow strength of our data is comparable to previous research.

OpenFoam simulations from Kim et al. (2014) agree closely with CFX results over entire elbow length.

Surface contours created from previous studies help better understand flow regime of the facility

Surface plots and Contour plots show void fractions from experiments.

Repeat experiments, such as Run 5, confirm consistency with previous data.

The objective of this research is to investigate two-phase flow after a vertical-downward elbow.

Bubbly Flow In Vertical Pipe

Bubbly Flow In Vertical-Upward Elbow

Flow rates and geometry dramatically change flow characteristics