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Layers of quartz powder (Min-U-Sil) were sheared with a bi-axial load frame in a double direct shear ge-
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normalized by normal stress), tending to push the system towards conditionally unstable or unstable behavior.
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propagates in a laboratory sized sample. We also plan to look at any fabric the developed during b /
shear, as well as grain comminution at higher normal stresses.
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All experiments had a starting layer thickness of 3 mm before the application of normal load.
Samples were allowed to compact before shearing began. Shearing was accomplished at a
constant loading rate of 10 um/s for the entire 45 mm of displacement.
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