Limitation of phosphate assimilation maintains cytoplasmic magnesium homeostasis
Phosphorus (P) is an essential component of core biological molecules. In bacteria, P is acquired mainly as inorganic orthophosphate (Pi) and assimilated into adenosine triphosphate (ATP) in the cytoplasm. Although P is essential, excess cytosolic Pi hinders growth. We now report that bacteria limit Pi uptake to avoid disruption of Mg2+-dependent processes that result, in part, from Mg2+ chelation by ATP. We establish that the MgtC protein inhibits uptake of the ATP precursor Pi when Salmonella enterica serovar Typhimurium experiences cytoplasmic Mg2+ starvation. This response prevents ATP accumulation and overproduction of ribosomal RNA that together ultimately hinder bacterial growth and result in loss of viability. Even when cytoplasmic Mg2+ is not limiting, excessive Pi uptake increases ATP synthesis, depletes free cytoplasmic Mg2+, inhibits protein synthesis, and hinders growth. Our results provide a framework to understand the molecular basis for Pi toxicity. Furthermore, they suggest a regulatory logic that governs P assimilation based on its intimate connection to cytoplasmic Mg2+ homeostasis.
Files
Metadata
Work Title | Limitation of phosphate assimilation maintains cytoplasmic magnesium homeostasis |
---|---|
Access | |
Creators |
|
License | CC BY-NC-ND 4.0 (Attribution-NonCommercial-NoDerivatives) |
Work Type | Article |
Publisher |
|
Publication Date | March 11, 2021 |
Publisher Identifier (DOI) |
|
Deposited | June 18, 2025 |
Versions
Analytics
Collections
This resource is currently not in any collection.