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Objective 

This presentation investigates the geometric effects of a 
vertical-downward elbow on two-phase flow. 

Background 

Single-Phase Flow 
CFD Modeling 

Two-Phase Flow 
Investigation 



Researching geometric effects on two-phase flow can improve 
the safety of thermal-hydraulic reactor systems. 



Geometry and pipe orientation dramatically 
affect two-phase flow.  

Port 3, LVU = 60D 

jf = 1.5 m/s and  
jg,atm = 0.16 m/s 

Port 4, LH = 3 D Port 7, LH = 93D 

Port 11, LVD = 3D Port 13, LVD = 67D 
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Height≅ 10 ft. 
 

Width≅ 29.5 ft. 

Elbow Radius = 6 in. 
 
Pipe Diameter = 2 in. 

Vertical- 
Downward  
Elbow 

Test Section 

The experimental facility at Penn State enables data collection 
for a vertical-downward elbow.  

Water 



Combinatorial Test Facility Vertical-Downward Elbow 

The experimental facility at Penn State enables data collection 
for a vertical-downward elbow.  



The objective of this research is to investigate the 
impacts of a vertical-downward elbow. 

Single-phase CFD analysis 

Establish Database 

Comparison 

Previous Studies 
Comparison 



Kim et al. (2014) 3D 
0D 

50D 

10D 

Vertical-Upward Elbow Vertical-Downward Elbow 

Single-phase flow in the facility was modeled with CFD to 

better understand the general elbow effects. 
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Incoming flow →  

Inner 
wall 

Outer 
wall 

(r/R)P 

(r/R)C 

x 

y 

z 

A turbulent secondary flow structure is created after the  
vertical-downard elbow. 



A secondary flow structure is created after the  
vertical-downard elbow. 

L=0D 
Incoming flow →  

Streamwise  
Velocity 



L=3D 
Incoming flow →  

Streamwise  
Velocity 

A secondary flow structure is created after the  
vertical-downard elbow. 



L=10D 
Incoming flow →  

Streamwise  
Velocity 

A secondary flow structure is created after the  
vertical-downard elbow. 



L=50D 
Incoming flow →  

Streamwise  
Velocity 

A secondary flow structure is created after the  
vertical-downard elbow. 



Progression Sequence 

L=0D 

L=3D 

L=50D 

L=10D 

Streamwise  
Velocity 

A secondary flow structure is created after the  
vertical-downard elbow. 



A four-sensor conductivity probe collects local data as it moves 
across the pipe with a specialized measurement port. 



Incoming flow →  
(r/R)P 

(r/R)C 

0 

A four-sensor conductivity probe collects local data as it moves 
across the pipe with a specialized measurement port. 

120 data points/cross-section 
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New experimental data was collected at 0D and 3D  
after the vertical-downward elbow. 

New data collected for Run 7 & Run 8.  
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r/R 

90.0°

90 ⁰ 

0 ⁰ 

Inner 
wall 

Outer 
wall 

Run 7 
Jf :  4.00 m/s 
Jg, atm : 0.23 m/s 

Void fraction is measured with the conductivity probe  
in order to better understand two-phase flow structure.  
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r/R 

0.0°

22.5°

45.0°

67.5°

90.0°

112.5°

135.0°

157.5°

90 ⁰ 

0 ⁰ 

Inner 
wall 

Outer 
wall 

Run 7 
Jf :  4.00 m/s 
Jg, atm : 0.23 m/s 

Void fraction is measured with the conductivity probe  
in order to better understand two-phase flow structure.  



L=3D L=0D 

Run 7 

The void fraction distribution reveals a single peak after the 
vertical-downward elbow.  

Volumetric liquid flux: 4.00 m/s 
Volumetric gas flux: 0.23 m/s 

Void 
Fraction 



Run 8 Volumetric liquid flux: 4.00 m/s 
Volumetric gas flux: 0.35 m/s 

The void fraction distribution reveals a single peak after the 
vertical-downward elbow.  

Void 
Fraction L=3D L=0D 



Run 7 Volumetric liquid flux: 4.00 m/s 
Volumetric gas flux: 0.23 m/s 

When compared, void fraction distribution and secondary flow 
show different flow characteristics.  

Single-phase 
CFD Velocity 

Two-phase 
Void Fraction data 

L=3D L=0D 
Void 
Fraction 



L=3D L=0D 
Void 
Fraction 

Run 8 Volumetric liquid flux: 4.00 m/s 
Volumetric gas flux: 0.35 m/s 

When compared, void fraction distribution and secondary flow 
show different flow characteristics.  



Run 4 

Swirling has a different impact after the vertical-downward 
elbow in comparison to the vertical-upward elbow. 
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Vertical-Upward Elbow Vertical-Downward Elbow 

Run 7 Run 7 



Swirling has a different impact after the vertical-downward 
elbow in comparison to the vertical-upward elbow. 
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Vertical-Upward Elbow Vertical-Downward Elbow 

Two-phase 
Void Fraction data 

Single-phase 
CFD Velocity 



Our reasearch provides new data and results for the vertical-
downward elbow for future reactor safety.  
 

Single-phase CFD analysis 

Questions? 

Establish Database 

Comparison 

Previous Studies 
Comparison 
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Recommendations for future work 

● Obtain more data for database of different flow rates and 

locations. 

● Develop predictive models for two-phase flow around 

restrictions. 

● Implement new models to reactor system analysis code for 

higher safety. 
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• Measurement principle: conductivity difference between 

gas and liquid phases 

Time 

Impedance 

Δt 

vi = Δs/Δt 

Δs 

Upstream  

Sensor 

Downstream  

Sensor 

t

i

j i i j

1 1
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T v n

 
     

Local Time-Averaged ai (Ishii, 1975): 

 

This slide shows the measurement principle of the four-sensor 
conductivity probe. 
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4000 fps 

The state-of-the-art four-sensory conductivity probe creates 
minimal distortion of bubbles. 



VM 

+ 

- 

VDC 

DAQ  

Flow  

Path to ground through 

continuous phase  

Acupuncture needle and  

0.5 mm pencil lead 

0.5 mm 

These images show the size and configuration of the four-sensor 
conductivity probe. 
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Accurate solutions require a 
well-constructed mesh. 

A mesh was generated for the loop geometry; this mesh was 
used as an input to the CFD solver. 

A mesh-sensitivity test 
confirmed that our results 
are grid-independent. 



We have created high quality mesh to ensure accurate modeling 

Structured O-mesh 

35 

Units in mm 

Geometry accurately 
represents the test facility 
 



0.70 Million 

cells 
3.02 Million 

cells 

4.46 Million 

cells 
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A mesh-sensitivity test demonstrates that our solution is grid-
independent. 

Refinement Refinement 



The solution methods for our research compare well with 
previous research. 

Software:  
OpenFOAM 
 
First Cell height: 
20<Y+<50 
 
Total Cell Number: 
152,150 cells 

 
 
 
 

Kim, J., Yadav, M., & Kim, S. (2014). Characteristics of secondary flow induced by 90-degree elbow in 
turbulent pipe flow. 
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±5% Error Bars ±5% Error Bars 

Our results for the vertical-upward elbow were compared with 
previous research to confirm the accuracy of our simulations. 



Secondary flow induced by elbow is seen to dissipate across 
nondimensional length through Swirl Intensity. 
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Swirl Intensity (Is) is defined as: 

Kim et al. (2014) correlation: 

where β=0.21 



Swirl Intensity measures the magnitude of secondary flow, 
which dissipates after an elbow. 
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Cross Section with tangential velocity vectors 
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Swirl Intensity =  
Average Tangential Velocity 

Average Axial Velocity 
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90% dissipation 

Swirl Intensity dissipates 90% by 15D after an elbow in 
CFX simulations. 



31 

90% dissipation 

Swirl Intensity dissipates 90% by 15D after an elbow in 
CFX simulations. 



Swirl Intensity dissipation is independent of elbow orientation. 

32 

90% dissipation 



The CFX simulations match the Swirl Intensity decay of 
OpenFOAM results. 
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CFD models were analyzed at 0D, 3D, 10D, and 50D after the 
vertical-downward elbow. 
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50D 
10D 

0D 

3D 

10D 

4 m/s simulations 



CFD models were analyzed at 0D, 3D, 10D, and 50D after the 
vertical-downward elbow. 
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50D 
10D 

0D 

3D 

10D 

3 m/s simulations 



CFD models were analyzed at 0D, 3D, 10D, and 50D after the 
vertical-downward elbow. 
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50D 
10D 

0D 

10D 

3D 

2 m/s simulations 



Pressure distribution changes at 0D, 1D, and 3D after the 
vertical-downward elbow  (4m/s) 
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0D 
 

8.6% absolute 

pressure 

difference 

3D 
 

1.3% absolute 

pressure 

difference 

1D 
 

2.0% absolute 

pressure 

difference 



The area average void fraction and elbow strength of our data is 
comparable to previous research. 

  Current  Mena % Difference 

RUN 7 

<α> [-] 0.047  0.066 28.8%  

σ [-] 0.4821 0.5638 14.5% 

 RUN 5 

<α> [-] 0.031 0.034  8.82 

σ [-] 0.2464 0.2422 1.73 

RUN 8 

<α> [-] 0.046 0.05 8.00 

σ [-] 0.2642 0.2585 2.21 



The area average void fraction and elbow strength of our data is 
comparable to previous research. 

Run 8 3D Run 5   3D Run 7   3D 

New Data New Data New Data 

(Mena, 2015) (Mena, 2015) (Yadav, 2013) 



OpenFoam simulations from Kim et al. (2014) agree closely with 
CFX results over entire elbow length. 
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Surface contours created from previous studies help better 
understand flow regime of the facility 
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Surface plots and Contour plots show void fractions from 
experiments. 
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Volumetric liquid flux: 3.00 m/s 
Volumetric gas flux: 0.23 m/s 
 

Run 5 

3D 

Incoming flow →  

Local Void Fraction (α) =  
time occupied by gas phase  

total time  

Repeat experiments, such as Run 5, confirm consistency with previous data. 



The objective of this research is to investigate two-phase flow 
after a vertical-downward elbow. 
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Bubbly Flow In Vertical Pipe 

 

Flow rates and geometry dramatically change flow characteristics 

 

Bubbly Flow In Vertical-Upward Elbow  


