
Numerical investigation of the cyclic performance of reinforced concrete frames equipped with a combination of a rubber core and a U-shaped metallic damper
This paper proposes a seismic resisting technique for reinforced concrete frame buildings that uses a combination of a rubber core and a U-shaped friction damping system. The U-shaped elements are made from steel and aluminum while the core is made of rubber. The elastoplastic model is used to define steel and aluminum; the hyper-elastic, Ogden model is used to define the rubber material. The system under consideration is a hybrid damper that works through a steel wall. To evaluate the effectiveness of the proposed damper system, a full-scale cyclic analysis on a reinforced concrete frame (RC was performed. The RC frame showed pinched behavior, whereas the hysteresis curves of the strengthened frames were more stable. This was because the activation of the friction damper which formed a larger loop area. The results showed that the pattern of tensile crack formation in the model with and without the damper system was not changed significantly, but the maximum shear strength, stiffness, and energy dissipation capacities were significantly improved.
© This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/
Files
Metadata
Work Title | Numerical investigation of the cyclic performance of reinforced concrete frames equipped with a combination of a rubber core and a U-shaped metallic damper |
---|---|
Access | |
Creators |
|
License | CC BY-NC-ND 4.0 (Attribution-NonCommercial-NoDerivatives) |
Work Type | Article |
Publisher |
|
Publication Date | December 2020 |
Publisher Identifier (DOI) |
|
Source |
|
Deposited | September 09, 2021 |
Versions
Analytics
Collections
This resource is currently not in any collection.