Period and Phase Control in a Multioscillatory Circadian System (Iguana iguana)

The circadian system of the lizard Iguana iguana is composed of several independent pacemakers that work in concert: the pineal gland, retinae of the lateral eyes, and a fourth oscillator presumed to be located in the hypothalamus. These pacemakers govern the circadian expression of multiple behaviors and physiological processes, including rhythms in locomotor activity, endogenous body temperature, electroretinogram, and melatonin synthesis. The numerous, easily measurable rhythmic outputs make the iguana an ideal organism for examining the contributions of individual oscillators and their interactions in governing the expression of overt circadian rhythms. The authors have examined the effects of pinealectomy and enucleation on the endogenous body temperature rhythm (BTR) and locomotor activity rhythm (LAR) of juvenile iguanas at constant temperature both in LD cycles and in constant darkness (DD). They measured the periods (τ) of the circadian rhythms of LAR and BTR, the phase relationships between them in DD (ΨAT), and the phase relationship between each rhythm and the light cycle (ΨRL). Pinealectomy lengthened τ of locomotor activity in all animals tested and abolished the BTR in two-thirds of the animals. In those animals in which the BTR did persist following pinealectomy, τ lengthened to the same extent as that of locomotor activity. Pinealectomy also delayed the onset of activity with respect to its normal phase relationship with body temperature in DD. Enucleation alone had no significant effect on τ of LAR or BTR; however, after enucleation, BTR became 180° out of phase from LAR in DD. After both pinealectomy and enucleation, 4 of 16 animals became arrhythmic in both activity and body temperature. Their data suggest that rhythmicity, period, and phase of overt circadian behaviors are regulated through the combined output of multiple endogenous circadian oscillators.

Paul A. Bartell et al, Period and Phase Control in a Multioscillatory Circadian System (Iguana Iguana), Journal of Biological Rhythms (19, 1) pp. . Copyright © 2004. DOI: 10.1177/0748730403261133. Users who receive access to an article through a repository are reminded that the article is protected by copyright and reuse is restricted to non-commercial and no derivative uses. Users may also download and save a local copy of an article accessed in an institutional repository for the user's personal reference. For permission to reuse an article, please follow our Process for Requesting Permission.

Files

Metadata

Work Title Period and Phase Control in a Multioscillatory Circadian System (Iguana iguana)
Access
Open Access
Creators
  1. Paul A. Bartell
  2. Manuel Miranda-Anaya
  3. Michael Menaker
Keyword
  1. Circadian organization
  2. Pineal gland
  3. Eyes
  4. Body temperature
  5. Locomotor activity
  6. Iguana
License In Copyright (Rights Reserved)
Work Type Article
Publisher
  1. Journal of Biological Rhythms
Publication Date February 2004
Publisher Identifier (DOI)
  1. https://doi.org/10.1177/0748730403261133
Deposited January 23, 2024

Versions

Analytics

Collections

This resource is currently not in any collection.

Work History

Version 1
published

  • Created
  • Added Bartell_EtAl_2004_-1.pdf
  • Added Creator Paul A. Bartell
  • Added Creator Manuel Miranda-Anaya
  • Added Creator Michael Menaker
  • Published
  • Updated Keyword, Description, Publication Date Show Changes
    Keyword
    • Circadian organization, Pineal gland, Eyes, Body temperature, Locomotor activity, Iguana
    Description
    • The circadian system of the lizard Iguana iguana is composed of several independent pacemakers that work in concert: the pineal gland, retinae of the lateral eyes, and a fourth oscillator presumed to be located in the hypothalamus. These pacemakers govern the circadian expression of multiple behaviors and physiological processes, including rhythms in locomotor activity, endogenous body temperature, electroretinogram, and melatonin synthesis. The numerous, easily measurable rhythmic outputs make the iguana an ideal organism for examining the contributions of individual oscillators and their interactions in governing the expression of overt circadian rhythms. The authors have examined the effects of pinealectomy and enucleation on the endogenous body temperature rhythm (BTR) and locomotor activity rhythm (LAR) of juvenile iguanas at constant temperature both in LD cycles and in constant darkness (DD). They measured the periods (τ) of the circadian rhythms of LAR and BTR, the phase relationships between them in DD (Ψ<sub>AT</sub>), and the phase relationship between each rhythm and the light cycle (Ψ <sub>RL</sub>). Pinealectomy lengthened τ of locomotor activity in all animals tested and abolished the BTR in two-thirds of the animals. In those animals in which the BTR did persist following pinealectomy, τ lengthened to the same extent as that of locomotor activity. Pinealectomy also delayed the onset of activity with respect to its normal phase relationship with body temperature in DD. Enucleation alone had no significant effect on τ of LAR or BTR; however, after enucleation, BTR became 180 ° out of phase from LAR in DD. After both pinealectomy and enucleation, 4 of 16 animals became arrhythmic in both activity and body temperature. Their data suggest that rhythmicity, period, and phase of overt circadian behaviors are regulated through the combined output of multiple endogenous circadian oscillators.
    • The circadian system of the lizard _Iguana iguana_ is composed of several independent pacemakers that work in concert: the pineal gland, retinae of the lateral eyes, and a fourth oscillator presumed to be located in the hypothalamus. These pacemakers govern the circadian expression of multiple behaviors and physiological processes, including rhythms in locomotor activity, endogenous body temperature, electroretinogram, and melatonin synthesis. The numerous, easily measurable rhythmic outputs make the iguana an ideal organism for examining the contributions of individual oscillators and their interactions in governing the expression of overt circadian rhythms. The authors have examined the effects of pinealectomy and enucleation on the endogenous body temperature rhythm (BTR) and locomotor activity rhythm (LAR) of juvenile iguanas at constant temperature both in LD cycles and in constant darkness (DD). They measured the periods (τ) of the circadian rhythms of LAR and BTR, the phase relationships between them in DD (ΨAT), and the phase relationship between each rhythm and the light cycle (ΨRL). Pinealectomy lengthened τ of locomotor activity in all animals tested and abolished the BTR in two-thirds of the animals. In those animals in which the BTR did persist following pinealectomy, τ lengthened to the same extent as that of locomotor activity. Pinealectomy also delayed the onset of activity with respect to its normal phase relationship with body temperature in DD. Enucleation alone had no significant effect on τ of LAR or BTR; however, after enucleation, BTR became 180° out of phase from LAR in DD. After both pinealectomy and enucleation, 4 of 16 animals became arrhythmic in both activity and body temperature. Their data suggest that rhythmicity, period, and phase of overt circadian behaviors are regulated through the combined output of multiple endogenous circadian oscillators.
    Publication Date
    • 2004-02-01
    • 2004-02
  • Updated