Experiment Station Circular 71

The College of Earth and Mineral Sciences

Twenty-fifth Technical Conference

on Petroleum Production

OCTOBER 19 - 21, 1966

The Pennsylvania State University

University Park, Pennsylvania

$5.00



Proceedings of the

25th Technical Conference on

Petroleum Production

The Pennsylvania State University

October 19-21, 1906

Sponsored by
The Department of Petroleum and Natural Gas
in cooperation with

The Penn Grade Crude 0il Association



pie

e

Papers sre not to be reproduced in wholea

“or in part except upon permission of the

prints ave subject to

authors. These prepria

correction before final publication.



iid

These proceedings are respectively dedicated to those individuals
from industry and the University who were responsible for the very early

research endeavors at Penn State.

From Industry:

Paul Torrey Cliff Martin

Don Andrus Cornell Pfohl

Ralph Zook Coy Hogg

George Hanks Tony Saxe

Harry Ryder Ed Booth

Art Simmons J. P. ("Dick") Jones
Joe Moorhead Bob Bosslex

Wes Dunlap W. H. {"Tex") Young
Geoxrge Holbrook John DePetro

Jerry Bauer

From the University:

Dean Steidle Kenneth Barnes
C. A. Bonine George Fancher
Clark Barb James Lewis
Arthur Honess Sam Yuster

A. W. ("Doc") Gauger Paul Krynine



PREFACE
The reaching of a milestone in what has been a most fruitful and
continuing cooperative program between industry and the University
should call for both reflection and celebration. Reflection on both
the history of the Conference and the results of regearch programs car-

ried out at Penn State is presented in these proceedings {Petroleum

Erbdgction Reséarch at‘éenn State in Rétrospect, p. 405). 1in celebra-
tion of tﬁe)silver Anniversary of the Conference two symposia have been
added to this year's meeting -- Mathematics and Mathematical Modelling
and Geolog§ of the Appalachian Basin. We feel that this is a most fit-
‘ting way to honor the spirit of those that took part in the previous
Confereﬁces. It is hoped that the informalicy ﬁhat has been a part of
previous Conférences wiil‘prevaii at the symposia. It has often been
brought to ourkattention that the atmosphere for informal discussion
is what makes the Conference so valuable.

The Department would like again to acknowledge the continuing
friendship of the Penn Gra&é Crude 0il Association as well as the
various oil companies and govermmental agencies. Ue are proud to have

had tne opportunity to assemble these proceedings.

Richard J. Harding

David A. T. Donohue

Department of Petroleum and
Natural Gas
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SOME APPROXIMATE SOLUTIONS FOR CALCULATING THE TEMPERATURE
DISTRIBUTION DURING HOT FLUID INJECTION

G. W. Thomas
Sinclair 0il & Gas Company
Tulsa Research Center

INTRODUCTION

Theoretical treatments of the problem of hot fluid injection into a
petrdleum reservoir have been given by a number of people.l=12 Lauwerier*
developed an analytical sélution for calculating temperature distributions
under certain restrictive assumptions. Later works of Avdonin® and
Rubinshtein!©® either sought to examine the influence of these restrictions
or remove them entirely. The additional amalytical solutions they obtained
are in the form of intégrals, series, or combinations of both.

In this work we present two simplér closed form approximations for
a radial system where the convection parameter is large and horizontal
heat conduction in the bed can be neglected. Comparisons are made with
the results of Lauwerier, Avdonin, Rubinshtein and an exact numerical
solution of Spillette which indicate adequate agreement for most field
calculations.

Finally, a third solution is presented employing a technique of
approximate Laplace transform inversion developed by Schaperyl4 The
steady state solution is also given.

FIRST METHOD OF APPROXIMATION

In the paper of Lauweriert and later works of Avdonin'# horizontal
thermal conductivity‘in the bed was assumed to be zero. Avdonin® subse-
quently examined the influence of this supposition. He concluded that
for large values of the convection parameter; v, the convective heat flux

dominates and the absolute error introduced by the assumption is generally
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small.* Spillette's work'® also supports this conclusion. Rubinshtein!!
developed an asymptotic series for the case‘of large convection parameter
and presented the first two terms. These are satisfactory under some con-
ditions, except in regions where the solution approaches zero. Subsequent

terms are very complex and obtained only with much labor. The first method

of approximation in this work is presented as an alternative to Rubinshtein's,

If we neglect horizontal conduction and assume infinite vertical
i A *%
thermal conductivity within the bed, we are led to the problem:

Urr +-1]fux‘ +u,, =-e]-u-t; 0<r<e, 0<z<®, t >0

-'\éur +ﬁz=ut';z=0, O<r<e, £>0 | (D
u(r,z,0) = 0; u(0,0,t) = 1; u(r,z,t) = 0, when (r*+z°) —»
where
r=2r/h, z = 2z/h, t = Lket/py o h°, 8 = p1¢, /pacz, v = Qps cp /2mhks .
We now map (1) into a new coordinate system, W, defined by

w=z/v + 20 (2)
thus,

(1 + /%) Uy T U = v¥/6% by 0< <o, £30
u, = 0 when 4 = r*/2V°, £>0 (3)
u(w,0) = 0; u(0,t) = 1; u(w,t) - 0 when w - = .
If we assume that v is sufficiently large such that for practical values
of the dimensionless coordinate r, (r/v)® = 0 then (3) reduces to
u +u =v2/0 u,

ww W
u(w,0)

i

0; u(o,t) =1 (4)

u(w,t) - 0 when w - = ,

* - —
Avdonin presents the following inequalities: VE Q > 9450; Vt/Q < 0.1588,

which, if satisfied, (for t in days and Q in bbls/day) results in an
absolute error of less than 3% when horizontal conduction is neglected.

*k

Subscripts (except 1,2, & f) are used to indicate partial derivatives
throughout this work.

Taking the Laplace transform of (4) yields

d®u , du -

WwEta - (pv2/0)u =0

u(0,p) = 1/p; u(w,p) — O when - « . (5)
Therefore, u = % exP‘{-% [1+/1+ (4pv2/0)]1 w }. (6)

The transform in (6) is readily inverted using the shifting rule and tables

given in Carslaw and Jaeger.l® Thus, we obtain the expression

u=’5{gwerfc<%%-%)+erfc<%%+%>}. @)

In Fig. 1, we compare the tembgrature distribution calculated%by 7
with that obtained using the first two terms of Rubinshtein's asymptotic
approximation.l? 1In this case, v = 166. For small values of time, the use
of the first two terms of Rubinshtein's asymptotic series leads to an
underprediction of the temperature distribution. On the other hand, (7)
tends to overpredict. Consequently the deviation between the two is appre-
ciable at 135 days. However, as time increases the differences between
the two curves becomes less, as reflected by the curves for 540 days.

>Fig. 2 compares our results with those of Spillettel? when y = 15.8.
Spillette's curve represents an "exact" solution obtained by finite differ-
ence solution of the energy equations having no restrictive assumptions on
the thermal constants. We notice again an improvement in correspondence
for the larger time. Fig. 3 reproduces the curves of Fig. 2 and also shows
the results of Lauwerier4 and Avdonin.?

Sihce we are using Eq. (7) to represent the solution to (3), the
approximation becomes poor as (r/v)? increases since we assumed this factor
can be neglected. In Fig. 3 at a radius of 60 feet (r/v)® = 0.577. At

t = 135 days the value of u obtained from (7) is about twice Spillette's --
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a deviation of 100%. (Lauwerier's and Avdonin's results a1so present
considerable deviations from the exact solution at this point.) However,
at t = 540 days the deviation is less than 1% at 60 feet. Thus for larger
times, the approximation becomes better and larger values of (r/v)? can be
tolerated. For most field applications of hot fluid injection the maximum
values of (r/v)® will generally be much less than those encduntered in our
comparison with Spillette's results.

It is Apparent that isotherms at a given time will be prescribed by
the relationship

| z]/ v+ r?/2v? =k (8)
" where k is a unique constant for each isotherm. Thus, they all have the
same parabolic shape in the r-z plane. To construct an isotherm, (7) is
solved with w replaced by z/v (i.e. r = 0) for the specified time such
that a range of values of u spanning the desired isotherm is generated.
Simple interpolation within this range will yield a value of z and hence
k (=z/v) for the isotherm. All other r-z coordinates of the isotherm
are then determined from (8). |

SECOND METHOD OF APPROXIMATION

A second approximation similar to (7) can be obtained readily,
although it represents no significant improvement in the results. We
present it merely as a means of demonstrating an alternate approach.
First, we apply the Laplace transform to (1) and get

ﬁ" +% t-lr + G” =-g u; 0<r<mw, 0<z<o, p>0

-rﬁ, +ﬁz =pﬁ;z=0,0<r<°°, p>0 (9

a(0,0,p) = 1/p; u(r,z,p) — 0 when (r*+2°) » = .

We now construct a function that satisfies the second equation in (9)

and the boundary conditions exactly, i.e.,

a= % exp [E /2% + (E+p) z] (10)

where § is <0 and independent of the space coordinates. Substitution of

(10) in the first equation of (9) and again assuming (r/\))a ~ (O gives

£ = - (prl/v) -V 1NV + 2p/v + p/0 . (11)
Consequently,

a--ll;exp{-[ummw-pr’/zv} (12)
where W is defined in (2).

Inverting (12) yields

NEVORIN Py gy ey
+erfcl: J\)+29v [m]}ﬂ('r) (13)

where T = t - r~/2v and H(T) is Heaviside's unit function. Fig. 4 presents
the results of (13) again compared to Spillette's exact solution. Isotherms

using this model are also given by (8).

THIRD METHOD OF APPROXIMATION

In many problems of applied mathematics one is frequently faced with
the task of inverting Laplace transforms. Schapery14 has devised some
novel methods of approximate transform inversion where an exact analytical
inversion is difficult. The problem in (1) results in an excellent example
of a difficult transform which can be adequately approximated using
Schapery's "direct method.“ In this, we claim no simplification of exist-
ing analytical solutions for hot fluid injection problems. Rather, our
purpose is to illustrate the utility of Schapery's method in this area.

The first equation in (9) is satisfied by

= fo AEQLD) exp (- 2V X4p/0) I, () dh (14)
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which is obtained by separation of variables and superposition. Substi-
tution of (14) into the second equation in (9) gives
[« <]
(-2
_[ AEQh,P) /%+p/6 + p) I, (Ar)dh - -;-' onzf(X.p)Jl (\r)d\ =0 . (15)
o

The boundary condition u(0,0,p) = 1/p also yields
(2
[ ro,pan = vp . (16)
)

Prom (15) and (16) we solve for £(\,p). To do this we employ the follow-
ing lemmag Given two continuous functions F(\,p) and G(\,p) defined on
the interval [0,%] such that .

j:u o LOana =1 [ com nona
then

F, = - G/\ . (17)
(A formal proof of (17) is given in the appendix.) 1In (15), F(A,p) =

£Q\,p) (/3F+p/6 + p) and G(A,p) = AfQ,p). Therefore from (17) we obtain

F, + AWFM R 2+p(1+1/6 = 0 (18)
which has the solution

FO,p) = k(p) ¢/32+p/0 + p) P exp (-v /A*+p/0). (19)
Therefore, |

£00,p) = k(p) ¢N4p/o + VT exp (v V2Z4p/0) . (20)

Substitution of (20) into (16) gives
(-}
[ k) ¢3F%78 + PV exp (-v /3TN = Ve (21)
o

To determine k(p) in (21) we make the following change of variable:

([/%?‘Ff_a )} exp (<470 + o) = exp (-0) . (22)

Thus (21) becomes

k(p) [(Vplo + )P exp (- Vp/e) 1Y J: exp (-vC) dg = 1/p 23)

or
k(p) = X _€EXp (v ALQ/Q)
P (,P/e + p)\)P (24)
and

£0p) = LCOT¥R/0 + p)VP  exp [-yG/a 740/ - WR/B)] | (25)
pt/plo + p)VP

Now we substitute (25) into (14) and obtain

a = me (\r) { vCF+p0 + PV exp [-(u+2) 3%+p/8 + WplE] } dx . (26)
Mo pWWp/o + p)yp .

Attempts to analytically invert (26) have not met with success because of

the complex nature of the argument. However, an approximate inversion can

be obtained using Schapery's "direct method."!'4 1t simply involves

evaluating pu with p = ¢/t where c is a constant.* Consequently:

o~ [‘QU Or) {u(«m + /DY exp [-(vte Wi THclBE + w/eTg t]} dy
1Mo Welgt + c/oyV/t

.. (@27

In Fig. 5, we compare the results obtained using (27) with Spillette's

for ¢ = 0.5. Again this approximation yields results that are sufficient

for most engineering calculations.

The steady state solution to (1) can readily be found from (26)

using Tauber's theorem.!® Thus we find

=]

Hm o 50 [ 7,00 exp [ -(2) 2] @ (28)
P"O ‘0

which is the well-known integral of Lipschitz.l”?

From Schapery's theory, the constant c is the logarithm of Euler's number.
However, it can be adjusted to allow for skewness. The method is generally

applicable when d[pu(p)]/d(log p) is a slowly varying function of log p
(log = log,). See Ref. 14.



Therefore,

(29)
= e yhen t - ® .
YT NP G)
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NOMENCIATURE

c - constant in Schapery's approximation, dimensionless
cy - heat capacity, BTU/1b°F (4 = 1,2, or £)

h - bed thickness, feet

k - constant for prescribing isotherms

ky - thermal conductivity, BTU/hr-£ft°F (1 = 1, or 2)
P - Laplace transform of dimensionless time, t

Q - injection rate, bbls/day

r - radial coordinate, feet

r - dimensionless radial coordinate

t - time, days

t - dimensionless time

u - dimensionless temperature

z - vertical coordinate, feet

z - dimensionless vertical coordinate

3] - dimensionless ratio, p1c1/93c2

v - convection parameter, dimensionless

4. Lauwerier, H. A.: "The Transport of Heat in an 0il La

10, Rubinshtein, L. I.:

11. Rubinshtein, L. I.:

Py - density, 1lbs/ft® (i = 1,2 or f)

T - dimensionless time

Subscripts

1 - refers to bed
s - refers to bounding rock
b

- refers to injected fluid
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APPENDIX

Lemma: Let F(),p) and G(),p) be continuous functions for A>0 and p = 0 defined

on the interval [o,»] such that
1 0
er(x,P) J,(Ar) A == I G(A,p)J, (Ar) dr
o o :

then g% = - G/\.

Proof: We define a function M(r,p) as follows:

00

MGe,p) = [ 60,P) I, 0

HED o [ arGLe) 5,00 & .
r o o

From the Hankel inversion theoreml5 we can write

FO\,p) = {;M<r,p> Jo(hr) dr

= IOJO(XI') EG(X,p) J, (xr) dx dr

(A-1)

(A-2)

(A-3)

(A-4)

(A-5)

(A-6)

ous integral'®

11

= RDG(x,p) IoJo(xr) J, (xr) dr dx , (A-7)

The right-hand integral in (A-7) is a special case of Weber's discontinu-

f» ‘i, x>\
.o F()\,P) = OG(X,P) dx L 0’ X<)\ (A-B)
i.e.,
F(,p) = N G(x.p) - dx . (A-9)
Differentiating (A-9) with respect to )\ yields
3F(\,p) _ _ GO.p)
™ A (A-10)
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A Self-Similar Solution of Unsteady Flow

of Gas Through Porous Media

Rafael J. Sandrea

Introduction

In the past many theoretical studies of ideal gas flow in porous

media have been published.l-L+ Since the partial differential equation

describing the unsteady-state motion of the gas is non-linear, many
of these published solutions have been btased on linear approximatioms.
Moreover, in those cases where the original non-linear equation has
been solved, numerical procedures similar to those applicable to the
parabolic-type differential equation were employed. These procedures
give origin to independent errors which are difficult to estimate.
These errors mainly arise from round-off because of the repetitive
nature of the iterative schemes that are compulsory, and also from
the truncation of the series expansions used to obtain the finite
difference approximations.

It is the object of this paper to present a particular solution
of the transient motion of an ideal gas in an isotropic porous medium

with constant properties. Both the isothermal and adiabatic cases

are considered.

The method of solution differs from those previously published
in that use is made of the self-similarity of the motion in order to
obtain a transformation of the one-dimensional partial equation into
an ordinary differential equation. The latter is then solved

numerically. The effects of linearizing the original differential
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equation are discussed.

Formulation of the Problem
In accordance with the development given by Muskats, the motion

.of ideal gases in porous media is governed by the expression

l+m '
vt L or W

5F ¢

where, for convenience, the following relationships are defined

(2)

g
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O
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Specifically, it is proposed to solve the one-dimensional form
of Eq. 1, for both radial and linear systems, subject to the following

boundary conditions

t = G, P =1, for all r,x
t =0, P = a, r,x —e0 (3)
P =1, TyX ~e=Q0
a = pw/po

Equation 1, together with the boundary conditions 3 show that
the system of characteristic parameters for the radial problem is CX,
r, t. Hence the dependent variable P can be a function only of these
parameters, that is, P(Q{,r,t).

From the general considerations of dimensional analysis it

follows that all the nondimensional quantities are a function of the
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single independent combination, y=r2/4C}i. It is therefore evident
that the partial differential Eq. 1 for P reduces to an ordinary
differential equation in the one unknown y. The motion of a
compressible fluid which depends on such a combination is called
self-similar6. By analogy, the similarity transformation for the
linear case is y=x2/1+ (t.

Substituting the previously derived expressions for the

independent variatle y into Eq.l gives for the radial case

4 dP1+m 7 dP1+m L
—(y=— ) + — = 0 (W)
dy dy P dy

and for the linear case
d2P1+m 1+m 1 1
—s v 3 ( > + 3 )= 0 (5)
dy y Yy

The boundary conditions corresponding to the new variables are

P=za, y-=0 Owa =1

(6)

v}
i
Jod

Y —-=00

Since analytical integration of the non-linear differential Eqs.k4
and 5 is not‘possible, numerical methods are to be used. These
equations, moreover, contain two singularities, y = 0 and P = 0,
within the region of interest. The latter singularity P = O, can be
obviated easily by adequately defining the boundary conditions at y-=O,

such that a f 0. It is important, however, that the behavior of the
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function P(y), in the vicinity of y—0, be determined prior to
initiating the numerical integration. Likewise, the behavior of the
function for large values of the argument must be derived.

For convenience we will discuss in detail the required analysis
for the particular case of radial geometr& and isothermal conditions.

The pertinent equation, as obtained from Eq. 4, is then

a @R, g

from which the asymtotic behavior of the function P(y) is readily
obtained by equating P approximately to the limiting value exfl and

integrating analytically. Hence the slope of the function is found

to be

[\V]
Q

4F 1 exp(-y) (8)

dy ~ v

where Cl is a constant of integration.

From Eq. 8 it is possible to estimate the error of an
approximation in truncating the numerical solution at a finite value
of the argument. The corresponding value of the derivative at y=10
is of the order Clx10_6.

Let us now analyse the function P(y) in the neighborhood of y—0.

Following appropriate manipulation7 Eq. 7 can be expressed in integral

form as

y
Pe(y) = 92(0) - EJIn(y/ne)Pﬁn)dn (9)

17

The limit of this integral is zero as y-»0, thereby yielding the result
that P2 approaches a constant which we call a2 in order to be comsistent
with the boundary conditions 6.

We now postulate that in the wicinity of y—=+0 a complete solution

of Eq. 7 will be of the form

P2 =’82 +6(y) : (10)

The function é(y) is subsequently evaluated from Eq. 7. Equation 10

then becomes

2 2 '
Pr=a +Cy - (11)

where,’from the nature of the problem, 02 must be positive.

Thg analysis Qf the behavior of the function P(y) is now complete,
and thﬁ$ Eq. 7 can be solved numerically in conjunction with Eq. 11.
The method of Runge-Kutta was used to initiate the solution,which was
subsequently continued with the Adams' formula. The results are shown
in Fig. 1 for several values of az.

Following the approach previously described, the behavior of the
function P(y) in the yicinity of y—0 can be determined for the
generalized forms of Eqs. 4 and 5. Figure 2 illustrates typical
results of the numerical integration of these equations for radial
and linear systems producing under adiabatic and isothermal conditions.
Specifically, the case of a2 = .10 is given. 1In addition the adiabatic

computation refers to air (m

.71).

fl
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Discussion

Although the problem treated in this paper is idealized in so far
as the boundary conditions are concerned, advantage can now be taken
of the fact that an exact solution of the original non-linear equation
of motion is available. In this respect, it is possible to check the
validity of various approximate methods of solving the original equation;
and in particular, it is importantrto investigate the non-linear
character of the equation itself.

One could intuitively argue that the non-linear term 1/P in Egs. 4‘
and 5 could be replaced by a constant if the variations in P are small
compared to the value of P. Indeed, if this constant is uhity then
the original differential equation (Eq. 1) becomes the classical
diffusivity equation for which numerous analytic solutions are available.

The possibility of linearizing the differential egs. 4 and 5 was
studied for both isothermal and adiabatic conditions. The &ariable
P in the non-linear term was replaced by constants varyingvin value
from the initial condition a to the asymtotic value of the function.

It was found in all cases that the linearized solutions approached
more clésely the corresponding non-linear solutions when P was replaced
by unity. Moreover, as it is to be expected, the discrepancy between
the two types of solutions is substantially reduced as the pressure
drop across the system is decreased. Figures 3 and 4 illustrate the
comparative results of the linearized (P=1l) and non-linearized
solutions, for systems of both linear and radial geometry. These
results are for the case of azz.lO, which corresponds to approximately

70 percent pressure drop.
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Two important conclusions are evident from these figures. Firstly,
the results point out that while there exists some degree of difference
between the linearized and non-linearized solutions, essentially the
non-linear effects are insignificant for systems of radial geometry.

This behavior is manifested for both the isothermal and adiabatic cases.

In addition, an interesting result of the calculations is that the
linearized solutions of the isothermal problem corresponds almost
identically with the non-linear solutions of the adiabatic problem.

This is fortunate, since it is well known that disturbances propagate
more nearly under adiabatic, rather than isothermal, conditions.

As will be recalled from the previous discussions the singularity
at P=0 in Egs. 4 and 5 was conveniently obviated by redefining the
boundary conditions. For this reason it was only possible to study
the behavior of the systems under a maximum pressure drop of
approximately 80 percent (a2=.04). The relative effects of linearization,
previously discussed, were found to be equally valid in this range also.

From the aforesaid the results further establish that the non-linear
character of the differential equations is not manifested except,
perhaps in systems subjected to high pressure draw-downs (over 80 percent).
An approximate explanation of this phenomenon is suggested by Eq. 1.
Here the coefficient of the time derivative, l/cx , is of small order
of magnitude (-'10—5). This, therefore, minimizes the effects of the
non-linear term except when P is very small. Therefore, we may
venture to conclude that the non-linearity of the original equation

of motion appears to be more of a mathematical nature than physical.
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Conclusions

An exact solution of the non-linear equation describing the

dynamics of an ideal gas in a porous medium of radial and linear

geometry is presented. Results indicate that the non-linear character

of this equation may be important only in systems subjected to large

pressure draw-downs (more than 80%). The non-linearity appears to be

more of a mathematical nature than physical, especially for systems

of radial geometry. Moreover, it is found that linearized solutions

of the isothermal problem correspond almbst identically to non-linear

solutions of the adiabatic problem.

3.
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Nomenclature
c, specific heat at constant volume
Cp specific heat at constant pressure
e constant, 2.718
k permeability
p dimensionless pressure, p/p°
P pressure
18 original pressure of the system
1 well pressure

Qb porosity

/‘ viscosity
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RESERVOIR ENGINEERING, REFORMULATED
By
Walter Rose

University of Illinois

ABSTRACT

Reservoir performance, as observed for example during exploitation
of petroleum reservoirs, may be described aptly and adequately by re-
ference to the modern principles of continuum mechanics to which the
constitutive assumptions of nonequilibrium thermodynamics have been
appended. Such a description makes explicit reference to the well- '
known coupled transport processes of mass and energy transfer. Accord-
ingly it becomes clear that engineering applications of the theory are
hampered unless extensive laboratory work is done in particular cases
to provide experimental values for the needed transport coefficients.
INTRODUCTION

Condensed in this paper are ideas about the reformulation of
greservoir engineering transport problems that avoid using Darcy's
f famous empirical law (1856) as the starting place of the analysis.

. . . 1
§Detailed explanations can be found in the papers of Bear and Bachmat,
2 . . . .

and of Rose, while the underlying theory is fully developed in the
monumental work of Truesdell and Toupin.

Like other important fields of technology, reservoir engineering
is one that has been exposed to the impact of the scientific revolution
now ushered in by the appearance of the high speed computer. Data pro-

Cessing and numerical methods for solving the intricate boundary valued

Problems of continuum physics make it possible for the reservoir engineer
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to attempt refinements in analysis,that just a few yéars ago could not:

be envisioned (much-less'attempted).

At the same timé, bﬁt iﬁ é somewhat less:speétacular and less
advertised way, great progresé haé been and cont%nues to be achieved
in the development,of‘the labbratorymethéds that provide necessary
experimental data as iﬁput information and'configﬁation for the the-
oretical studies.

One might suppose, therefore, that the current pracfice of
reservoir engineering here and abroad would reflect the manifold pos-
sibilities for realization and fof}achievement in this new era. And,
indeed, one does see evidence of a new Spirit, a new interest, and a new
ambition in the reservoir engineering papers appearing in the current

literature.

Concepts and ideas are generated more quickly, however, than th%/

ever are utilized and applied. For one‘thing, there is an inertia to
continue doing things in time-tested way;f Aiso, there is a natural
distrust of innovations, compounded by the further problem of making
the innovations widely known. But perhaps the greatest impediment to
progress comes from the fact that here we are dealing with systems,

and it is not always possible or straightforward for the reservoir en-
gineer to use his improved understanding of one part of the reservoir
system unless and until an improved understanding of other interlocked:

parts also is realized.
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.In this papef,;we shall attempt to reformulate a statement of
what 1is intended to bé-én integrated and self-contained approach to the
solution of‘the clasgiééi'reservoir engineering problems. And as might
be expected, some of thelideas involved will be recognized as old and
non-controversial, whileAchers are new and essentially untested in
the applications under discussion.

The successful practice of reservoir engineering in every case
is facilitated whenevér the underlying séiéntific aspects are understood.
It is true, of course,;thaf the reservoir engineer simply is involved
in a problem-solving game where occasionally (and, for example, with
luck) a satisfactory answer sometimes may be obtained without reference
to all of the technological details. Consideration of the details,
however, can only serve to improve the answer otherwise obtained.
Accordingly, the goal in reservoir engineering is to optimize methods
for generating wanted information so that the needs for the information
are adequately met while tﬁe costs, labor and time spent are held at
a minimum.

Here a general theory underlying the practice of reservoir
engineering will be developed from physical science considerations alone.
Involved are many familiar topics of Newtonian (continuum) mechanics,
Physical chemistry and implicitly geology. And, as will be evident,
frequent appeal must be made to the results of laboratory and field
experiments, before the theory can be applied in specific cases with

any measure of completeness.
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A subtle point to be noted in these connections is the duality
in the practice of engineering analysis, where links must be sought
continuously between the theoretical models of reality and the observa-f
ticnal representationsrof the natural phenomena of interest. It’ié
clear that experiments prompt the appearance of theoretical statementé,?
and vice versa, in the ordinary.évolution of scientific understanding. ’
But a chain can be no stronger than its weakest link, and in this:paperé
the point will be illustrated how the reservoir engineer often lacks
enough empirical information to take full advantage of his skill in
theoretical analysis. The difficulty being confronted here mirrors
the scientist's inherent limitations and imperfections‘in developing
a complete description of physical phenqmena from theory (i.e. "first

principles") alone.

With the motivation provided by the access toAhigh speed computeé

e

gt

and the remarkable progress in numerical methods for solving differenti:

S

equations, it is now possible in rapidly exéanding ways to examine in
detail the consequences of highly involved theories of réservoir per-
formance. But as new plateaus in the facility for analysis are reachédé
cdmplicated processes of interest become easy to simulate. Accordingly;
it then is all the more urgent now that pertinent models are chosen .in
the first place.

Obviously, it would be foolish to ridicule the mushrooming

abilities of the theoretical analyst, but it is self-defeating not to
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strengthen analysis first by supplying the missing input information
that theory fails to provide. And so, in this paper, as new theories
of reservoir performance are developed, and as old ones are restated,
the crucial role played by laboratory experiment will be exposed. And
the reader will be shown examples of where the theory is usable only

if certain data are available as input information, and only if certain
experiments are performed to serve as a check on the theoretical
predictions.

From one point of view we can say that reservoir engineering is
an art, and from another we can say it is a kind of a problem-solving
game. Dealt with are the reservoir systems that are comprised of the
reservoir proper together with the wells and their mechanical
paraphernalia that serve to provide access needed for the fluids to
be withdrawn or injected from surface to subsurface locations.

The reservoirs themselves can be any of those more-or-less boun-

ded underground rock units that are sufficiently porous to be containers

and conductors of fluids, and that are sufficiently large so that ¢om-

mercial uses can be envisioned and realized.
Reservoirs commonly are used as sources of fluids (for example,: ‘
petroleum, fresh and saline waters, certain inorganic gases such és‘
heliumjand carbon dioxide, etc.). They also are used as places for the
storage or the disposal of ﬁluids (as in the case of the underground

storage of natural gas, or as in the case of the underground disposal
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of industrial waste materials). Occasionally reservoirs are used as
conduits for the transport of fluids (as illustrated by the practice.
of injecting water into aquifers at one place to enable production at |
'anofher). And finally, we may mention the use of reservoirs ae under{
ground chemical reactors, which use has develoéed, among other thingé;
as an outgrowth of in situ combustion (oil recevery) methods where
the catalytic role played by the interstitial clays is of importance.
All the uses mentioned above can be realized as long as access
to the porous formations is provided, for example, by one or more wellg
or eystems of wells, and as long as there is a commercial justificatiop
for the use. Obviously there are many occurences of subsurface rock |

units in nature that potentially might be classified as reservoirs,

In the final analysis, the reservoir engineer is concerned mainyC

with forecasting and controlling reservoir behavior so that an optimumf
result is obtained, namely, so that an effective reservoir use is mede“
that maximizee the realization of the aimsland objectives while mini-
mizing the attending costs and labor. And since reservoir uses in oneé
way or another involve the transport of large quantities of fluids inté

and/or out of the porous rocks (usually through the well system), we

find that the central topic to be understood and mastered by the

reservoir engineer has to do with the description of transport phenomehy;

in porous media systems.

C

]

rm

This then is what is to be discussed here, namely, the fundamen G

principles of reservoir mechanics that describe the fluid flow featureé

1
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of many of the reservoir processes that are of practical interest.
while fluid flow must be emphasized since all reservoir uses involve
the movement of large quantities of fluids into and out of subsurface
locations, subsidiary transport effects such as diffusion of mass and
heat sometimes also have to be taken into account.

We have pointed out already that reservoirs. are bounded regions
of the crustal earth environment. The boundaries have various forms such
as the cap (impervious) rock overlying anticlinal structures, or such
as gouge-filled joints and fault planes, or such as the shale strata
and laminae surrounding or streaking through otherwise porous rocks.

A water-oil contact or a liguid-gas free surface also may be taken
as a convenient boundary even when they are non-stationary, and of

course many other types of structural and stratigraphic'boundaries are

recognized and may be described (e.g., the surface of a salt-plug intru-
tion, unconformities, gradational contacts between clean and shaley sands,
and so forth). The point is that without them the reservoir could not
be a satisfactory container or conductor of fluids even though the
other prerequisites of high porosity and permeability were met.

The business of the reservoir engineer then is to be skillful
in treating the questions attending various commercial uses of the
fluid-filled reservoirs that are (as it turns out) widely but unevenly
scattered in the sedimentary strata and other rocks of the continental
land areas and the continental shelves and slopes. To be skillful means

that good results consistently are obtained, and therefore there is
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always a strong incentive to replace uncertain “frail and error" metho%
of analysis by "logical" methods that depend upon making systematic
use of valid mathematical models of the reservoir processes of intereﬁi
In what follows, therefore we intend to outline how the required modelg
conceptually can be constructed. The practicing reservoir engineer k
then Will be left only with the requirement to dévelop the auxiliary
but practidal techniques where concepts are reduced to particular

programs of computation.

GENERAL THEORY

We start with the geﬁeral conservation theorem (cf. Truesdell
and Toupin,3 page 468) of the form:
Va(py)/at + div (pyv) = o (1)
where p=p(xi,t) is the mass density of a materigl particle that varies{
in space and in.time; y=y(xi,t) is the local value per unit mass of

some intensive property of the material particle; &;&txi,t) is a

velocity vector chosen such that pyi represents the flux of the pro-

perty, py; and ¢ is the associated source-sink function (i¥ any) by

-

Fall

which the local values of the property, py, change via internal mechan%m‘

(e.g. chemical reactions, energy conversions, entropy production, etc.)
Specifically, the intensive property, vy, may be associated withﬁ

a corresponding extensive property, G, by the volume integral definitidns

G = f p(x,.t) y(xi,t) dx. | (2)

<

]
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where G for example can represent such things as the total system mass,
energy, entropy, etc., property to which the conservation theorem (1)
implicitly refers and applies. For example, let G be the total mass
of the kth—component in the partitioned system space of a porous solid
occupied by some multi-component (interstitial) fluid phase, then by
(1) we have:

3, /3t + div (g v) = o (3)

where Py refers to the local values of the density of the kth—component,
and where O will take into account local changes in Py due to chemical
reactions and to phase changes (if any). Obviously, by summing the
k-set of equations (3), we can recover the ordinary mass conservation
theorem, or:

dp/dt + div pv = O (4)
where v has the special meaning of the center of mass velocity of a
material particle, that is, v is the mass average value of the local
&k values, or pv = z;mik.

In describing dissipative transport phenomena, however, we need
to use (1) additionally as an energy and entropy conservation theorem,
and furthermore we need to introduce certain constitutive assumptions
in order to arrive at determinate formulations of particular processes
Oof interest. 1In connection with the latter we make particular use of
the Onsager formalism (cf. for example, de Groot and Mazur,4 also

Luikov and Mikhailov,5 also Fitts,6 etc., etc.) which reflects the
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A

expected linearity for low intensity transport phenomena between
generalized fluxes, Ji’ and generalized forces, Xj‘ of the form:

J. =D,.X, withD,. =D_,
i 133 1] jt (5)

where Dij is a transport coefficient of tensorial rank eéual either
to the sum of the tensorial ranks of Ji and Xj (anisotropic cases),
or to the difference of these ranks (isotropic cases). Note further
that the summations called for by (5) must be in accord with Curie's
Theorem as regards the equivalence of tensorial-rank of all summed
terms.

For our purposes in treating uncoupled processes, and keeping
in mind relevant diﬁensional considerations, we give (5) the expliciti
form: | |

o2 — v) = -D-(grad ¢'?) (6)
where ¢ representé the tbtal local energy per unit mass of material
particles; henge jréd ¢ is proportional té the driving force giving
rise to the transport process of interest. Obviously, we may set
y=¢ in equation (1), which when combined with (4) and (6) yields:

ol (3p/dt) + v-(grad ¢)] = o + div[(pD/2) (grad e) ]
| (7)

where g now can be set equal to zero since we assume energy is neither

| :
being created nor destroyed (i.e., zjw = const.). %

Furthermore, an auxiliary useful relationship, expressing the é
rate of entropy production per unit mass, §, for uncoupled and coup15§

processes, respectively, is given by:
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S8 = -(DAg)(grad w)z(cos B = Dij(xi)(xj) (8)
where B is the angle between the directions of the vectors Ji and Xi
(as will be non-zero for anisotropic cases), and where @ is the local
thermodynamic temperature.

Now, in the important case of "Le Chatelier" coupling, as is
to be expected for the case of interpenetrating continuums (where each
serves as the system space for separate but interacting transport
processes), in addition to the total energy equation (7), we would
also make use of the analogous sets of equations derived from (1)
and (5) of the form:

Pl (g, /3t) + v, - (grad ¢,)] =

aiv [(p/2) (D, (grad o)) + D (0,/0) " *(grad 0111 (9)

where the Dij are the coupling coefficients which are to be determined
by suitable experimentation. Similarly, the Dii diagonal coefficients
are to obtained by special experiments with coupling avoided, and the
D-coéfficient of equation (7) is to be obtained by the experiment
indicated upon taking note of the equality: E?i = ¢. The auxiliary
condition provided by (8) will be of use in these connections.
Furthermore, in applying the procedures outlined above to the
consideration of transport phenomena in the fluid-filled interstitial
Paths of porous solids, an additional relationship would be required
between the internally unobservable microscopic fluid particle velocity

vector, v, and the externally observed macroscopic (approach) velocity
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vector, g. Evidently (cf. Saffman ) the latter is given by:

g=f I'! d*i

f dx, (10)
i

where £ is the fraction of the total volume of a macroscopic repre-
sentative volume element occupied by fluid-filled pore space, and
where further as a simplification it is implied that f(sporosity) is
locally a time-independent constant.

Now, ordinarily it is assumed that Darcy's Law describes the

flow of homogeneous fluids through inert porous media when the Renyold§

Number is low. At least many experimental results have been cited in
7 N . .

the literature (Muskat ) which can be taken as particular integral

solutions of:

g = -(kp/n) grad ¢, | (11)

where g is the approach velocity vector, Pe is the force potential (the

gradient of which involves the sum of the:pressure and gravity forces
per unit mass), k is the so-called coefficient of permeability, andAp
and'n respectively are the fluid density and viscosity.

To make (11) determinate additional statements are needed to.

interrelate the various dependent variables. For simplicity we limit

attention first to isothermal flow of fluids in isotropic and homogeneavs

media (therefcre k is a simple scalar constant), where n is taken
independent of pressure, and where density and pressure, p, ideally

are interrelated by state equations such as:
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p/p = constant (Ideal gas law)

(3p/3p)/p = —ﬁF = const. (12) i

Otherwise empirical correlations have to be established by special
ljaboratory phase behavior studies.

Furthermore, in the case of gas flow we assume that the mean
free path is small compared to the characteristic pore dimensions so
that microscopically a zero velocity boundary condition can be assigned
at the solid surfaces defining the pore walls. In any case we treat
the solid matrix as rigid, and also as chemically inert with reference N

to the contained flowing fluid (e.g. electrokinetic effects are to &

be ignored). |
|

Various workers [cf. especially Hubbert8] have taken note of
the fact that (11) may be thought of as derived from the Navier-Stokes
transport equations, where the interconnection simply involves accepting

the three identities:

I prad (;)a& constant

y v(grad v) dxi =0

I(lap'g) dx, = -(a/k) f dax (13)

that are supposed to hold when attention is limited to steady flow i

(i.e. 3dv/dt = 0).



To relate Darcy's Law (11) to the fundamental conservation
postulates of Newfonian mechanics, of course would provide confidence |
that good results are to be gxpected. Indeed experiments (based on af
dimensional analysis of the Navier-Stokes equations) lead to the con-
clusion that (11) fits observations.for a somewhat broader range
of cases than would be anticipated by the restrictions imposed above
where (11) was linked to the steady-state form of the Navier-Stokes
equations through the eqgualities of (13). Specifically, it has been
claimed (Muskatg) that Darcy's Law can be applied to cases of
unsteady flow of compressible fluids in elastic, inhomogeneous and/ér;

:
anisotropic media, even when the pore space is filled with more than :
one immiscible fluid (i;e. the multiphase flow problem). Furthermore(
it has been supposed that Darcy's Law also leads to good results wheni
heat transfer and mass transfer (diffusion) superimpose on the flow
phenomena. Accordingly, it is commonly concluded that (11) is an
important limiting transpoft equation which is (sometimes, if not %
.invariably) meaningful in the treatment of porous media hydrodynamics(
as in relating the macroscopic fluxes to the driving forces. Combinh@
(11) and (12) with a mass continuity statement derived from (4) and

(10), that is, with:

f 3p/3t + div (pg) = O » (14)‘

then is assumed to give the wanted equation of motion in terms of a
single dependent variable. A potential flow form often is thereby

C o - . . 10
indicated (Muskat,9 Polubarinova-Kochina, etc.).
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In the above paragraphs we have indicated the frequently cited
basis for accepting Darcy's Law, (11), tacitly as the starting point
in ensuing analyses of reservoir performance. Without fully examining
the consequences, we have asserted that this procedure has been justi-

fied because of the alleged links between (1l1l) and the underlying

microscopic descriptions as derived from Newtonian (continuum) mechanics.

It is clear however that in the final analysis, direct appeal must be
made to experiment to be reassured that Darcy's Law leads to good
results in particular cases. Furthermore, it is necessary to show
the degree of consistancy between Darcy's Law (11), and the basic
transport equations, (7) and (9).

Thus, we are now ready to consider from a new point of view an
important application, namely the isothermal, single phase flow of a
homogeneous fluid through locally homogeneous elements of porous solids
that themselves can be regarded as rigid and chemically inert. For
this case we retain the Darcian assumption that the driving force
giving rise to the bulk flow can bq expressed in terms of the gradient

in the mechanical energy, Pe as défined by:

- [ee + f dz + ¢

= onstant
og = | p 2 (15)
where g is the acceleration due to gravity vector, and z is some
relative elevation above an arbitrarily selected datum plane. This

is because, in the case chosen, no other energy changes in time or

Space occur. It is thus clear that ©¢ represents the mechanical
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e

energy per unit mass associated with the coordinates X, and t, made

up of the sum of the pressure energy and the potential (gravitationalg

energy per unit mass. If explicit reference also were to be made to
the kinetic energy (inertial force) part, then we might write an

acceleration potential in the form:

‘¢% = J gﬁ + g sz + (g-g)/2f + constant

(16)

where by the reasoning of taking the averages of (13) we are justified

i
£
e

in saying that the kinetic energy per unit mass is proportional to the

square of the absolute value of the vector, g, divided by the porositg
B

In these connections, however, when we recall that we shall

' be dealing with the gradient of the potential as the driving force,

we shall soon find a basis for showing that in many practical cases:

grad ¢% grad ¢ . = (1/p)grad p + g (17)

since by calculation we £find that the acceleration force will
assume values a thousand or more times smaller than the pressure and

gravity forces.

Now, taking y=pp=the local value of the mechanical energy per

unit pore volume of the element, dxi, we may combine (7) and (10) to

i

yield (for porosity constant):

fp(a¢f/at) + pg- (grad ¢f) = g + div[(pfD/2) (grad ¢Q]. (18)

To make (18) determinate we must put the source function, ¢, in

explicit form, and this is done by making use of the idea that the
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| mechanical energy driving force acts only against fluid (viscous)
friction in causing flow.

Specifically, we say that ¢ in this case is identically equal
to zero. This follows from the observation that in our system it is
only the mechanical energy as defined by (15) that is changing in
time and in space during the flow transport process. All other
components of the local total energy remain fixed and unchanging,
and beyond the small amount of heat generated by the friction of the
motion, there are no energy conversions from one form to another.
And from (8), it is clear that the entropy production associated with
the transport will be given by:

S6 = -(£fD/4¢) (grad wf)z. (19)

In any case, with ¢=0, (18) expands to:

dp/dt + (g/f) - (grad wf)=

(D/2p) (grad wf)-(grad p) + (D/2) (lap wf) + (1/2) (grad gg-(grad D).

(20)
Now (20) is a partial differential eqguation that involves three
dependent variables of the xi,t-coordinates, namely e P and-g.
Taking porosity as a constant, we have from (14) the mass conservation
statement interrelating density and the vector g. We also have from
the definition of (15) a relationship between ¢£, p and pressure,
Meéaning that appeal still must be made to an eqﬁation of state, say

an empirical one of the form of (12), so that p and p become interrelated.
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That is, we reduce the implied degrees of freedom in order to arrive
at a determinate transport equation by making use of the priﬁciple of
mass and energy conservation, and of an equation of state. Additional
however, we must say something about the functional form of the trans- 

port coefficient, D.

Evidently the function“D:D(xi,t....) can be put in explicit fors

only by the interpretation of results of a set of relevant experimentsg
or by making use of the postulate of a phenomenological model. To §
illustrate this idea we now considerably simplify the problem under %
'qonsideration by limiting attention to the low intensity, isothermal
and steady flow of-an incompressible fluid in an isotropic porous
medium that is rigid, ihert and geometrically homogeneous. As already;
noted, for this special case there is ampie experimental evidence to
leave the fact unquestioned that Darcy's Law (11) holds. For this
special case form (14) we would have:

div gv= 0 - hence lap Op = lap p= 0 (21).
Accordingly, we can take advantage of thg fact that both g and grad Pe
are constants having the same vector direction in the isétropic
case, hence it is a simple matter to find the integrals of (1l1l) and
(21) so that the permeability coefficient, k, can be directly evalﬁateé
by observing the components of g and the éssociated components of
grad p [that is, we can do this as long as the fluid properties,‘n

and p, are independently known].
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Defining a Renyolds Number arbitrarily as (kl/an)/n, many
observations have been reported to show that there is little to question
about the applicability of (11) for the special case under discussion
when this Renyolds Number is sufficiently low (say less than 10).
Furthermore, we can gain further confidence in Darcy's Law, upon taking
note of Hubbert's derivation8 of (11) from the Navier-Stokes equation
for the steady-state case where p is taken as a constant. Lastly,
we may note that (11) has the linear form analogous to other transport
equations of Ohm, Fick, and Fourier, as might have been expected on
intuitive grounds alone.

Accepting, then, (11) as valid for the special limiting case
under discussion, we now reduce the general flow equation (20) to
apply to the same special case. That is: (a) we drop the time-dependent
term; (b) take density as constant; (c) recall from (21) that lap 0. =
zZero; and (d) observe that the scalar product of two vectors having
the same orientation is equal to the produce of the absolute magnitudes
of these vectors. This gives finally:

g = (£/2) (grad D) (22)
Combining (22) with Darcy's Law (11) then yields:

D = -(kawf/nf) (23)

Equation (23) only expresses the result of a particular set
Oof experiments, and indeed we have already noted the necessity of

always making an appeal to observational information in order to



finally render the generalized transport equations determinate for each
special case. What this means is that if subsequently we want to
describe a more general class of flow processes, for example, where
unsteady-states of compressible fluid flow are considered, we cannot
presume that D as given by (23) constitutes a proper univgrsal func-
tional relationship for the more general flow cases. A proof of this
idea will be given shortly, at least by the way of citing some examples, !
but first we examine an impgrtant implication of (23) as this relates
to the case of steady flow of an incompressible fluid. |

Combining (22) and (23) we see immediately that for the special
case under discussion, Darcy's Law may be rewritten in the form of a
velocity potential, or:

9 = -grad [(kp/n) (p.) ] = grad [(£/2)(D)] (24)

Now it is well known that the existence of a velocity potential connotes
the idea of a reversible transport process occurring in a conservative
system. This follows from the vector identity which states that the
curl of a scalar gradient is zero, hence the macroscopic equation (24)
appears to describe an irrotational motion even though we realize that
microscopically a finite vorticity exists (i.e. curl v #¥ 0). 1In inter-
pretation of the implications of this observation, we note by combining
(19) and (23) that the rate of energy dissipation per unit volume is
given by pg-grad Qe = l/2(kp2/n)(grad ¢f)2. Given the case of where

grad Or does not exceed one atmosphere per centimeter, and where k




k3

does not exceed 10—7 cms2 (=10 Darcy units), then for the case of flow
of water (P=1, n=10-2), the energy dissipation is measured by the
exceedingly small quantity o% 0.5 Joules per second per cubic centimeter
(Qb.S watts of power). In other words, in close approximation we may
say that flow transport from the macroscopic point of view occurs as
an isothermal process in the absence of any externally superimposed
temperature gradients. (Note the specific heat of water is about 85
Joules per gram at 20°C. Furthermore, in the above case, g=10 cm/sec).

With the above remarks now made, we are ready to examine the
doubt ful and so-far unverified’postulate that Darcy's Law also describes
the more general regimes of porous medium flow. Three limiting cases
will be discussed first, namely: (a) the steady flow of a slightly
compressible liquid where the density-pressure variation is that given
by (12); (b) the steady flow of an ideal gas in i;othermal expansion,
where the density is taken as linearly proportional to pressure; and
(c) the unsteady flow of an incompressible fluid. 1In all of these
cases we choose for simplicity to ignore the effect of gravity forces;
hence we are permitted to take the local pressure as a measure of the
local value of the potential function. Thus, by (11) and (14) for
these three cases we would have: (a) lap p=0; (b) lap p2=0;~and (c)
lap =0, respectively.

By simple algebra then, we may obtain from (20) with the aid
O0f the other relations already prescribed, the following compatibility

Condition:
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A+ g+ (DfpA/2)(grad o) - (£/2)(grad D) = 0O (25)
where for the three cases under discussion, the pérameters, A and A"j

have the following values:

A A
case (a) 0 B.P
case (b) 0 Po/Po
case (c) f(op/at)/(grad p) 6

In any case we see that (25) reduces to (22) only whenever both A and !

X are zero; hence we would conclude that Darcy's Law is not precisely §

compatible with the general theory embodied in (20) for the three cas

under discussion.

A

On the other hand, a numerical check will show that the degree

Dl

of incompatibility is not necessarily large, for example, if the mean |

pressure is not high. Thus, for the steady flow cases, when Darcy's

Law is substituted back into (25), we find that the closeness of the
term, (l-pA), to unity measures the degree of incompatibility. And
for water at ten atmospheres, oA is of the order of 5 x 10—4, while

for air at ten atmospheres, ) is of the order of 1.3 x 10_2. On the

other hand, for the unsteady flow case (c), it is easy to demonstrate
that a rather violent change in pressure with time is required befofe
the ratio of Ato |g | is large enough to indicate an observable
discrepancy between the presumption of the validity of Darcy's Law

and the acceptance of the general theory outlined above,

e R e T
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In these connections, however, it will be realized that we have
only attempted to demonstrate the degree of compatibility; hence the
point may be made that any compatibility condition, while necessary,
is not sufficient to preclude the possibility that experiment will
show significant departures from Darcy's Law for the general flow situa-
tions. That is, we acknowledge that by experiment we may find that
the transport coefficient, D, as reflecting the material properties
may have a form in the more general cases quite different from that
given by (23).

Furthermore, in practical cases the relationships between density

and pressure for various gases and ligquids may depart significantly
from the ideal relationships mentioned above, in which case the com-
patibility relationship (25) itself no longer applies.

Additionally, we are prompted to consider the possibility that
the solid matrix itself is deformable as reflecting a balance between
the internal pore fluid pressure and the externally imposed mechanical
stressing of the solid matrix. For example, ps, the compressibility
of, the solid rock elements, may be finite, and additionally we may
imagine that the bulk volume of the solid matrix changes (via subsidence)
"ith the internal pore pressure as measured by the compaction factor:
%:= + (l/Vb)(aVb/ap), where Vb is the bulk volume. Accordingly, (14)

ould take on the more general form:

[{¢ﬁs+pb)(l—f)/ﬁF] + £] (3p/3t) + div pg = 0 (26)
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Furthermore, with porosity now changing with time and position, equatig,

(21) and (10) yield in addition to the terms appearing in (20) the

"'.‘)’

following: pe(3f/3dt) + [ (Dp/2) (grad ¢) (grad £)]. Slnce the derlvatlvi

| | %SI
of porosity (3f/3t, grad f) appearing in these terms are all each
proportional to the “"compressibility" coefficient of (26), namely:

(#+8)(1-£f)/8,., the compatibility ef Darcy's Law with the general
S 'C "F

theory becomes accordingly progressively weakened.

uncertainty remains about the meanlngfulness of employlng Darcy s Law %
for the even more general cases of common.ihterest, (say) such as refé
to the unéfeady flow of compressible fluidsvin'anisotropic media, or
to unsaturated flow of heterogeneous f1u1ds, with gravity forces take§
into account, etc.

Indeed, the last remark brings us to‘the main point of this
paper, namely, the proposition that (20) constltutes the only logical
description of flow of homogeneousvflulds for the general cases,
Darcy's Law (11) constitutes a partlcular solution of (20) for a very
special limiting case of steady flow of incompressible fluids. Futher
more (20) can not be reduced to determinate ferm unfil the functional
form of D:D(xi,t,...) has been established'by'relevant experiments.

If a rough but instructive analogy will be permitted, we may

G S B S T R R L e s R R
O .
H

say that (20) bears the same parent relationship to (11) as the Navieg

Stokes equations do to Poiseuille's Law. For eXample, Darcy's Law an%
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poiseuille’s Law are both only Vérified experimentally for the very
special case of steady flow of an incqmpressible fluid; hence substi-
tuting (11) back into (20) lacks the same logic and involves the same
hazards as supposing that the Unstegdy flow of a compressible fluid
in a tube can be expressed properly by making use of the Poiseuille
hypothesis of linearity between a certain flux and driving force.

The fact is clear and herewith brought into focus, that no

real progress can be made in understanding flow transport in porous

%solids until the transport coefficient, D, appearing in (20) has been
;ascertained experimentally under carefully controlled experimental

conditions.

-

‘

EDISCUSSION

In some valid respects the porous medium system space can be

thought of as a "black box." We note that the system space serves as
thevenvironment in which transport occurs, and has the physical
boundaries that either isolate the system space from the surroundings,
Or provide the.surfaces across which mass and energy exchanges with
the surroundings occur (if any). If the.initial state of the system
is an equilibrium one, then‘at least we can say that all forms of
energy are evenly and uniformly distributedbwithin the confines of
that black box, and that no fluxes of mass or energy aré occurring

aCross the system boundaries. Otherwise, we can say little without

further consideration.



Suppose now the system is disturbed in some prescribed way, asf
by introducing mass and/or energy across some portion of the system

boundary. ‘An input function will describe this disturbance, and the

1
possibility always exists to observe an output response as the system%

accommodates itself to the constraints imposed by the input function

And whenever the input disturbance is finally removed, thereafter the

E S

5ystem response is one of spontaneous (if gradual) approach to a futu

re
:
:
|

i

equilibrium state.
Now here we have been treating transport processes determinis-

tically rather than stochasitically. That is, we presume a given

inpﬁt function will always produce the same certain output function,
rather than just the probability of an oufcome as given in the form og
a distribution function. Hence, it has been our aim to develop a |
general theory where, upon the experimental verification of the asso-
ciated constitutive assumptions, the black box becomes adéquately if |
not fully characterized. Then, given the input function, we can pre-t
dict the output function through the thereby attainedvknowledge of
the system response.

To schematize things further, we know that mass and energy are :

conserved in the transport processes of interest. Also we know that

for low intensity transport processes, a linearity between fluxes and
forces of the Onsager form can be presumed; This latter is the

generalized constitutive assumption, which states further that the
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force has the form of an energy gradient function. We next take note
of the fact thét several dependent variables may enter into the speci-
fication of a particular problem, hence we must ascertain their inter-
relationships from other auxiliary conditions (e.g. from appropriate
equations of state, etc.). Finally we are satisfied when we have as
many conditions prescribed as there are dependent variables, for then
we are in a position (at least implicitly) simultaneously to solve
the interlocked equations in order to produce a single equation in
terms of one dependent variable. 1In this equation, however, the
transport coefficients, D also will appear always.

Let us suppose we have chosen (arbitrarily it must be noted)
to have the resultant transport coefficient expressed in terms of E,
the total energy per unit mass associated with the local fluid

particles in motion, where:

(27)
That is, the ej are the local values of the various energy forms
(e.g. mechanical, thermal, chemical, etc.). As a simplification which

loses no generality, we limit attention only to those ej where (aej/at)X

iand (aej/axi)tvare‘non—zero. Furthermore, for any particular system
Y?Space we choose the ej so that they are all independent of each other,

I in the sense assuring that we avoid the need to consider the reversible
| changes from one energy form tovanother. For example, instead of

talking about kinetic, pressure and gravity encrgy separacaly, wae
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lump these forms together and talk only about the total mechanical

energy. Thereby the source function, o, usually can be taken as equal
to zero.

Accordingly, we are permitted to suggest that each (grad ej)
serves as the driving force for a particular type of dissipative transj%
port process.+ Coupling then occurs Between thesebprocesses (oxr at
least the possibility of this must be allowed until independently provg
false) whenever N in (27) is two or larger. And the fotal entropy ’
production associated with the trensport will be proportional to the
associated force-flux summed products.

For simplicity, let us consider two coupled processes (N=2) ,
that is situations where we have super imposed transport arising due

to the driving force, grad e with transport of a different sort

ll

arising due to some other driving force, grad e If porosity is

2"

constant, and if the pore space is occuﬁied by a single fluid phase,

we may write immediately:

fp(3E/3t) + pg- (grad E) = div [(pfD/2) (grad E) ] (28)
Now, since density will be given by an equation of state of the form:
p=p(E), and since g and p are inter;elated'by the mass conservation
statement, it is clear that the form of the transport coefficient,

D=D(xi,t), in (28) can be obtained by suitable experimental work.

*In the case of interpenetrating continua, we may wish to consider theg
same e. types in the adjacent spaces separated by a phase interface g
[cf. ed. (35)1. ,




51

Furthermore, we alsc have the relationships:
fp(ael/at) + pg- {grad el) =
div [(p£/2){D__(grad e )+D_ _(e_ /e )l/z(grad e )}]
11 1 121 2 2
and
fp(aez/at) + pg- (grad e2) =

div [(pf/Z){Dlz(ez/el)l/z(grad e,) + D, (grad ez)}] (29)

where the Dll and D22 transport coefficients characterize the nature

of the two transport processes, respectively, as they would occur each

in the absence of the other; and where the D12 are the coupling co-

efficients. In any case, by making use of (27), the two eguations

e
div [p{D(grad E) - (D, +D._[—= 1/2

11 l2[e

(29 may be added and then combined with (28) to yield:
e
) -(D_._+D_  _[—
(grad el) ( 5 [—1]

11/2
2 1l2-e

) (grad ez)}]=0 :
2 2

(30)
Also, by making use of the entropy production theorem, and the energy
flux equation, the D, Dll’ D12 and D22 transport coefficients further

are interrelated by the auxiliary relationships:

2 1/2 2
(Dll/el)(grad el) +2D12(grad el)(grad e2)/(ele2) +(D22/e2)(grad e2) =
D(grad E)Z/E = (D/E) {grad el)2+(grad e2)2+2(grad el)(grad e2) =
(D..+D ) (grad e_){grad E)/{(Ee )l/2+(D +D_ ) {(grad e_) (grad E)/Ee )l/2
117 19 1 : 1 227712 2 2 :

(31)

We have already shown in conmection with (28), however, that

D can be evzluated experimentally; hence we see quickly from (29) with
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(30) or (31) that we have the determinate set of implicit parametric

*

eguations:

Fp(Dyy.Dp5) =0

Fy(Dyy:Pyp) = 0 :

Fy(Dy1:Dyp:Pyp) =0 (32) §
which is to séy that the other transport coefficients'Dll, D12 aﬁd %‘

D22, also can be evaluated experimentally. Thus, with all of the

transport coefficients thereby determined, equations (29) then can
be used with confidence to predict future events in particular trans-
port systems for a variety of other cases that may have ﬁot been
studied systematically in the laboratory.

In these connections we must remark that, in general, the
transport coefficients obtained by one set of experiments cannot bé

. ‘ -
used necessarily when fed back into the transport eguations to predict

=

events, except in certain particular cases. Thus we may imagine a

hierarchy of transport situations extendiﬁg as a spectrum from the

L
most general cases to the most simple ones. For example, the unsteady%

flow of a compressible fluid refers to a considerably more general

case than does the steady flow of an incompressible fluid. We simply

say that the experiment whereby D is evaluated must be performed underj‘

SR e

somewhat more general conditions than those that apply when the

predetermined D-function is subseguently used in arriving at calculate%

. . +
predictions.

"Here we should cite Truesdell's opinion3 that viscosity as evaluated §°
by a Poiseuille experiment really gives no information about the nat -
of the transport coefficient as needed at the Navier-Stokes level of §
reference. ' . 4
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Before discussing some examples of coupled processes, we can
further point out that the evaluation of th; set (32) can be further
simplified by undertaking subsidery experiments where, successively,
(grad el) and (grad e2) are set equal to zero. Thereby, the coeffi-
cients, Dll and D22, respectively are given since the coupling between
process artificially but effectively has been avoided.

Additionally, we have a basis for knowing a priori something

about the coupling coefficient, D In the limiting case, of course,

12°

D12 will be zero, which would reflect the situation that the concurrent

processes for some reason have no influence one upon the other. As
én example, solid state diffusion in the matrix of a porous solid
generally would in no way modify fluid flow through the pore space.

On the other hand, we recognize that the entropy production
for dissipative processes must be positive definite, and this by itself
puts an identifiable constraint on the magnitude of the transport
coefficients. Thus we would say that the left-hand side of (31) is
a positive number, or:

A+ D Y 0 (33)

2
Dllx + 2D 22

12
where )\ = (e2/el)l/2(grad el)/(grad ez).

It immediately follows, therefore, that:

2

(0,,)° ) (D)) (D,),) (34)

12

in order to insure real roots for the quadratic (33). Thus we see

that the coupling coefficients, Dij’ will be of the same order of the
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A

diagonal coefficients, Dii' in the event that the Dii themselves are

of the same order -- otherwise D.j will be zero (implying no coupllngi

On the other hand, if the Di' differ from each other (by whatever amoyyg
-

:

Un

]

the Dij (if not zero) will display intermediate values which will be §
, E

=

%

closer to the smaller rather than the larger of the Dii values. Furt

{
:

|
provides no information whenever the various (J -X. ) terms have differj
:

more, given the constraint of Curie's Theorem, the inequality (34)

g

g

tensorial rank.

We are now ready to make a detailed analysis of some important
coupled processes. We choose first to examine the rather Simple case
of steady two-phase flow (W=wetting fluid, N=nonwetting fluid), where;

the two fluids are both incompressible and have the same density, p,

g s

and viscosity, n. As a further simplicity, we say (grad @W) = (gradéﬁ

= (grad ¢), implying for example that we limit attention to situations

where the saturation and the capillary pressure gradients are zero.

%
.
:
i
:

From one point of view we imagine we are dealing with a uniformk

partitioned pore space, that is with two locally homogeneous and 1nteﬁ;

[
o)
-
E
=
:

penetrating continua each filled with its own immiscible fluid; still i

there will be a fluid-fluid inter face of contact which amounts to a
distinctly different sort of boundary conditions as that provided by 2
the various fluid-solid surfaces. i

Accordingly, from (29) we have:

%gw/f = (grad Dll)(sw) + elgrad DlZ) + Dlz(grad o)



and Evfff = B(grad DlZ) + Dlz(grad g + (grad D22)(l—sw) (35)
where ~={(g Y @q) 1/2 and where ﬂh(s mN/mW) . Note, in (35) we
may wohstitute:

(grad ») = =(@/q) (grad B) = (sys /qumal) Y2 (p J/2poyg) (grad o) (36)

where p_ is the capillary pressure defined by the local pressure
difference between nonwetting and wetting fluids at their interfacial
contacts, or: p_ = p(@N—¢W) for systems where gravity forces can be
ignored. In any case, published experimental data verify that coupling
does occur for the multiphase flow process under discussion, since it

is observed that the sum, invariably is less than the Darcian

Oy
flow, g, as would be calculated by (11) in the event that the saturation
of either of the immiscible pore saturants was increased to 100-percent.

Indeed, on the presumption that the coupling coefficient, D12'
is a negative function, we see from (35) that the consequence of this
coupling is that the nonwetting fluid and the wetting fluid alike seem
to have a reduced conductivity, than would be the case in the absence
of coupliﬁg.

Specifically, in (35) we are tempted to use the definitions:

(grad D..)

11 (2 k&p/f swn)(grad ¢W)

and (grad D_.) (2 k'p/f an)(grad mN) (37)

22
where the analogy with the empirically established form of (23) will

be evident. This is to say that in the absence of coupling we would
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expect the Darcian permeability,'k, to be equal to the sum of the

effective permeabilities to the wetting and nonwetting fluids, namel

k=kﬁ%k& in such a case. This idea is consistent with the model of

electrical resistors in parallel where the total conductance is given%
>

by the sum of the conductances of the separate elements. But evidenp%
in two-phase flow in porous solids, the proper and more realistic ﬁ
model is one of a complicated network form of branched resistors in
both series and parallel array, from which we derive the expectation
that the presence of elements of one of the immiscible fluids blocks
and provides impedence to the transport of the other. The resultant

effect, then, is to be measured.by the coupling coefficient, D12

The evaluation of this coupling coefficient empirically is a

straight-forward process, however, Combining (35) and (37) with Darc

L

s

Law (11l), for example, yields:

sw(grad Dll) + sN(grad D2 ) = (2 kp/fn) (grad o)

2

and

-(2/£) (kw+kN-k) (p/n) (grad ¢) = (at+p) (grad D12)+D12(grad o) (goWﬁpN)/ch
(38)

where k is the specific permeability. In the second of (38) we have

an ordinary linear differential eguation in D12 that can be solved

easily in terms of the saturation parameter. ‘Indeed, as a close

approximation valid for the high permeability cases where we may take:

¢W:¢N (i.e. pcgo, hence agﬁ and grad g=grad p=0), the right-hand
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member of the second of equations (38) reduces to a particularly
simple form. On the other hand, if we relax the constraint imposed
above where we set ™ = constant and Py~ Py= constant, then the first
of equations (38) takes on the more complicated form of involving ‘
(grad Dll) and (grad D22) terms explicitly, in which case special w
experiments are reguired to observe dyy with (grad ¢N)=O' and dy with
(grad ¢w)=0, respectively.
Many other cases of coupled processes could be discussed such

as those involving superimposed thermal gradients perturbing fields of

bulk fluid flow, and such as those that give rise to the well-known

electrokinetic effects. Such processes rigorously are to be treated r
by the methods outlined here, but for our final illustrations of the
principles involved we consider the coupling aspect involved both in
yfhe case of the miscible and immiscible displacement processes.

Thus according to the theory of coupled process now under ;

discussion, we would be inclined to describe miscible displacement

by the set of equations

of(3w/at)+pa- (grad W) = (£/2)div((D,, (grad u)+nlz(u/¢)l/2(grad'¢)jp]

pf(dp/3t)+pg- (grad o) (f/2)div{[D12(@/u)l/z(grad u)+D22(grad ©) 1p}

(39)
where p is the chemical potential, ¢ is the mechanical energy potential,

Dll is the molecular diffusity, D22 is the Darcian flow conductivity

coefficient, and D12 again represents the coupling coefficient. In
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these connections, of course, the special equatidn of state must be

employed in evaluating the mechanical energy function, ¢ (cf. Guggenh,e%n

,§J
page 406). ' %
.
As for the treatment of the transients of two-phase immiscible ¢

displacement processes, we adopt first the idea that the total energyié

balance statement is given in the form of equation (28). Furthermore,:
for (29) expressing mechanical energy conservation in each of the in—éw
compressible fluid phases (filling the two halves of the partitioned
pbre space) we write:

fsw(aww/at)+gﬂ-(grad @W)=(f/2)div[Dll(grad stW)+aD12(grad gNsN)]

o (2a/2¢)+q- (grad qy)=(£/2)divl (D) ,/a) (grad gusy)+D,, (972d gsy) ]

(40)

R

where it will be immediately seen that (35) represents the steady flow§

. 1/2
special case consequence of (40). Here a=[(swmw)/(sN¢ﬁ)] .
Accordingly, we conclude that (40) is needed along with the

total energy equation in order to have the coupling aspect of the

L S

immiscible displacement process taken explicitly into account. Again,:

i

however, the analysis as here given is sterile and impotent unless and.

=
2
Z
=

until the transport coefficients have been evaluated by experimental
methods.
Above we have set out to formulate the general description of

low intensity transport processes as observed in the interstices or

porous solids, in a way that introduces a minimum of constitutive

assumptions, and in a way that reveals just what experiments must be

B
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undertaken so that these cdnstitutive assumptions may be verified for
particular cases. We find that even for the case of uncoupled processes
the general theory suggests that the ordinary (classical) methods of
treating the attending transport problems in some cases have been
over-simplified. The extent of the discrepancies, if any, between the
nature of these transport processes as usually described versus as their
nature actually is, cannot be quantitatively forecast at this stége.
This is because much experimental work remains to be undertaken before
answers even to the simple guestions can be given with assurance.

The most we can say now is that the anticipated discrepanices between
methods of analysis as outlined here, versus as ordinarily practiced,
should prove especially significant in the important case of coupled

transport processes.

CONCLUSIONS

In the previous sections we have derived in implicit (and some-
~times explicit) form the transport equations governing certain limiting
cases of oil recovery processes. For example, we could have had’in
mind oil recovery by volumetric expansion, by miscible displacement
pProcesses, by depletion drive, by replacing the produced fluid with
another immiscible one, by gravity drainage, or by gas cycling to
entrain the vapor of a residual liquid fraction.

The transport eguations all were derived from the conservation

(of mass, energy, momentum, etc.) concepts that are in fact consistant
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with statistical mechanics nterpretations, and that also form the

fundamental theorems of Mewtﬁmian (continuum) mechanics as well. 1In
presenting them, however, only a few limiting cases were treated, and
two reasons may be mentioned to explain why no effort was made to be
systematic in treating all possible cases in detail. First, generali
a set of equations to cover the more complicated cases usually will

be no more difficult than deriving them in the first place as applylng

fia

to the simplified special cases. For example, treating a recovery
process involving three phase rather than two phase flow does not
1ncrease the conceptual difficulty of stating the problem, although
in most instances it will greatly increase analysis difficulties. §
|

Indeed here we have made no reference at all to how the transpg

equations are to be solved in practice. This is because such an
exercise in applied mathematics would have taken us well beyond the
intendedscope of this paper. And so this then becomes the second
reason why illustrative cases have been éited at random rather than
systematically, for we have taken the position that it is premature t
present a "cook book of recipes" as a guide to the practicing reser-

voir engineer. While it represents a somewhat exaggerated claim even

R e

yvet, still for the sake of argument one can take the position that as'j

|
|
;E

access to high speed computers increases, and as skill in achieving

stability and convergence in numerical methods of solving differentia

equations becomes commonplace, the mathematical part of the reservoir

engineer's work can be left to the technicians and the program writer
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In a nutshell, it becomés the true responsibility of the réser—
yoir engineer to be sure that the mathematical models that are postula-
ted and that are to be adopted, are physically meaningful. In effect
the reservoir engineer's role is to state the problem to be solved in
a germane way, and then to tell the technician where he can obtain
the rejquired input information appertaining to initial and boundary
condition, and appertaining to the empirical data corrleations that
render the theoretical statement complete. 1In this frame of reference,
the reseévoir engineer is then left free to sit back (or to work on
other problems), until the mathematical solution of the problem has
been obtained by the technician, at which time the reservoir engineer
can then become involved in the interpretation of the results so
obtained.

Perhaps it can be fairly said that the foregoing Utopian life
is not one which many reservoir engineers are free to enjoy today.
For one thing, a progress is implied above, which admittedly has not
vet been broadly achieved. Still this paper has been written in
anticipation of what the general possibilities will be in the fore-
seeable (if not the immediate) future. And most will agree that pro-
gress and the possibility of progress are emerging at such an accelera-
ting pace that a visionary approach to these questions is abundantly
Justified.

In conclusion, it has been shown that stating the governing

transport equations that describe oil recovery processes can be done
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without great difficulty. The same then must also be true with con-7§

cocting valid descriptions of the reservoir behavior aspects of all

guestions related to the various reservoir uses, including uses of
|

reservoirs for storage, disposal, and transport of fluids, and usescé
reservoirs as natural (catalytic) environments for chemlcal reaction
The more difficult part of reservoir engineering is supplying é

the input information needed to complement the theoretical concepts, ¢

so that finally a determinate problem is formulated. Admittedly the

labor, cost or involveﬁent of the engineer's time. Having made the
point, however, this latter aspect need not be discussed here furthe
Also beyond the scope of this paper is any treatment of the interprei§
tation problems, and of the checks for reliability that must follow
complete any reservoir engineering analyéis.

Perhaps the most interesting conglusion to be drawn from this :
paper is in the way close analogies can be drawn between the form of
the analytical description of the different transport processes.

Indeed these analogies extend beyond the similarities in form
of the governing transport equations. Thus, it has been shown, for
example, that precisely the same types of experimepts and measuremen
problems must be undertaken and faced before the reqguired empirical

data are obtained as needed to complete and make determinate the

g
5
|

various cited applications of the basic theoretical statements.
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Furthermore, it appears in general that the major impediment to progress
now has to do with how development of experimental techniques has not

always kept pace with developments in theory and analysis.
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NOTATION

curl the curl (vorticity) operator

Dij a transport coefficient

div the divergence operator

e,E local energy of fluid particles (per unit mass)
£ , fractional porosity of medium

F designation of a functional relationship

g acceleration due to gravity vector

grad gradient operator

G some extensive property corresponding to vy
Ji some generalized flux

k permeability coefficient

lap Laplacian operator

P, pc fluid pressure, capillary pressure

q Darcian flow velocity vector

s entropy production rate (per unit mass)
Sw'SN fluid saturation parameters (fractional)

t time

g,‘& microscopic fluid particle velocity vectors
Vb bulk volume of a reference porous medium ( = f dxi)
X Cartesian space coordinate

Xi generalized force

o 8 parameters, see ej. (35)
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Fp‘ﬁs'ﬁc compressibility facotrs

y intensive property corresponding to G

A A parameters, see eq. (25)

) fluid viscosity, chemical potential, density
6 temperature

o gsource function

© energy functions
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Recalling the remarkable inguisitiveness of the early Penn
state workers, I have done my best here to reflect the adventureous
mood of yesteryear before so many workers became computerized and
programmed to conform to the stereotyped viewpoints common today.

A rebirth (if not my reformulation) of reservoir engineering
is surely needed. But where will the seeds of new ideas be found,
and who will know how -- and be free, and be disposed -- to fertilize
them, and when again will the universities and the indus*trial labora-
tories serve as hotbeds for the growth? And how can the unconvinced
Director of Research be answered, who (for example, upon seeing the
material discussed herein) commented as follows:

Tee... I believe that you are flogging a dead horse;
certainly you seem to have ignored much relevant work
while including much I thought was decently buried
....2uot homines, et cetera..... "

My response: Judgments will yield lots learned if examined, such as
insight disclosing thoughts held in secret!

One seldom hears of engineers

Suspecting flaws in Darcian laws,

Or sees absurd to have it heard

That Newton knew what fluids do

When sheared and stressed and decompressed,
And caused to flow however slow.

How sweet a hoax! How nice for Stokes
Who, grabbing claim to Navier's fame,
Saw scattered dots in data plots,

Thus was deceived in what he beliieved,
And missed the law that Poiseuille saw.

Forgetting what we see is not,

We think it wise to improvise,

And gocd to guote what great men wrote,
Glad (with them dead) Truth stays unsaid.

...attributed to S. T. Yuster...
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COUPLING PHENOMENON DURING MISCIBLE DISPLACEMENT

Hans -Olaf Pfannkuch
Introduction

The physical phenomenon of hydrodynamic dispersion is defined
as the process of mixing that occurs when heterogeneous but fully
miscible fluid particles move through a defined interstitial pore
space in single phase hydrodynamic flow.

In technical systems these conditions are found in miscible
displacement processes, as secondary recovery methods or in the
intrusion of sea water into coastal aquifers, The following discussion
will limit itself to ideal conditions. That is, the porous matrix will
be considered rigid and chemically inert. It is assumed to be locally
isotropic and homogeneous. The fluids have the same physical
properties, especially identical viscosity and density. The different
species of fluid particles may have different chemical potentials or
they may be only marked differently as radioactive tracer elements,
say. The microscopic flow laws are defined by Darcy's relation for
single phase fluids. Under these conditions the factors contributing
to the mixing are the fluctuation of the local flow velocities around
the mean displacement velocity and the molecular diffusion, The local
flow velocity in a pore varies with its shape, size and orientation with
respect to the principal flow direction, Thus in linear flow a number
of marked fluid particles released at the same instant and same cross-
section into the stream will arrive at different times at a subsequent
sampling point due to the different lengths of their tortuous flow paths
and due to the different velocities encountered in pore channels of
different diameter,

This phenomenon can best be visualized by a simple experiment
where an abrupt concentration change is effectuated at the inlet of a
linear flow system and the subsequent concentration distribution is
obtained at a sampling point downstream. It is characterized by a
delay or dead time and a dispersion. The delay is linked to the
macroscopic propagation phenomenon and measured by the ratio of the
travel distance by the over-all translation velocity of the center of
mass of the quantity under consideration. The dispersion is a physical
Process that can finally be attributed to the law of increasing entropy
(Fig, 1).

e

X(t) ¢

'EDisEersiog o——



10

If § (t) is the response of the linear process to an unit step input,
F (t), the general response to an arbitrary disturbance x(t), then
their relations can be expressed in general form by using the
convolution or superposition theorem

1

F(t)= | x(t-2') d§ ct) W
-00

where t' is the delay time. From these response characteristics
deterministic or probabilistic interpretations as to the mechanism
underlying the microscopical processes can be made.

The S-shaped response function in Fig. 1 immediately leads
to a comparison with error function curves, that are special solutions
of the diffusion equation. As a matter of fact, some of the earlier
attempts to describe dispersion phenomena, especially for the case
of linear miscible displacements, consisted of fitting experimental
data points of breakthrough curves to error function curves (cf.
von Rosenberg (19), Aronofsky and Heller (2) Blackwell (4) ). The
fit for these preliminary investigations was considered to be sufficient,
and hence the underlying mechanism was described to be of the
diffusion type without further quantitative specifications. The trans-
port coefficients had to be found by experiment.

However, a close fit of experimental points with the error
function curve is only obtained for the central part in the most cases,
whereas deviation occurs on the leading and tailing end of the break-
through curve (cf, Pfannkuch (14) ). The deviation is always in the
direction of a greater dispersion than that expected if standard
mean deviations are obtained from the center part of the curve.

The magnitude of the deviation is greater than can be accounted for
by experimental inaccuracy. Several attempts to explain the phenom-
enon have been made. Warren and Skiba (28) investigate hetero-
geneity and anisotropy effects of the porous medium itself, The
possible influence of retention of original saturating fluid in dead-
end pores expressed by a capacitance model and subsequent diffusion
out of these pores into the flowing stream has been discussed by
Coats and Smith (5)*% who introduce an additional "Quasi-source
function' term responsible for the distortion in the concentration
profile,

This paper proposes to investigate other possible explanations
for the experimentally observed deviations., It will consider the
situation when coupling effects between bulk flow and molecular

*see also discussion of their paper by Rose (16).

Tl

diffusion can be expected. In order to determine under what
circumstances this coupling may occur the main theories dealing
with hydrodynamic dispersion and miscible displacement will be

reviewed.

Model Concepts of Dispersion in Porous Media

The older theories explaining the mechanisms of hydrodynamic
dispersion can be divided into two groups. The first uses simple
physical phenomena for which particular solutions on a micros copic
scale are known. These solved cases are then adapted and extended
to greatly simplified physical models of the complex situation in the
porous solid, Examples are diffusion in a capillary tube and mixing
in cells. The second approach, in circumvening the ignorance of
microscopic conditions and the impossibility of a deterministic
solution, takes statistical averages to obtain the macroscopic para-
meters. Essentially it describes the probability function of a given
particle to be at a certain place at a certain time‘f(x, y, z, t)o A
number of combinations of both try to join the advantages and to
eliminate the shortcomings inherent in each one of these theories,

A third approach develops a theory of transport processes in porous
media from a continuum mechanics and irreversible thermodynamics
point of view.

Physical Models

Dispersion in a Capillary Tube, All theories making use of the capil-

lary analogy go back to the work of G. I. Taylor (26) who defines an
effective diffusion coefficient describing the dispersion of a soluble
matter (dye) in axial direction while flowing through a capillary tube.
His treatment is an example of a straight-forward solution of the
physical problem. Some limiting assumptions are made as to the
time scale for which the molecular diffusion will smooth out concen-
tration variations over the cross-section of the tube with radius a.
This time scale has to be small enough so that no appreciable effects
of molecular diffusion in axial direction will be noted. Furthermore
the coefficient of molecular diffusion is assumed to be independent
of the concentration. Defining boundary conditions and dropping terms
according to the limiting assumptions the diffusion equation given in
cylindrical coordinates can be stated as follows:

D(Dl@. *L§£+%%)=%.%+u°(/-g)§.£ (2)

or* r or X

where D = coefffcient of molecular diffusion
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C = concentration

r = radial distance
a = radius

x = axial distance
t = time

ug maximum velocity at r = o

The mean concentration Cm over a cross section will then

disperse relative to a plane moving with the mean velocity uy, = 1/2 uy

as though it were diffused by a process obeying the laws of molecular
diffusion:

K ﬁﬁ. = lg_':\.
- ?dt : (3)

where the effective diffusion coefficient in the longitudinal direction
Ky, is related to the molecular diffusion coefficient D by

2,2 2. 2
- A Wo = QO U
K..‘mﬁ YY)

An error function solution is obtained for a step input in concentration,

The fact that the same form of solution is obtained as -displayed
by experimental results for porous media does not mean that the
underlying mechanisms of dispersion are the same. Hence attempts
to extend Taylor's treatment to porous media represented by bundles
of straight capillaries with different radii have not rendered any
significant insight into the phenomenon. The solution of the equation
for dispersion in a capillary tube will be important for the des crip-
tion of the microscopic behavior in a pore when statistical approaches
are used,

Mixing Cells. Another physical model concept for dispersion in porous

media comes from the study of reactors. The porous medium is
considered to consist of a series or chain of connected cells. A fluid
entering will displace its own volume and then mix with the remaining’
contents. In the next step part of the mixture will enter the following
cell and the process is repeated. The mixing of entering and stagnant
fluid is supposed to be perfect and to occur instantaneously. Aris and
A mundson (1) show that the final concentration distribution is a
Poisson distribution which will tend to a normal one when the number
of steps is sufficiently great, This treatment does not indicate how

T2
erfect mixing is achieved in each unit cell nor does it identify} the
contribution from different mechanisms such as jet mixing, eddy

~ giffusion or molecular diffusion., Furthermore, the simpler theories

do not provide for any possibilities to explain transversal dispersion
normal to the direction of general flow observed in actual experiments.

Statistical Models.

Random Walk, The ideas of statistical mechanics in porous media

meloped and used extensively by Scheidegger., (For

summaries of older works and more recent developments see
references (23) and (24) where the original literature is referred to,)

Actually the flow of fluids in a porous medium is a determin-
istic process a mathematical solution of which could be obtained,
like in the case of the capillary tube, if all the boundary conditions
were known, The latter of course is not the case., Furthermore,
even if these conditions were known the mathematical formulation
of the geometry of the pore surface would be far too complicated to
yield any useful analytical expressions of the flow equations. Hence
dispersion processes may be treated statistically as if they were
random (21). Basically one asks the probability of a particle to be
at a given point at a given time

‘P (x, v, z, t)

If the particle has been in motion for a very long time compared to
the time for passing one pore it can be assumed that it will encounter
all conditions present in the flow domain. According to the ergodic
hypothesis, time averages of any quantity in any system can be
interchanged with ensemble averages of the same quantity taken over
the space. This means for instance that the time average of the
probability distribution for one particle at a fixed time t can be
interchanged with the spatial distribution at that time of a great
number of particles released into the flow stream at the same initial
instant t,. The probability density for one particle can then be
interchanged for the tracer concentration provided the number of
steps is very great,

¥ y, z, t) =¥ C(x, vy, z, t)

For the treatment of a practical problem Scheidegger proposes that
one first has to choose and fix (1) the ensemble with which to do
Statistics, (2) the type of statistics to be used, and (3) the microscopic
flow laws to which each small fluid volume is subject. In his random
walk model, the total time t is split into a number N of equal time
intervals € so that

_ - -
t _ZZ' and N —-—-,z



It is supposed that the porous medium be isotropic, laminar flow
prevail and there be no correlation between two steps. The latter
mezns that at the end of one step a particle has equal probability
to mve in any direction, The progress of a particle during an
interv. LT is some random function, If the mean progress during
T i E the deviation from § is random: In this case the iunction
(x, v, z, t) by virtue of the Central Limit theorem becomes
asvmptotically normal and statistically independent, No explicit
indication, however, is given by what mechanism randomness of
velocity fluctuations around ¥ is obtained. With these assumptions,
the basic flow equation becomes

- K Y (4)
ot o ox'

if the system moves with the center of mass, or in fixed coordinates
with x' = x-ut and t' = t

rhd K 2f . 2¥ b(5)
'at ax oX oX

where u is the velocity of the center of mass and depends on the
macroscopic parameters as pressure difference, permeability and
viscosity, If ¥ is only to be a function of position then it is indepen-
dent of the flow velocity, hence

Ko w
This statement means that no particles change streamlines or better
that there is no mass transport across the boundaries of adjacent
streamtubes, Molecular diffusion is thus neglected.

In order to account for the fact of experimentally observed
transversal dispersion in unidirectional flow equation (5) has to be

written
ot  OX: I'\;, OX, X

where K; becomes a dispersivity tensor. Again the form of Kj
does not follow explicitly from the basic development of the theory.

Random Networks, De Josselin de Jong (11) improves the above
model by considering the porous medium as a network of randomly
oriented straight capillary tubes of equal length. The local velocities
vary with the orientation of the capillary with respect to the direction
of general flow, He also defines a directional probability of a particle
after leaving a capillary at the junction points. He relates the dis-
charge into a particular direction to the total discharge. Introduced
at this microscopic level these assumptions lead to a transversal
dispersion term with KT coefficient of transversal dispersion.
Again the probability of a particle to be at a certain point at time t
becomes a Gaussian distribution in space for a great number of steps.

The magnitude of dispersion in the direction of general flow and
normal to it are function of two different dispersion coefficients

Ki, and KT respectively where
K, /KT & 3

Since molecular diffusion was only introduced to justify the assump-
tion of a uniform concentration distribution over the cross section

of the elementary tube the coefficients of dispersion are proportional
to the mean flow velocity

Ki, KT0C u

Saffman's (20) statistical treatment is similar to the previous one.
But here the effects of molecular diffusion are explicitly taken into
account on the microscopic level. His porous medium is represented
by a homogeneous and isotropic network of capillaries of equal length
(1) and diameter (a) where 1 % a. As a consequence of Taylor's
treatment, time scales are defined so that the parabolic velocity
distribution in an elementary capillary can be neglected. The local
velocity is a function of the direction of the capillary with a term
added to take care of the contribution of molecular diffusion, The
directional choice of a particle at a junction point is incorporated in
the treatment of correlating the different velocities by Lagrange
functions. The final form of the longitudinal dispersion coefficient
appearing in the diffusion equation is

!
K =4D:gox, 1—,@_[{319"-!)‘—"—3’-"‘7—,(:_““" d (7)
psf2 KD

with
u = rmean velocity in the pore
7} = cos @
9 = angle of direction of capillary with respect to general

flow direction.

The first term o1 the right side corresponds to the contribution of the
molecular diffusion in the longitudinal direction, The second term

is comparable t¢ the dispersion in a capillary tube for the conditions
given by Taylor, The third expresses the complex interaction be.ween
molecular diffusion and hydrodynamic dispersion. The resulting
dispersion coefficient is some power function of u

Kl ol un



Saffman's theory explicitly accourts for transversal disper=ion and
defines a transversal coefficient K,

Bear and Bachmat (3) use a statistical approach but define the
microscopic conditions in very great detail and tor a more general-
ized situation, Their approach is mainly concerned with the tensorial
character of the dispersion coefficient and the inherent dispersivity
of the porous medium., t

Gibbsian Statistics. Scheidegger (22) has applied a more general
statistical treatment to the flow in porous media and shows that
through a thermodynamic analogy Gibbsian statistics can be applied
for the equilibrium case and theorems of non-equilibrium thermo-
dynamics for small deviations from the equilibrium state as speci-
fied by the Onsager relations, General diffusivity equations can be
derived. They are independent of special assumptions concerning
the particular quantity (heat, concentration, etc.) involved in a
transport process. Applied to the special conditions for dispersion
in a porous medium the same equations as for the random walk
model are immediately obtained. '

The statistical methods only give the probability of a particle to
be at a certain point at a given time, Different treatments of the
microscopic conditions allow more or less explicitly for transversal
dispersion. The particle in question differs from other fluid particles
only by some imaginary marking or tagging. Only for this case or
for a perfect solution can the thermodynamic probability for one
particle be interchanged for the concentration distribution. The
application of the ergodic principle is not possible, however, when
the concentration change is accompanied by some change in internal
energy, such as the chemical energy expressed by (Tuwiner (27) ).
Hence the interchange of ¥ for C is rigorous only for the mathematical
model, permissible in certain cases of highly diluted tracer flow, but
certainly not applicable to the exact theoretical treatment of miscible
displacements that are characterized by steep concentration gradients
at the liquid interfaces (sea water intrusions, waste disposal and
miscible recovery procesees),

Thermodynamic Model.

All the above described theories of dispersion in porous media
do not provide for any interaction or coupling between bulk flow,
mechanical dispersion and molecular diffusion. A general theory of
transport processes in porous media has been formulated by Rose (17)
(18) in the reference frame of continuum mechanics and irreversible
thermodynamics., The usual conservation theorems are extended to

the conservation of energy and entropy for dissipative transport phenom-

ena, The constitutive assumptions needed to formulate particular

rocesses are deriv: d from the linear phenomenological relations
l) % =

petvreen peneraliz¢ ' “lorvs ant forces., Furthermore, the auxiliary
SISRa ! . . .
o lutionships of pusitive ‘e entropy production fromn irrevers-
,:1)1(‘ thermodynamics are us: i, Expressing the drivine force in
;prms . total local energy YI‘ the transport equat :'n can be
wrilten

= e .

¢ (E.‘{..r)-pvv(g"adg) ;@+¢)N[(£Q)(9rad’\lf)} (8)
ot i

with P = mass density of material particle

v = center of mass velocity of a material particle

D = transport coefficient

8 = source or sink function,

For derivation see eq. (9) Rose (17), Choosing one particular form
of energy and relating it to its conjugated flux, the classical laws of

transport phenomena in porous media {(Darcy's law) as well as a number

of less conventional relationships can be derived. The advantage of
this approach lies in the fact that the energy term of transport equa-
tion expresses the total energy per unit mass associated with the local
particle in motion. This means that it can be decomposed into the
local values of the different possible energy forms such as mechanical,
thermal, electrical, chemical, etc. Separate equations for each
transport process can be written and combined into a general set of
linear relations between currents and driving forces of the form

J; = Z[_éj XJ, (9)

£
|

general linear coefficient

b
f

j conjugate force

This means that each flow is not only related linearily to its conjugate
force but also to all other forces contributing to the entropy produc-
tion of the system., This relation does not prove any coupling of
processes (for which L;; # 0 wheni # j); it does, however, imply
a possibility, Rose appiies these relationships to coupled processes
chiefly in the study of a two phase displacement, where the general
driving force can be decomposed in a pressure gradient and a surface
énergy gradient expressed by a saturation gradient, He tentatively
writes the general equation for coupled transport processes in porous
media when the gradient of chemical potential and the pressure gradient
are the driving forces, as it would be represented by the case of a
miscible displacement. The set of equations is:
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pf (gé‘_),, P9 «(graapm) ='-,€, div{P[L“(gnd/a) +l,e (é)* (grad vﬂ}

(10a)

P.f (%{), P$ (grad @) = % d‘w{P[L,,(;ﬁgmdﬂ) + L3 (9rad 'P)]} (10b)

chemical potential

where ,&
1 ¢

f = porosity

mechanical energy potential

Ly, = phenomenological coefficient of molecular diffusion

L2 = phenomenological coefficient for darcian flow conductivity

Lj2 = L;; coupling coefficients

These relationships as well as the other general considerations
applicable to the special conditions in porous media will be the
basis of the following discussion,

Thermodynamic Treatment of Transport Processes in Porous Media

Discussion of Coupling Phenomena.

General Theory. The methods of irreversible thermodynamics make
available a tool to treat complicated natural processes. On the basis

of a generalized Gibbs equation energy and entropy balances are

carried out. The entropy production and energy dissipation near
the equilibrium state are analyzed and the relations between general-

ized fluxes and their conjugate forces are established.

The first step is to define the generalized flows by the quan-
tities transported and to relate them to the driving forces that give

rise to the flux.

J _ '
i - v

X = grad ‘r
where J = generalized flux
X - = generalized force
T = entity in question per unit mass

gradf: gradient giving rise to flow of)"'

¥ = local diffusional velocity
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From Gibbs equation

d5=%§+$dV-ZZ‘-§dn3 (11)

T
J

with E internal energy
S = entropy

T = ambient temperature

chemical energy of component j

ox
It

nj = mole number of component j
P = pressure
V = volume

the source function for entropy production due to the irreversible
part of the process can be generated (Fitts (7), Haase (9), (10) ).

g-éagrLZJ‘.X‘. >0 (12)

where 1 denotes the number of different, independent processes
under consideration. The inequality states that the process has to be
positive definite,

The energy dissipation function ®is given by

@97 (13)
dt

The fluxes J; and their conjugated forces X; vanish when
the system is at thermodynamic equilibrium if their dimensions
are properly chosen. In a first approximation the deviation of the
system from equilibrium is taken to be small, In this case the
irreversible process may be described by a linear relationship
between the fluxes and forces, The general expression has been
given by Onsager (13) as the phenomenological relation already
stated in eq. (9) where the L.; are the phenomenological coeffic-
ients, independent of J and X,” They are not thermodynamic
functions but rather kinetic quantities that have to be defined for
each particular transport process. Written in matrix representa-
tion wheni = j » 2 the diagonal coefficients describe simple
processes for i = j,as simple heat conduction or electrical conduc-
tion. The cross coefficients (i # j) would express coupling effects
between two concurrent processes.

When all J'is and X':s are taken from expression (12) for the
entropy production, and if they are independent then the phenomeno-
logical conditions satisfy the Onsager symmetry relations
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(14)

When the two expressions (9) and (12) are combined, the dissipation
function takes the form

A2 T <£i; X:X; >0 15)

can be derived to determine the upper limits of the cross coefficients,

when the pure coefficient Li;; is known. In the case of two processes
i=1,2 j =1, 2 itleads to

(Lul—zz) >(le)l (16)

These relations themselves only imply the possible relations of

the coefficients, they do not prove the existence of cross coefficients
nor their symmetry, Detailed derivation and physical justifications
are to be found in the standard monographs on the subject (7) (8) (10).

Experimental Evidence. Experimental observation of coupling

effects is abundant. They are easily observed in thermoelectric
phenomena (Peltier-Thomson effects) and in thermodiffusion
(Sorel-Dufour effects). Electrokinetic effects are identified by the
schema of relations for the phenomenological coefficients., Saxen's
equations (1894) have been known for a long time, but only recently
have they been recognized as a consequence of Onsager relations.
On the other hand,phenomena such as the mechanocaloric effect for
liquid Helium II have been predicted on the basis of thermodynamic
considerations (Tisza cf. Haase (9) p. 111) and were observed later,

Onsager's symmetry relations have been verified by laboratory
methods to be accurate within the experimental error for a great

number of processes (Miller (12), Schldgl(25), Rastogy (15) ).

Diffusion-Pressure Interrelations. The quantities of interest in an

isothermal dispersion-diffusion process are,of course, pressure and
concentration and their interrelations.

Numerous experimental observations of pressure-diffusion
interrelations exist for discontinuous systems as represented by
two different homogeneous sub-systems separated by a porous
membrane, capillary tube or a very small opening. The ensuing
osmotic effects show that a bulk flow can be associated with a
concentration gradient (osmotic transport, osmotic pressure build
up) and that separation of matter (concentration) can be associated
with pressure gradients (ultrafiltration). These examples of well
known facts only serve as illustrations of a qualitative nature since
they occur in different systems than the one under consideration.
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The porous medium is here only considered as a phase separation
so small that phenomena occurring within can be neglected.

Pressure and diffusional interdependence for continuous
systems has been discussed by Haase (10) for the isothermal case.

The simultaneous occurrence of diffusion and dfifusion due
to a pressure gradient in a fluid medium with two species of
neutral particles is given by the expression

J. - =¥ ¢ (Dgradx; 7 D, 34T (17)

The sign in the brackets is negative for i = 1, positive for i = 2,
The quantities are

wj = weight factors to obtain weighted average ofr the
reference velocity w, wi +wp = 1

xj = partial mole fraction of particle i withx] + x, = 1

c = total molar volume concentration with ¢ = cy; + ¢

Ji = mass flux

D = coefficient of molecular diffusion

Dy, = coefficient of difusion due to a prsssure gradient

P = pressure,.

The theoretical foundations for eq. (17) are to be found on
p. 354, reference (10), Apparently no experimental observations
of this phenomenon have been reported yet, All eq. (17) does is
to relate the different parameters in a way consistent with the
theory of irreversible thermodynamics, where the existence of
D and D, and their magnitude have to be determined by experiment.
For D, = 0Oor grad P = 0 eq. (17) reduces to Fick's law of
diffusion.,

Transport Processes in Porous Media,

Diffusion. The generalized force-flux relationships are given in a

square root form for dimensional consistency in eq. (6) of reference
(17). The usual but looser notation is:

Hiv) =- 2(graa®) as)

with Y = total local energy per unit mass.
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If '?" consists of only two forms of energy, a mechanical potential 14
and a chemical potential M , then using eq. (18) Rose's relations (10)
on a unit volume basis become

PH()sPytaradp) o f nfPLLtsmapd s Listgraa®) (100

Pf( %{-)+ PY+(qracim) = @ d’“’{P[‘-u(g"‘“}') +L;;(grad ‘P)]} (19b)

in which the L,'_j are the phenomenological coefficients and q the
seepage velocity. It can be shown (Fitts (7) p. 80, Haase (10) p. 306)
that the gradients of chemical potential are easily transformed into
concentration gradients in a system with constant temperature T and
pressure P:

(3"“‘/“5)1-,, =Z (%ﬁpf.—)" qrad & (2)

where

}‘J = chemical potential of jth component

P») = partial mass density

From the definition equation for the generalized flux:

J"Z Lij (Qrad/l{;)", = ZL‘J (%L::'L)-rp grade (21)
and for J |
Dij - Z L; (%%) (22)

If no coupling occurs eq. (19a) reduces to Fick's 2nd law with a
convection term containing q. It must be stated, however, that
the simple diffusion coefficients measuring the transport of mass
due to concentration gradients do not obey the Onsager symmetry
relations. In order to verify the latter the D;;, more readily
obtained in experiments, have to be transformed back into the

phenomenological coefficients with relations analogous to eq. (21)
and (22).

Eq. (19b) can be reduced to Darcy's equation when there is
no coupling with a darcian transport coefficient of the form
Lp2 =(2kP?)/f? involving permeability K , viscosity v,
porosity .f , density f and mechanical energy ¥ .

The magnitude of the coefficients L]z = L1 will give an
indication of the coupling of mass diffusion due to interaction of
chemical potential gradients and a mechanical energy gradient.
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From equations (19) it can be seen that Rose's treatment
describes one phase of the miscible drive process, namely mass
transport due to a concentration gradient, and possibly coupled
with this a mass transport.due to a mechanical energy gradient.
It does not, explicitly, take into account the dispersion due to the
geometrical dispersivity of the porous medium itself,

Dispersion. In order to interrelate molecular diffusion and hydro-
fndotid Shtalidiabutain

dynamic dispersion in porous media they have to be described from
a thermodynamic point of view.

From the foregoing the position in space at time t of a given
fluid particle in a miscible displacement process is determined
by two basically different processes, One of the contributing
mechanisms is the mass diffusion due to a gradient in chemical
potential with the possibility of a coupling term arising due to a
gradient in mechanical energy. Here thermodynamic driving forces
and fluxes have been identified by Rose (18), The second mechanism
is that of hydrodynamic dispersion for tracer flow, where in the case
of no flow (q = 0) the tagged particles will be subject to an auto-
diffusional movement due to their own kinetic energy. In the flow
case (u # 0) particles will be mixed due to the dispersivity of the
porous medium. However, no generalized thermodynamic force
for this mass transport can be defined in the context of irreversible
thermodynamics. The reason is that the concentration, expressed
as C orP , used in the gradient, does not reflect the existence of
a chemical potential differential but a probability state. The analogy
with the kinetic theory is obvious.

If the entropy production is to be examined from an energetic
point of view,it has to be borne in mind that in the development of the
theory for pure dispersion one of the basic assumptions is the
identity of physical properties of all particles. The only means of
differentiation is by some imaginary marking or tagging of species 1
and species 2, Since these particles are energetically all in the
same state, their dispersion with respect to coordinates moving with
the center of mass during flow through a porous medium would be
unobservable if the marking were removed, Then dispersion will
not give rise to an energy dissipation function of the form described in

eq. (13),

On the other hand, it is observed that tagged particles separated
initially in an orderly arrangement (as in an unit impulse or unit
step input functinn) will tend to complete disorder in an irreversible
way. The entropy production connected with this phenomenon is
only a statistical analogy of the thermodynamic entropy. It indicates

the case where increasing entropy describes a state of increasing



disorder in the geometrical arrangement (Fast (6) p. 49 ff). Here
the term entropy production has the same sense as in kinetic
theory for monatomic gases where complete reversibility from

an energetic point of view is postulated,

Conclusion

An answer to the question of how and to what extent the different
mechanisms of mass transport during flow through a porous medium
interact may be given by the insight obtained from the statistical
and thermodynamical model of dispersion processes.

In the thermodynamic treatment it has been indicated that
coupling effects between mass transport due to concentration
gradients and due to mechanical energy gradients are possible.

The final proof of this matter, however, lies with experiment, It
should be pointed out again that mass transport due to a combination
of chemical potential and mechanical energy gradients can be a
factor in distorting concentration profiles as described in (5) and
(28). The spread or distortion is in the direction of a greater
entropy production,

On the other hand, the same thermodynamic treatment seems
to indicate that no coupling may exist between the mechanical dis -
persion of mass due to the geometrical configuration of the pore
space and diffusion due to a concentration gradient. From an
energy point of view both processes are different so that their
entropy productions cannot be compared or interrelated for use
in the fundamental relations describing coupling phenomena. In a
typical miscible displacement experiment the results of the
geometrical dispersivity are felt to be superposable on molecular
diffusion effects, To determine the exact form of these additive
effects which would be different from coupling, experiments should
be conducted for a flow situation with very low velocities. Then the
influence of diffusion and dispersion are of the same order of
magnitude and experimental constraints on one or the other will
produce the most visible effects (cf. 14),

Until experimental answers to the above questions have been
obtained nothing more can be said in conclusion than that it seems
not permissible to apply the results obtained from the statistical
model for single phase non-homogeneous flow directly to the treat-
ment of a miscible displacement process just because the form of
the solutions look alike. This extrapolation may be useful for a rough
description, especially of practical cases, where ideal conditions
do not prevail as postulated in the theory. The distinction has to
be made, even in the case of tracer flow, when a deeper insight into
transport phenomena in porous media is wanted.

A
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INTRODUCTION

Displacement Theo;x
Since the publication of the classic paper of Buckley and
1
Leverett 1in 1942, the petroleum literature has contained s great

number of papers dealing with the displacement of one fluid by another

in porous systems and the distribution of those fluids within the system.éﬁ

The reason for this interest, of course, is that petroleum production

ment process is essential to the optimum recovery of our petroleum re-
sources. Indeed, a whole new profession - that of the petroleum reser-
voir engineer - has developed to apply éhis knowledge of displacement

of fluids in porous systems to increasing recovery of o0il and natural
gas, and, incidentally, to the development of underground storage facil-
ities for off-season storage of natural gas.

The very important contribution of the Buckley-Leverett paper
was the development of the frontal advance equation, which makes poss-
ible the calculation of the saturation distribution at various times in
the injection history as a function of injection rate and fractional
flow, where fractional flow is the ratio of the rate of displacing fluid
flow to the total flow at any saturation., It is a function of the
relative permeability characteristics of the porous system and the
viscosities of the fluids. The usual method, based on the equation,
applied only to linear systems where the two fluids were immiscible, or

nearly so, and gravity and capillary effects were excluded. The
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combined effect of gravity and capillary pressure was studied by Ter-
williger et 31‘2 They introduced the "stabilized zone concept" of
frontal advance which established that the leading edge of the advanc-
ing displacing fluid assumed some saturation profile early in the
injection history, which thereafter remained constant and moved
through with a constant velocity at uniform injection rates.

Rapoport and Leas also studied the effects of capillary
pressure in the Buckley-Leverett equation, Their resulting equation
was a non-linear, parabolic type partial differential equation which
is not subject to formal solution. In the same paper they presented
experimental evidence to show that, in a linear system, the displace-
ment behavior is dependent upon the length of the system, the rate of
injection, and the ratio of viscosities of the two fluids. Of particular
Importance was the conclusion that, at the rates of injection normally
used in field operations, the effects of capillarity are negligible and
the behavior follows closely that predicted by the simple Buckley-Lever-
ett equation. Jones-Parra and Calhoun” have presented a method applying
the above-mentioned parameters to the Terwilliger et al. theory to solve
for the length of this stabilized zone.

Even though the Buckley-Leverett method may produce the
physically impossible triple values of saturation at some positions along
the length of the system, simple material balance concepts provide a

L5
satisfactory engineering solution to this dilemma, Welge'56 form of
the theory eliminates the triple value by modifying some of the data

7

that g0 into the displacement calculations. Cardwell offered a



theoretical explanation for the triple value using the method of charac-%

teristics to show that "shocks" or discontinuities exist within the
system and hence the frontal advance equation is not valid in this
region. Sheldon, Zondek, and Cardwell8 have presented a graphical
method for this type of computation, making use of "characteristic
lines.” Nielsen9 has pointed out that some doubt arises as to pre-
serving material balance in determining the position of shock since

the intersection of characteristic lines corresponds to the first
appearance of triple (or double, depending on whether or not an initial
displacing fluid saturation exists) values rather than to a material
balance.

In 1958, Douglas, Blair and Wagnerlo presented a method for
calculating saturation distributions in a displacement system which in-
cluded the effects of capillary pressure but did not include gravity
effects. They arrived at the same form of the equation that Rapoport
and Leas had derived earlier; i.e., a second order partial differential
equation which was non-linear in the derivative. By a change of vari-
able they transformed the equation to a semi-linear partial differential
equation which was solved by numerical methods on a high speed digital
computer, McEwen11 repeated their work but changed the outflow end
conditions and assumed no flow of water ahead of the flood front, A
short time later Fayers and Sheldon12 solved the Rapoport and Leas form
of the equation by using a finite difference form. They included both
the capillary pressure and gravity terms in their solution but the time
necessary to attain a particular saturation distribution could not be

obtained. More recently (1961), Hovanessian and Fayers13 extended the

work of Douglas et al. to include gravity effects. They computed not

only saturation distribution but the pressure distribution as well.

Gravity Drainage and Counterflow

Gravitational and capillary forces are responsible for the
origihal segregation of fluids within a reservoir. One of the earliest
observations of petroleum reservoir engineers was that these same
gravitational forces played an important part in the recovery of oil
from those reservoirs where considerable structure exists.w-18 During
the later stages of depletion of an o0il reservoir produced by dissolved
gas alone, when the gas will have been virtually exhausted and the res-
ervoir pressure very low, gravity becomes the dominant force in causing
continued 0il movement to the well bore.19 Current but relatively
minor production from many of our older o0il fields is due almost entire-
ly to this form of gravity drainage. Of much greater importance in
terms of recoverable oil were the conclusions reached early by most
reservoir engineers that:

"(1) Wwhere gravity drainage is important, the reservoir pressure
should be maintained by gas injection at the crest of the
structure to prevent shrinkage of the oil in place and to

keep a low viscosity so the oil can drain at the fastest
possible rate,

"(2) Recovery by gravity drainage is rate sensitive."?
However, it was not until the publication nf the work of

Terwilliger et al., that a method was presented for accurately predict-

ing performance of a gravity drainage system. Since then, in addition
to the references cited above dealing with gravity effects, other

0-24
theoretical and computational work has appeared in the literature.
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The gravity term as incorporated into the displace
ment theory by these earlier authors applied to downward dis
pPlacement by gas with all fluids moving downward. With
counterflow, the less dense fluid moves upward and the more
dense fluid moves downward, hence for this situation the
theory again had to be modified. For the situation in which
all flulds moved downward, fractional flow rates are used in
the calculations. In the case of counterflow, this could re-wé
sult in negative values, values greater than unity, and when«‘
rates are equal and opposite, in infinite values. Sheldon :
et al.8 and Fayers and Sheldoni? pointed out that actual flow ;
rates, even though they may be opposite in sign, may be used
Just as well as fractional flows, thereby eliminating this
difficulty.

Recently, Templeton et al.? ran some experiments on
gravity counterflow to test this theory and concluded that theé
Darcy equations, as modified for the separate phases, are ade- ;
quate for counterflow due to density differences. They also
concluded that the method of predicting saturation changes,
which involves a continulity equation and the elimination of
the unknown pressure gradient from the flow equations should
therefore apply. More recently, Briggs25 also investigated
gravity counterflow in gas-liquid systems, starting with a
high gas saturation in the bottom of the system. The purpose
was to simulate the gas bubble created in the lower portion of

an aquifer during underground gas storage. Briggs used the
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method of Douglas, Peaceman, and Rachford26 to calculate the
transient behavior in the system and compared the computed re-
sults with experimental values. One important conclusion from
his work was that the use of ordinary drainage and imbibition
capillary curves in calculating transient behavior in such sys-

tems leads to erroneous results.

STATEMENT OF THE PROBLEM

This study was initlally undertaken for the purpose
of investigating the conclusion of Templeton et al.9 that the
method of predlcting saturation changes which involves a con-
tinuity equation and elimination of the unknown pressure gradi-
ent should apply to counterflow conditions. This was done by
using a computer solution to check their experimental results.
Then, providing the above could be established, the problem was
to determine by these same computational methods, the effect on
the translent behavior during counterflow, of varying certain
of the parameters of the system, with particular interest in

the final equilibrium districution and the time necessary to

attain various degrees of that equilibrium.

The models studied were limited to immiscible liquid-

liquid systems with fairly uniform initial saturation distribu-

tion.

EQUATIONS USED AND METHOD OF SOLUTION
Equations describing the two-phase flow of incom-

Pressible fluids in a linear system can be derived by solving



simultaneously the equation for the conservation of mass and
Darcy's Law for two-phase flow. The resulting equation is a
non-linear, second order, partial differential equation with
one dependent varliable, the saturation of one phase. The
_1ndependent variables are position and time. The derivation
of this equation has appeared in the literature 1n several
3,8,10,12

forms.

Briefly, the equatlion of continuity is

35S 4 £1(8) S - |
"’at f()s_;-o (1)

and this combined with the flow equation

Uy ' -K(l >-1<d£ S u I
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produces this equation,
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where
Ne = gﬁ with Fé being that value on the capillary

pressure where 1ts slope becomes qulte large, and L is the

length of the system,
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G(S), the total flow and gravity term, =

-1 .
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+(M; MW> Kl%o /: C)g,

B
In all of these calculations there was no flow

across the boundaries, hence u, = and
-1
o {h, k) (8- F):

All other symbols are those recommended by the
Soclety of Petroleum Engineers. The details of the deriva-
tion of Equation 3 are given in reference 32.

Equation 3 is the equation which Fayers and Sheldon
referred to as "the Eulerian form for the fluid flow system
since S in this equation is the saturation which an observer
located at X would observe as a function of T." From this

equation they also derived what they call the Lagrangian form.

ax a[G(s)] 3 ,
Foo OS]y o2 [c(S)/aX/as] ()

which is essentially the more familiar Buckley-—Leverettl and

Terwilliger, et al.? relationship and represents in "X" the
position an observer moving along with a fluid element carry-

ing saturation S would observe as a function of "T",
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-1t 1s 1in values of the derivatives of a non-linear term. It

Both the second and third terms of Equation 3 are

non-linear and thus the equatlon cannot be solved by classicaé

techniques. The second term 1is particularly difficult since

i1s possible to resolve this problem of the non-linearity in
the derivative term by making the following change of vari-
ables:
Let
S
C(g) dg (5)
wl

_ 1
r(S) 7

Where Z normalizes r(S), i.e.,

S1-5,,
zZ = Cle) d ¢ (6)

Swi
Making thls substitution into Equation 3 produces
the "r" form of the equation

1 ar .1 dG(r) ar ar .
elr) aT ~ 7 ~ar "3 N ° (7)

This 1is the equation to be solved in this problem.
it 1s sti1ll non-linear but not in the derivative. This makes
a solution by numerlcal methods possible.

In the solution of Equation 7 initial and boundary
conditions must be stipulated. Initial conditions are repre-
sented by the arbitrarily chosen saturation distribution in

the system. In thése problems there 1s no flow of fluids
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across the boundaries (at X = 0 and X = 1). This 1is satisfied

py setting f(S) in Equation 2 equal to zero. Thus at the

poundaries, either

(L +1) 1t =0 (8)
MW MO
or
aP _
L35 Ve (- Fo)eg=o (9)

Rewriting Equation 9 in the "r" form yields

i . -Ae . 1 (10)
aX N, ~3F,7dr

During the early part of the fluid movement the bound-
ary condltions must satisfy Equation 10 which sets the slope at
the boundary as a function of gc(r). Once the saturation at
elther end reaches elther residual, the other condition (Equation
8) takes over and the slope boundary must be relaxed. Thereafter

the saturation at the end i1s fixed at the residual.

PROCEDURE OF THE INVESTIGATION

General

The systems assumed in all of the calculations were
porous medla of varying heights, initially fairly uniformly
saturated along the height with brine and an oll. The systems
are completely closed and the flulds allowed to redistribute
themselves under gravitational and capillary forces.

The method of solution used in all of the computations
is similar to that introduced by Douglas et al.10 and 1later modi-

fied by Hovanessian and Fayer's13 for the calculation of satura-



tion distribution in a horizontal linear water flood. Howev
the solutlion is somewhat more complicated than that presente
in these papers for two reasons: (1) the no-flow boundary
conditions, and (2) the fact that at any time part of the
flow will be governed by wetting liquid drainage conditions
and the remainder by wetting liquld imbibition conditilons.
This latter condition results from the fact that the wetting
liquid saturation will be increasing in the lower portion of
the model while simultaneously decreasing in the upper part.
Depending on the initial saturation distribution, a third
condition is also possible, 1.e., a section of the model
could exhlbit successively imbibition and then drailnage.
This will be discussed in a later section. One approach to
the solution of the drainage-imbibition problem i1s to synthe- E
size curves elther from experimental relatlive permeability andg
caplllary pressure data or empirical equations such that the |
portion of the curves covering wetting liquid saturations
greater than the initial represents imbibition, and that por-
tion covering the lower saturations is representative of
dralnage. A second possibility i1s to attempt to write the
computer program in such a way that 1f the wetting liquid
saturation at any point is decreasing, drainage data will be
used and if it is increasing, imbibition data will be used in
the calculations. In the calculations presented here the first%

approach was used.
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The computer time necessary to get the complete
transient behavior of each of the several systems calculated
varied from 4 to about 10 hours.

A material balance check was made on all calculated
distributions by planimetering the plotted results. In many
of the calculations, in order to preserve materlal balance, the
upper slope boundary conditlon had to be relaxed and the fluids
in the upper portion of the system "speeded up." This was done
by fixing the saturation at the upper boundary such that the
curve did preserve material balance. In retrospect it would

have been more realistic to "slow down" the movement of the

flulds in the lower portion of the system.

Detalls of Individual Runs

A total of eleven separate sets of calculations were
made in the following sequence: the first two to check the
computed saturations with the experimental results of Templeton,
et al-;g an unconsolidated sand pack; a consolidated sandstone;
three glass bead systemr where only the length of the system
was varied; and four additional calculations on the glass bead
system, each with a different value of initial average saturation.

The values of permeabillity, porosity, length of the
system, initial water saturation, Fc, and the fluids used in

each run are shown 1n Table 1. The properties of the flulds

are shecwn 1n Table 2.
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Runs 1 and 2 - Templeton's Glass Beads

In order to check the experimental results of Templeto
some improvising was necessary, since relative permeability and
caplllary pressure data for the glass bead pack he used are not
known. Wygal and Naar27 have determined these curves for a
great number of glass bead packs and the ones used here are
shown in Figures 1 and 2. Figure 1 shows both dralnage and imbi
bitlion relative permeability relationships. " The dashed line
represents the compromise imbibition—drainage 0ll relative
permeability (K, ) used in the calculations. Since the dralnage |
and imbitition wetting liquid curves differ very little, the
drainage data were used for the water relative permeabllity (Krw
It is interesting to note that the relative positions of the
drainage and imbibition Kn, curves are reversed from those
normally shown. Wygal's data show thls to be consistently so
for packs of glass beads. A discussion of thils apparent anoma-

lous behavior has been presented by Naar and Wygal.28

The synthesized capillary p}essure curve 1is shown by
the dashed line in Figure 2. It will be shown later that it
is the slope of the capillary pressure curve that is important
in the solution of the equations, hence the curve as draﬁn at-
temps to retain the slope of the dralnage curve throughout most
of the lower saturation region and the slope of the imbibition
curve in most of the region of higher saturations. The value of
Fé (that point on the caplllary pressure curve where the slope
becomes very steep, i.e., thé value of P, at approximately the

irreducible water saturation) for Templeton's glass bead pack
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was determined from the final distribution curve of his air-
brine experiment and corrected for the difference in interfacial

tension.

Run 3 - Unconsolidated Sand

The relative permeability curves for the unconsoll-
dated sand, Figure 3, were calculated from the equations of
Corey, Henderson, and Naar.3l

For drainage:

= - 3
Krw (1.-8) Where S = __._Q_____l S 5
T Pwi (11)
= 3 ’
Kro S (12)
For Imbibition:
= a3 S S
Krw S Where S = _W_~ "wi
1 - Sy (13)
K., = (1 -8)3 (14)

The curves as shown were calculated by Equations 11
and 12 for the lower half of the saturation range and by
Equations 13 and 14 for the upper half.

The capillary pressure relationship was calculated
from the empirical equation,

| P, = .58753 - .17506 s* *+ 422.37 (s* - .5)10

where P 15 the dimensionless capillary pressure, Pc/Pé and
-c

S* EEW - SWi
1l - Swi

of the curve and the minus sign to the imbibition portion. 1In

* The plus sign applies to the dralnage portion

order to plot Figure U the calculated P was converted to the
-
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equivalent height of a brine-naphtha system by applying the
proper density correction.

In this computer solution, of course, the calcula-
tion of relative permeabilities and caplllary pressure was

incorporated into the program.

Run 4 - Consolidated Sand

The consolidated sand model chosen was a Berea
sandstone for which capillary pressure data were available.
(Figure 5). The combined drainage-imbibition curve was
obtained by altering the higher saturation portion of the
curve as shown by the dashed line. Figure 6 1s a replot of
the curve with capillary pressure expressed as equivalent
height.

Relative permeabllities were calculated using the
equations of Corey, Naar and Henderson31l for consolidation
systems:

For drainage:

= it
Koy = (1 -3)

r
S
Where S = ———95—
1-5,4 (15)
Kr0=s3 (2 - S) (16)
For imbibition:
_ ol
Krw =S
S =~ S 1
Where S = L.
1 - Sy1 (17)
K = (1-28)372 (2 - (1 - 25)+:5)

ro (18)
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The two sets of equations were used as in the uncon-
solidated system to produce the desired combination of dralnage

and imblbltion. A plot of the calculated curves is shown in

Figure 7.

Runs 5, 6, and 7 - Length Varied

In this series of calculations the system was assumed
to be packed with a mixture of glass beads, 73.8% of which were
10-12 mesh and 26.2% of which were 120 to 140 mesh size, and
packed according to the method of Naar and Wyga1.27 The rela-
tive permeability and caplllary pressure data for this pack as
shown by Naar and Wygal were used for the calculations checkling
Templeton's data and are shown in Figures 1 and 2. The only
difference in these three calculations was the length of the
system, varying from four feet in Run 5 to approximately elight
feet in Run 6, to sixteen feet in Run 7. The caplllary pressure
curve of Figure 2 1s shown replotted as equivalent height of the

brine-naphtha system in Figure 8.

Runs 8 - 11 - Initilal Saturation Varied

A pack ldentical to that of the fifth run was used in
each of these calculations, and hence the relative permeability
and capillary pressure curves of Figures 1 and 2 again apply.
Initial saturation (including Run 5) varled in the following

sequence: 0.25, 0.375, 0.50, 0.625 and 0,75.



106

RESULTS OF THE INVESTIGATION

Results of the calculations are the transient history
of the saturation distribution for each of the systems as shown
in Flgures 9 through 19. 1In all curves the water saturatlon 1s
plotted as the absclssa and distance from the bottom as the
6rdinate.

Figure 9 1s a comparison of the calculated satura-

tions with the experimental results of the brine-naphtha test
of Templeton, et al;9 This 1s designated as Run 1 in this paper
Figure 10 is a similar comparison-of the Templeton
brine-Bradford crude test (Run 2). _
An unconsolidated sand model was used for"Rhn 3.
Results of the calculations are shown 1in Figure 11 on which
ére shown points taken from the capillary_pressure curve of
Figure 4. The consolidated sand data (Run 4) are similarly
plotted in Figure 12 along with points from the capillary
pressufe curve of Figure 6. |
Figures 13, 14, and 15, are‘the results of Runs 5,
6, and T ﬁhere the only variable in the system was 1ts length.
The results of the final set of calculations, Runs
8, 9, 10, and 11, are shown in Figures 16, 17, 18, and 19.
The only varlable in these systems was the initialhwater
saturation.
On all of these curves presented, the equilibrium
data which were taken from the capillary pressure curve for

the system are also plotted. How these polnts were located

and their significance are discussed in thevsection, DISCUSSION
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AND THEORETICAL CONSIDERATIONS.

The time réquired for the movement of varlous
fractions of the total fluid moved at equilibrium are shown
in Figures 22, 23, and 24,

Flnally, the effect of (1) initial brine saturation
and (2) the grouping [K/¢L] on the time necessary to reach
varlous fractions of the fluld moved to equilibrium are

plotted in Figures 25 and 26.

THEORETICAL CONSIDERATIONS AND DISCUSSION OF RESULTS

Check on Experimental Work

Before entering into a detalled and lengthy program
of calculations designed to investigate the transient counter-
flow behavior of fluids in porous systems, it had to be ascer-
tained that the synthesized relative permeabllity and capillary
pressure relationships as used in the calculation procedure
produced results representative of actual behavior. Fortu-
nately, the experimental work of Templeton et al.9 provided
the necessary data for such a check. Comparisons of the
computed results with thoée of Templeton are shown in Figures
9 and 10. The results in Figure 9 are those for a brine-haphtha
system and those in Figure 10 for a brine—Bradford crude system.
Considering the fact that the exact relative permeabllity and
caplllary pressure relationships were not known for this sys-
tem, the agreement is good. The reason for the slight bulge
that appears near the bottom of the experimentally determined

curves 1s not readily apparent.
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higher at the top of the system than at the bottom. Such a

25

The work of Briggs shows experlimental results

where a simllar bulge appears near the top of the system and

is much more severe than that shown by Templeton. He attribute,
thls to a "hysteresls zone" in the system where 1t is alternatey
going through dralnage and imblbition. Such behavior would beg

expected where the inltial wetting liquid saturation is

system was used in his experiments. If the initial saturation%
distribution was continuously decreasing from top to bottom,
or even if a uniform initial saturation (re Templeton) were
dgeﬁ5 one would expect only a dralnage zone in the top por-
tion and an imbibition zone in the lower portion, the fraction
of the total length exhibiting each condition being dependent
upon the 6riginal saturation and material balance considerations
The Bulge shown in the Templeton data which appears in approxi-
mately the same positlon in both runs could be attributed to a

lower permeability section in the giass bead pack.

Additiconal Calculations and Discussions

One of the problems arising in calculations of this
type is that of determining when equilibrium has been es-
tabliished or how close to equilibrium the calculations have
progressed. Obvlously if the computer were run long enough
to establish that the saturation distribufion was not changing
and material balance was preserved, the equilibrium distribution
would have been reached. However, in many of the runs this

would have involved additional hours of computing time and
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cost would have been prohibitivé.' Also, obviously, the

final distribution should fall along that portion of the
capillary pressure curve which maintains material balance about
the initlal saturation, i.e., equal amounts of wetting liquid
must move into the imbibition zone and out of the drainage
zone. Thus the equilibrium saturation distribution can be
obtained by "skldding" the original caplllary pressure curve
vertically until material balance is preserved. Material
balance was checked by planimetering the areas between the
inltial saturation line and the "skidded" capillary pressure
curve. When the areas in the imbibition zone and drainage zone
are equal, material balance is established. The equilibrium
curve thus located 1s shown on each of the Filgures 9 through
19. It appears from these figures that the calculations had
essentlally proceeded to equilibrium in Runs 1, 2, 3, 5, and 11,
however the saturations were actually still changing at a very
slow rate. It is obvious that equlilibrium had not been reached

in Runs 4, 6, 7, 8, 9, and 10.

Run 3
The calculations on the unconsolidated sand model as
shown in Figure 11 required less computer time than most of the
other runs because the calculations were carrled through to
completion without any need to make material balance adjustments
as they progressed. This was expected, since the relative per-
meability and capillary pressure curves as calculated were Sym-

metric about the original brine saturation value.
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Run 4

The futility of attempting any laboratory gravity
segregation experiments using consolidated systems 1s illus-
trated in Figure 12. Since the length of the system (121.9 enm
i1s only a small fraction of the length (over 2000 cm) of the
caplllary pressure curve of Figure 6, the equilibrium curve
wlll be quite steep about the original brine saturation of
33% and hence only a small volume of fiuid must bé mqved be-
fore equilibriuﬁ is attained. ‘Eﬁén 50, éftér 192 hours of
elapsed time, the system which'had a perméability of 1 Darcy
(relatively high for consolidated sands) had not attained
equilibrium. B B |

Runs 5, 6, and 7

Analysis of Filgures 13, 14, and 15 reveals that if
the system is long enough a "stabilized zone" similar to that
first observed by Térwilliger et al. appears to form and move
through the imbibition zone. There is very slight, if any,
indication of the fofmation of such a zone in Figure 13 repre-

senting a system length of 4§ feet, but in the 8 foot model®

of Figure 14 the indication 1is somewhat more positive, and
finally the shape of the zone definltely shows up in the 16 foo
model of Figure 15. However, while the shape of the zone re-
mailns quite constant, in contrast with the conventional

stabllized zone concept, the rate of advance is definitely

¥It should be pointed out that the 8 foot length 1s very close
to the total length of the capillary pressure curve where the
caplllary pressure is expressed as the equivalent height of
the two liquid system. . : .
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not constant beyond a certain time. 1In order to better under-
stand the significance of this, the following review 1s presented.

The continuity equation for vertical flow,

3Sw = _ i au
ot ¢ dx 7 (19)

leads to the frontal advance or characteristic equationl’7’8
(.2& - ;(QL)
/g ¢ 35,/ s# (20)
where 3x/3t 1s the velocity of some saturation S*. If a
stabilized zone 1is formed Welge6 has shown that the derivative

1s that of the highest saturation in the zone and can be de-
termined graphically. Equation 12 derived earlier,
uw k1, 1)t (9B 3
f(s) = —w = - v + _) o(—c . aS . c + ut - - g (12)
¢ ‘"o oo \as, "D oRM; (4 -4)

leads to
u, = K&;— + é—w)-l (,6 -A) g (21)

if capillary pressure effects are ignored and U = o. Thus

e A RE N (22)

and the Welge tangent rule can be applied to the plot of

(%6 + %;) -l vVs. S, and the slope determined. Figure 20 is
Such a plot for the systems under discussion with the tangent
line drawn in. Even though the decrease in Slope of the right
end of the bell shaped curve is not apparent, the calculation is

conventionally made as if the slope at this point suddenly decreased
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to zero. The velocity, Uy 1s thus proportional to the secant AB and
for this system was calculated to be 88 cn/day. It is apparent that

a tangent cannot be drawn from the original brine saturation of 50%

to the left side of the curve and hence no stabilized oil zone should ;

be formed in the drainage portion of the system. Figures 13, 14, and 1%

show this to be so. ]
The positions of the stabilized or "shock" zone at 8, 16, 32

and 64 hours are plotted in Figure 21 (which is an enlarged plot of

the lower portion of the system) along with the computed positions at

the same times. Interestingly, in spite of the fact that capillary

forces were ignored in this simplified approach, the agreement is good

up through 32 hours of elapsed time., The fact that the simplified

calculations break down for a closed system such as this as equilibrium

is approached is indicated by the relative positions of the two "fronts"

after 64 hours, Since material balance has been preserved in the com-

puter solutions and since no stabilized 0il zone forms in the lower brine

saturation region, the saturation distridbutions as calculated for that

region would be the same as those determined by the Welge method except

for the 64 hour curve which would have to be shifted to the left to

preserve material balance. These results indicate that if a system is

of sufficient length, the movement of the fluids is governed by gravi-

tational effects throughout a fairly large percentage of its transient

history,
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Runs 8 - 11

The final set of calculations was performed for the purpose
of evaluating the effect of initial brine saturation on the transient
behavior of the system and especially to observe its effect on the
time necessary to reach equilibrium. The transient behavior is illus-
trated in Figures 16, 17, 13, 18, and 19.

Because of the uncertainties involved in determining the ex-
act time at which equilibrium is established, it was thought better to
analyse the data from the standpoint of the time necessary to reach
various "fractions of equilibrium." By this is meant the ratio of the
volume of brine moved into the imbibition zone at any time to the volume
moved into the zone at equilibrium. Because material balance must be
preserved at all times this is also the ratio of the o1l moved into the
drainage zone to the total oil moved into that zone at equilibrium.
These ratios were determined by planimetering and are tabulated in
Table 3 for all runs and plotted in Figures 22, 23, and 28, Note that
Runs 1, 2, 3, 5 and 11 all reached apparent equilibrium, but the exact
path the curves take as equilibrium is approached is uncertain. Theoret-
ically, the curves should approach unity on the vertical scale asymp-
totically.

From the curves of Figure24, the time necessary to reach the
0.25, 0.50 and 0.75 fractions of equilibrium were determined and tabu-
lated in Table 4. TFigure 25 is a plot of 1/S,, Vversus the time necess-

ary to reach various stages of equilibrium as shown in Table 4. A
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linear relationship is firmly established for each curve, however, the
slope decreases as the fraction of equilibrium assumed is increased,

The linear relationship is in contrast to the results of Brigg525 who

found that a double logarithmic plot was necessary to produce a straight?ﬁ

line relationship between 1/5y; and the time of equilibrium, * This
further emphasizes the advantage of working with the time necessary

to reach various stages of equilibrium rather than the equilibrium

time itself,

Additional Correlation

In addition to the initial water saturation variation, the
other obvious parameter available fronm this study for correlation
purposes is the K4 L group. It will be recalled that the time para-

meter used in the calculations was T = Kt L where K is the permeabil-

1ty of the system in darcys, t is the time in seconds, ¢ is the porosity, 1

and L is the length of the system in centimeters., As shown by Table 5,
a sufficient spread of the KAL values (with all other parameters essen-
tially constant) was available from Runs 1, 3, 5, 6 and 7 for satis-

factory correlation. Intuitively, one would expect a linear relation~

ship between ®L/K and the time nécessary to reach various fractions of
equilibrium even though concommitant with variations in K are varia-
tions in capillary pressure-saturation relationships, Figure 26 shows

this relationship between (Kﬁbl)°l and the time necessary to reach

various fractions of equilibrium to be indeed linear. As with the
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the
1/841 relationship, the slope of the lines became less as

assumed degree of equilibrium is increased.

SUMMARY AND CONCLUSIONS

In summary, the work has demonstrated that the calcu-
lation method of Douglas, Blailr, and Wagner, as used in this study
does satisfactorily predict the transient behavior of gravity

counterflow in closed systems of fairly uniform initial satura-
tion distribution. With modification, the method should be ap-
plicable to the practical problems of predicting behavior of
natural reservoir systems operated under counterflow conditions.
Examples of such problems are the recovery of inaccessible "attic
oil" by injection of gas downstructure with subsequent counterflow,
upward migratlion of natural gas being stored in aquifers, and
water injection in upstructure wells in petroleum reservoirs.
The following conclusions can be drawn from the results
of this investigation:
1. For systems whose length 1s greater than the length
of the capillary pressure scale (where capillary pres-
sure 1s expressed in equivalent height of fluids), a
stabllized zone is formed and its movement is governed
largely by gravitational forces throughout a large por-
tion of 1ts travel.
2. A linear relationship exists between l/swi and the time

necessary to reach varlous fractional degrees of equi-

librium. v
3. A linear relationship exists between L¢/K and the

time necessary to reach various stages of equilibrium.
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APPENDIX A

Details of Calculation of Rate of Advance of Stabilized Zone

Wk (fo-Re - fe(d, o 4)

TARER 1 .
PAOPINTIRS OF FOROUS SYSTONS s

Pescription

= Tompleton=Glass beads

1 28.2 ;
2 282 de TempletcncClass beads

3 15070 . Mnpomsolideted sand

| Gonselidnted sane

From Figure 32 . ey
S ] Panr-¥yal glzss beads
7 B NagbiMynl glass veads
-1 8 il " mar-wysl glass beads
Q1,1 _ 0,051 0,136 . e e
a S' M0 MV . - * 1 k588 s A3 0w rtnectanntes Faap-iyal glass beads
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THE ANALYTICAL SOLUTION OF A SEMI-DISCRETE FORM

OF THE DARCY-CONTINUITY EQUATIOW *

o by
*Spp» 0.0 .
XS =0, Quon, D., Dranchuk, P.M. and Darsi, C.R.

B8y =025

ABSTRACT
ABSTRACT

Fraction of Fluids Yovsd
-

The Darcy-Continuity eguation may be transformed into a

matrix differential equation by discretizing the space variables.
| I i L
» ﬁm (h.)w .

For the particular case where the variation of viécosity and com-
L pressibility with pressure is small the resulting equation is linear.

XPPECY OF INTTIAL &, OF TINE 0 REACK YARICUS FRACTIONS OF ROUILIBRITK

Therefore an analytical solution may be obtained through the use of
some operational methods of linear algebra. The solution gives the
pressures as functions of time at chosen discrete points in the

reservoir. The resulting pressure vector may be calculated explicitly

in terms of a matrix, which describes the spatial distribution of

reservoir properties, and vectors describing the initial and bound-

ary conditions.

"This method has two important advantages, namely, that the
resulting solutions appear in closed form and that the principle of
Superposition may be applied to them. HoweQer, it involves the
Manipulation of matrices and as a result becomes somewhat cumbersome

¥hen the pressure vector contains more than a few hundred elements.

Despite this shortcoming the method is suitable for application to._

TINE 70 RSACH TARIOUS ST
OF BQUILIBRION ¥5 K 1\~
(51

2 large class of two-dimensional reservoir problems.

1 i
0 3 50 &
Tiee (Hrs.)

-

In order to demonstrate the principles involved, a problem

1
0 10 E)

dealing with a forty element pressure vector is presented.

———e,

Contribution from the Department of Chemical and Petroleum
Engineering, University of Alberta, Edmonton, Alberta.
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INTRODUCTION

Whenever available, analytical solutions are generally
preferred to numerical ones for a number of well-known reasons -
the errors can be more éasily estimated and controlled; better in
sight is provided into the structure of the problem; and in the
case of initial value problems, the analytical solution does not

require intermediate calculations.

Unfortunately, rigorous analytical solutions to the Darcy
iContinuity equation have been limited to homogeneous, one-dimensio:
reservoirs(l),(2).

In the present paper, the space variables in thévDafcy_
Continuity equation are discretized, giving rise to a matrix diffeg
ential equation. The latter is theh integrated analytically. This
semi-analytical approach allows any spatial variation‘ih‘reservoirg
properties to be taken into account. Furthermore, mahy two4dimens;

problems can be handled in this manner.

MATHEMATICAL'DEVELOPMENT

The Darcy-Continuity equation for a volumetric two~dimensioi

reservoir R, bounded'by a closed curve C, may be written as:

9 ) khp 29p 3 khp 3p o
It X u. 9x 3y U 0% T

with typical boundary conditions

I.C. P = pg at t=20 X,yeR
Ip

B.C. — =0 on C t >0
ar

where r is the direction normal to C.



The following conditions are also commonly encountered:

1) ¢, hy Sf and k are functions of position only.
2) The behavior of the fluid is described by:
1l 3p

c = -

p 3p

3) Both c and j can be considered constant.

Under these conditions, Dranchuk and Quon(3) have shown

that equation (1) can be linearized according to either of two

schemes;

1) If cp<<<l.0, then linearization by deletion is warranted, re-

sulting in:

ap ] kh 3p ] kh 3p
¢h S ¢ — = — (— —) + — (— —)
it X ¥ 23X 3y y oy

2) Otherwise, linearization

suggested. Let
1
m o= = (e%P - 1)
c

This substitution, after

equation (1), will give:

am 9 kh an 3 kh an
¢ h Sg¢— = — (— —) + — (— —)
at X Woo3x oy ¥ 3y

where o is the density at p = 0.

w

p

(2)

by transformation of variables is

(3)

suitable arithmetic operations on

(4)

This procedure is, of course, useful only when the trans-

formation of variables does not introduce non-linearities into the

boundary conditions.

131
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Whatever scheme.is chosen, equations (2) and (4) have the
same form; and subsequent derivations will deal only with the
latter.

Equation (4) may be converted into semi-discrete form by
discretization of the space variables only, using a procedure de-
scribed by Varga(4). The method is illustrated for a hypothetical °
reservoir, which is of the shape shown in Figure 1. Enough points:
in the reservoir - in this case, forty - are selected in order to
provide a sufficiently detailed spatial definition of the geometry
and to adequately describe the positional variation in property va

lues. Although in the example, the points form a square grid pat-

tern, other patterns might well be used. Elemental areas corres-
ponding to each point are constructed by making the boundary betwee
two adjacent points a straight side which is normal to and bisects

the line segment joining the points. Elemental areas on the bounda

of the reservoir may be irregular shaped but all interior elemental
areas are polygons.
Mathematically, the first step is to multiply both sides o

equation (4) by dx-dy to give:

am 9 kh o ] kh a3
(¢ h 8, ¢ dx*dy) — = {— (— —) + — (— —)} dx-dy
it X W 9X 3y W 3y
where
a = w/eg | (6)

For the ith elemental area, which may be designated as T
a double integration, term by term, on equation (5),gives the

following ordinary differential equation.
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dwi 3 kh on
( /7 ¢ h Sg © dxedy) = S { — (= —
r. dt r, X H X
i i
9 kh anr
+ = (— —)} dx-dy
oy u oy
- I/ qgedx-+dy (7)
X,
1

There is no problem in evaluating the integral on the L.H.S.
and the last term on the R.H.S. to the desired degree of accuracy.

The remaining integral is handled, using Green's Theorem, i.e.

3s 2T
/I (— - —) dx+dy = [ (Tdx + sdy) (8)
r., 29x 3y C.

1 b8

where the integfal on the R.H.S. is simply the line integral along
C;» the boundary of the area r,. This procedure is illustrated
in Appendix A.

The set of N first order ordinary differential equations,
one corresponding to each elemental area, may be written compactly
in matrix form as:

dr

g — = E n + s(t) (9)
dt

where G is a diagonal, positive definite matrix, whose entries re-~
Present the values of the integral for each area given on the L.H.S.
of equation (7); n is the potential vector, in this case a modified
Pressure vector; K is a diagonally dominant, symmetric, negative

definite matrix, derived by evaluating the line integral for each

area, given by the first term on the R.H.S. of equation (7);
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s(t) is a vector incorporating all the boundary conditions, inclug. i
ing the specified withdrawal of fluid from certain designated
elemental areas.

Under these conditions, equation (9) may be integrated

 analytically (See Appendix B) to give:

(10) |

where-

o

is a matrix consisting of the normalized eigen

3

vectors of the matrix (gf K g-%) arranged columnwis
E(t) - is a diagonal matrix whose entries ére e ' where )
is the i*P eigen value of the matrix (g_% K g—%)
(0) is the value of the modified pressure vector-.at t =
o is merely a dummy variable.

3

| Since K is symmetric, and g— is diagonal and non-singula{
then the matrix (g-%g gf%) must also be symmetric and will have re:
distinct eigen values and real, orthogonal eigen vectors.

It should be noted that while equation (10) is an exact
solution to equation (9), the latter is only a first orderAeorrecﬂ
approximation to the origina} equation (4).

The main computational problem, of course, is in evaluatin
the eigen values and eigen vectors of the matrix (_(i-;5 K g-%). Ih5
the example problem, involving a 40 x 40 matrix, determination of

the eigen values and eigen vectors, using Householder's method(5)

required about 2 minutes of IBM 7040 computing time. It has been
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eyﬁmated by the Computing Center, University of Alberta, that a
100 x 100 matrix would require about 5 minutes of IBM 7090 time.
rrom these considerations, the analytical approach is probably
feasible for reservoirs which can be adequat‘ely defined by several
hundred grid points,

The utility of the semi-analytical solution rests in‘the
fact that once the geometry of the reservoir and its properties
have been defined, then the solution vector T, which gives the
modified pressure distribution in the reservoir, can be expressed
explicitly in matrix form for any initial or boundary conditions.
Thus, any production policy can be evaluated simply, using the
principle of superposition which follows directly from the matrix
solution. A closed form solution, of course, has other advantages.
Problems of stability and truncation errors in discretizing the time

-variable do not arise.

- EXAMPLE PROBLEM

The geometry‘of a hypothetical reservoir is given in Figure
l, the distance between grid points being 0:25 mile.

Production is from 3 wells as follows:

Elemental : Production
Area No., Std.bbl./day
8 100

19 + 100
25 . 200
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The ¢h or porosity-formation thickness distribution in the
reservoir is given in Table 1l; the-kh or perméability—formation
thickness distribution in Table 2.

The fluid saturation Sf is assumed to be unity throughout,

The compressibility factor c¢ is 1.25 x ZI.'O'-6 psi_l and the viscosit

u is 2.4 centipoises; both are assumed to be independent of pressure

The pressure distribﬁtion, at the end of 280vdays, is shown in

Table 3. The total production as calculated from the withdrawal
rates is 1,120,000 std. bbls. while that calculated from a material’
balance on the reservoir is 1,119,000 std. bbls. The closelagree-
ment is a check on the consistency of the internal arithmetic.

-

CONCLUSION

A semi-analytical solution has been developed for a volu-
metric two-dimensional petroleum rese;voir in which the compress-
ibility and the viscosity ére essentiaily independent of pressure.
This approach is capable of handling a much wider range of cases

than the classical analytical approach.
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NOMENCLATURE
NOMENCLATURE

ars
scal

0il compressibility factor
formation thickness
formation permeability
pressure

volumetric rate of withdrawal of o0il (under standard
conditions) per unit area of reservoir

fluid saturation

time

mass rate of withdrawal of 0il per unit area of reservoir
eigen §alue of matrix B

fluid viscosity

modified pressure, defined by equation (3)

density of oil

dummy variable

formation volume factor

Vectors, Matrices

L] o

n
—~

o+
~—

|

n
»*
s~
+
~—

TE Y A ¥ g /

defined by equation (Al6)
eigen vector of matrix B .
boundary condition vector

modified boundary condition vector, defined by equation (A7)
defined by equation (A4) |

defined by equation (A9)

modified pressure vector




g =

o

defined by equation (A6)

A.t
diagonal matrix, whose entries are e %

diagonal matrix used to describe the volumetric
capacity of the reservoir .

rate coefficient matrix
diagonal matrix of eigen values of B

matrix of eigen vectors of B, arranged columnwise

1.

2.

3.
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C.
1

Lho Path
kh kh
dn (=—) + (=) Mg = T .
21 13 p 21 13 21
APPENDIX A VoG = (-2 ) (—— ) BB A to B
217 gt 2 TH
Elemental area has odd-shaped boundaries, with two of itsé
sides forming part of the boundary of the reservoir as shown belo;j (EE)ZZ + (Eﬁ)zl Tog = Mol
+ (£ . ) (—=£——==) BD B to D
2 JH
r
K kh kh _
21 (=) + (=) Ts o1, —
| 29 7 (222 2Ly (22 21 oF D to E
E 7 2 HK
/
c; forms "““?\\\\‘ / + 0 E to F
part of /
c F /b + 0 | F to A
/
/ + Qyy (Al)
7\
21/ - where
H —_———_ %t _ A2
# f(‘ Vy, = ]f:f ¢ h s. dx dy (A2)
| 21
I
l [}
A } > B Qy; = iﬁstantaneous withdrawal of oil
| in std. bbls./day
Boundary |
13|
:
I

The line integral is evaluated in a counter clockwise

direction, starting at point A.
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APPENDIX B

We are required to solve the matrix differential equatiop

6 — = K1 + s(t)

4

where G is a diagonal, positive definite matrix of order N
K is a real, syﬁmetric matrix of order N
Let
T = gy
Replacing in (A3) and premultiplying both sides by g-%,
get ' ;
R TR
dt
Let
B = gPKGg
and
s*(t) = Q-% _8(t)
Therefore,
du :
— = Bu + s*(t)
dt

Since both K and gf% are symmetric, it can be readilyAsho}
using the reversal rule for transpose matrices, that B is also
symmetric.

Let

where
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and I; ..+ Iy are the normalized eigen vectors of B.
Replacing (A9) in (A8) and premultiplying both sides by

Q’l gives:

—_ = g‘l B in + g‘l s*(t) (All)

However, the operation g‘l

B Q can be shown* to be a
similarity transformation which produces a'diagonal matrix, which
may be called P whose entries Ai are the eigen values of B.
Furthermore, since B is symmetric, all its eigen vectors are ortho-
gonal. Hence,

gt = o ( Al2)

Equation (All) now becomes

— = pv + Qf s*(t) (A13)

dt

and the individual equations may be written as:

av, ) '
i _ T _&
= Aivi + ;" s (t) (al4)

dt
Thus, we have a set of first order linear differential equations
which have been effectively decoupled from each other and may be

solved separately as follows:

At
v, = e? (Yi‘q) + é e ' T s%o) a)  (a15)

where véo) is the value of vy at t = 0.

———sm

* Lapidus, L., "Digital Computation for Chemical Engineers",

p. 215, McGraw-Hill, New York, (1953).
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Let - - ' o -
. 3 T -
a = | et o os@a | FEle) of sr,
o o
’ (Als6)
t =X\ 0
f e N r T s* (o) do
o
o —
Then
v = Bt) 9+ a2 (a17)
. ~ At '
where E(t) is a diagonal matrix whose entries are e
However,
1= ¢%u = g¥oy (a18)
and
v = " ¥ | (a19)
Substituting we get
1= ¢ oEwm of ¢* [1¥
S VRS DR J
+ [G?PQE "(0) 9 G * s{o) do] (A2
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169.00
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69.00
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524.74
524.69

524,81

80.00
62.00
84.00
52.00
88.00

6.00
6.80
9.70
12.80
9.50

Table 1

$ h Matrix, feet

‘ 47,00 57.00

69 .00 47.00 51.00

62.00  77.00 . 74.00

68.00  69.00 54,00

53.00 53.00 83.00

'80.00  69.00 65.00
Table 2

kh Matrix, Darcy feet

-3.00 2.70

6.30 4.20 4.60
6.70 - 8.30 7.70
14,20 8.00 10.30
13.20 13.20 " 9.60,
9.30  11.00 - 14.20
| Table 3

62.00

62.00

69.00
47.00
80.00

64.00

2.60
5.30
6.80
11.00
2.00
14.10

Pressure Distribution after 280 Days (psia)

‘524,53

524,52

524,44 .
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524.28 522,57 521.87
524,01 ° 522.77 520.64
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524,47 524.36 524,03
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68.00
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ON DIFFERENCE APPROXIMATIONS FOR SOLVING
MATHEMATICAL MODELS OF FLUID FLOW IN PQROUS MEDIA

by

H. S. Price

Gulf Research & Development Company
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INTRODUCT ION
The development and solution of mathematical models
simulating fluid flow in porous media have become an important part

of Reservoir Engineering. Because reservoir simuiation is such a

useful tool, the "art'"' of solving complex partial differential equatiog

using finite difference methods has developed much faster than the
necessary mathematical rigor. This could be a serious problem if
the engineer using these models were not aware of the necessary
mathematics and were not to encourage the mathematicians to catch
up. It‘is the purpose of this paper to present some mathematical
tools, which are very useful for analyzing finite difference
methods, and their applications to some very accurate approximate
methods.

In solving boundary value problems by finite difference
methods, there are two problems which are fundamental. One is to
solve the matrix equations arising from the discrete approximation
to a differential equation. The second is to estimate, in terms of
the mesh spacing h, the difference between the approximate solution
and the exact solution (discretization error). Until recently, most
of the research papers considered these problems only for finite
difference approximations whose associated square matrices are
M-matrices*. This paper treats both of the problems described above
for a class of difference equations whose associated hatrices are not

M-matrices, but belong to the more general class of monotone matrices,

i.e., matrices with non-negative inverses.

* See text for definition.
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After some necessary proofs and definitions from matrix
theory, we study the problem of estimating discretization errors.

The fundamental paper on obtaining pointwise error bounds dates back
to Gershgorin (1930). He established a technique, in the framework

of M-matrices, with wide applicability. Many others, Batschelet (1952),
Collatz (1933) and (1960), and Forsythe and Wasow (1960) to name a
few, have generalized Gershgorin's basic work, but their methods still
used only M-matrices. Recently, Bramble and Hubbard (1964a) and
(1964b) considered a class of finite difference approximations with-
out the M-matrix sign property, except for points adjacent to the
boundary. They established a technique for recognizing monotone
matrices and extended Gershgorin's work to a whole class of high order
difference approximations whose associated matrices were monotone
rather thaﬁ M-matrices. We continue their work by presenting an
easily applied criterion for recognizing monotone matrices. The pro-
cedure we use has the additional advantage of simplifying the work
necessary to obtain pointwise error bounds. Using these new tools,

we study the discretization error of a very accurate finite difference
approximation to a second order elliptic differential equation.

OQur interests then shift from estimating discretization
errors of certain finite difference approximations to obtaining in-
formation about the eigenvalues and eigenvectors of their associated
matrices. Using the concepts of oscillation matrices, introduced
by Gantmacher and Krein (1950), we show that the associated matrix
of the previously introduced high order difference approximation has

real, positive and distinct eigénvalues. This property is quite
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important for solving certain parabolic problems of the conduction-
convection type, Price, Warren and Varga (1966).

Finally, we apply the results concerning oscillation
matrices to the problem of solving the matrix equations associated
with the above-mentioned high order finite difference approximation.
We indicate what conditions are necessary, Widlund (1966), for
rigorously applying the Peaceman-Rachford (1955) variant of the
Implicit Alternating Direction Method to solving these difference
equations. This paper is concluded with some numerical results
indicating the practical advantage of using high order difference

approximations where possible.
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section 1. Monotone Type Approximations for Elliptic Problems

This section is concerned with estimating the discretiza-
tion error of a very accurate finite difference approximation whose
associated matrix is not an M-matrix but is monotone. We begin
this section by briefly introducing definitions and concepts needed
throughout the paper, and establishing necessary and sufficient
conditions that a given square matrix be monotone.

We then apply these conditions to obtain pointwise error

bounds for a high order difference approximation to a second order

.elliptic partial differential equation on a rectangle. These results

are then extended to a general two-dimensional region.

Matrix Preliminaries and Definitions

Let us begin our study of discretization errors with some
basic definitions:

Definition 1.1. A real n x nmatrix A = (a, J.) with a, j s 0 for

’

all i #] is an M-matrix if A is non-singular, and A™!> 0%,

Definition 1.2. A real n x n matrix A is monotone (cf. Collatz, 1960,
p. 43) if for any vector r, Ar >0 impliés r >0,

Another characterization of monotone matrices is given by
the following well-known theorem of Collatz (1960, p. 43):
Theorem 1.1. A real n x n matrix A = (ai,j) is monotone if and only
if A™! > 0.

Theorem 1.1 and Definition 1.1 then imply that M-matrices
are a subclass of monotone matrices. The structure of M-matrices .

e

* The rectangular matrix inequality A > 0 is taken to mean all eJements
of A are non-negative.
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is very complete, (cf. Ostrowski (1955), and Varga (1962, p. 81)),

and consequently they arevvery easy té recognize when encountered

in practice. However, the general class of monotone matrices is

not easily recognized and almost no useful structure theorem for them

exists. Therefore, Theorem 1.3 below, which gives necessary and suffi-

cient conditions that an arbitrary matrix be monotone, is quite useful.
We include the following basic definitions for completeness

(cf. Varga, (1962, p. 13)).

Definition 1.3. The n x n complex matrix A is said to be conver-

gent if the sequence of matrices A, A2, A3,...converges to the null

matrix 0, and divergent otherwise.

Definition 1.4, Let ki, l <i < n be the eigenvalues of the n x n

matrix A. Then

p(A) = MAX [xi]

is the spectral radius of A. The following theorem is an equivalent

statement of Definition 1.3.
Theorem 1.2. The n x n matrix A is convergent if and only if p(A) < 1.
For a proof of this theorem, see Varga (1962, p. 13).

We are now ready to state:

Theorem 1.3. Let A = (ai j) be a real n x n matrix. Then, A is

monotone if and only if there exists a real n x n matrix R with the

following properties:
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1) M= A+ R is monotone

2y MR D

3) p(MTR) < 1.
Proof: |If A is monotone, R can be chosen to be the null matrix O,
and the above properties are trivially satisfied.

Now suppose A is a resl n x n matrix and R is a real n x n

matrix satisfying properties 1, 2 and 3 above. Then,

-
A=M=-R=M(l ~-M R)

and - [
AT = (1 - MOR)TIM

-l
-l
Since, by Theorem 1.2, M R is convergent, we can express A as

in Varga (1962, p. 82),

L]

- -1 -1
A [1 F MR+ (MTTR)Z + (M R)® +...} M (1.1)

-1
As M-IR and M are both non-negative, we see from (1,1) that A

is non-negative, and thus by Theorem 1.1, A is monotone. Q.E.D.

It is interesting to note that if R can be chosen to be
non-negative then Theorem 1.3 is equivalent to a (if and only if)
statement of Theorem 3.13 of Varga (1962, p. 89). When R is of mixed
sign, this theorem is a slightly stronger statement of Theorem 2.7
of Bramble and Hubbard (1964k}. A< will be seen later, it is much
easier to find a monotone matrix M which dominates A, giving a noﬁ-
negative R, than to choose R sucﬁ that property (2) of Theorem [.3 ‘ 
is satisfied. This is one of the major deviations betwéen'this

development and Bramble and Hubbard's in -(196ka, 1964b). Also
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for this reason, we shal], from now on, be concerned with con-
. structing the.matrix M rather than the matrix R.

We sha[]Anow conélude this sect%on by defining some
vector and matr}xynorms which we shall use in the subsequent develop-
ment.

Let Vn(C) be the n-dimensional vector space of column
vectors x, y, z, etc., wifh components Xis Yis Zp l<i< n,'in the

complex number field C.

Definitionil.S. let x be a column vector of Vn(C). Then,

1%

is the Euclidean (or Ly) norm of x.

Definition 1.6. Let x be a column vector of Vn(C). Then
X = MAX 'x.l
|
o0
I <i<n

is the maximum (or L ) norm of x.
The-matrix norms associated with the above vector norms are
given by:

Definition 1.7.

is the spectral (or L,) porm of A.
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pefinition 1.8. If A= (ai j) is an n x n complex matrix, then

b

1}
%
o
hel

is the maximum (or Lm) norm of A.

A Very Accurate Difference Approximation in a Rectangle

For simplicity, we shall consider a rectangle, R, in two
dimensions, with a square mesh (size h) which fits R exactly. Later,
we shall consider the modifications necessary to obtain pointwise
O(h4) discretization error estimates for general bounded domains.
This will of course include rectangular regions which are not fit
exactly by a square mesh.

Let us consider the numerical solution of the following
second order elliptic boundary value problem in the rectangle R with

boundary C:

’ 2 d )
- 53 - g;% + r(x,y) 5& - s(x,y) gs

qlx,y)u = f(x,y); (x,y)eR, (1.2)

+

o
[}

glx,y) ;  (x,y)ecC.

We also assume that q(x,y) >0 in R, the closure of R.
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With the aid of Figure 1, we shall define the following
sets of mesh points, assuming the ""English or typewriter ordering"

(i.e., numbering the mesh points from left to right, top to bottom),

n+1

FIGURE 1
with & the running index. This is illustrated in Figure 1.

Definition 1.10, Ch is the set of indices, @, of grid points

which lie on C, the boundary of R.

Definition 1.11. Cﬁ* is the set of indices, @, of interior

grid points which have two of their four nearest neighbors in
Ch.
Definition 1.12 Cx and C: are, respectively, the set of indices,

@, of the interior grid points with exactly one of the two,
vertical or horizontal, respectively, nearest neighbors in Ch .

Definition 1,13, Rh is the set of indices, @, of interior

. . ) Sete H vV
grid points not in Ch + Ch + Ch

The various indices are illustrated in Figure 1 above.
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Now, by means of Taylor's series, assuming u(x,y) has six
continuous derivatives in R, (i.e., u ¢ C® (R)), we can derive the

following finite difference approximation to (1.2):

DAu=f+r1. (1.3)
The vectors u and f are defined to have components u, and f which
are just the functions u(x,y) and f(x,y) of (1.2) evaluated at
the mesh points. The N x N diagonal matrix D has entries da,a
given by
]

= = =——— oth ise, 1.4
dy,q = 10 @€ Gy dg o = 7 R OFher! (1.4)

and the N x N matrix A = (ai j) is defined as
H

(AW)Q = Wa ’

(AW)Q =~ (12 +6 sah)wa-n - (12 +6 rah)wa_]
+ (48 + 12 qaha)wa - (12 - 6 rah)wa_'_]

- (12 - 6 s h)w , Q€ Cﬁ*;

Q+n

(1.5)
(Aw) = - (12 + 6 5w, + (1% rhw, , - (16 + 8 r_ h)w,_,

(54

+
+

12 qahz)wa - (16 - 8 rah)wm] + (1 - rah)WOH-Z

v
6 SOP)WO#n »oae by

- (12
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(w), = (1 + S Woon = (1648 s pw, - (12 +6r hlw |

We are now ready to state the following:
Lemma 1.1,

There exists a monotone matrix M, such that for A as
» | defined by (1.5), M > A for all
2 - - - - 8
+(9++12qah)m1 (12 6rdﬁwﬁ] (16 SSJﬁWHn
'+ (1 - s h)w aect,
C T o2n

I I !
hs MIN{Br > 35 !,> :
h : 'é

(1.8)
(1)

Proof:
(Aw)a = (1 + sdh)wa-Zn - (16 + 8 sah)wa_- + (1 + rah)wd 2

We will construct M as the product of two M-matrices, i.e
. M=MM. With Ml and M defined by
E 2

*

- (16 + 8 r h)w, | + (60 + 12 q h*)w_ - (16 - 8 rohdw.,,

(le)a=4wa » ae
+ (1 - r_h)w - (16 - 8 s_h)w + (1 - s h)w veR (M1W)='(]+rh)w +8w_ - (1 -r hw ]:O‘ecx;
o a2 o " atn o ‘a+2n’ h’ a oo~ a (oo’ ]
, ; H
where n is the number of mesh points in one row and m is the number (le)a =- 0+ Sah)wa- +8 Wo T (- Sob)wawn’ o€ ch :
-of rows. Thus, N =mn. Finally, the vector 1 of (1.3) has . (1.9)
| (Mw)y, = 8w, , o€Cr;
components T_, given by 2
T, = 0(h®), o€ ¢ + cx + CE P 1y = 0(h%), a e R ; ' Mw) == (0 +s pwy = (L+ropdwy  +8w, - (I -rhw,,
1.6 §
(1.6) 1 - - sah)wow , Q€R;
Ty = 0, e Ch. | -
: f and
We shall now-define f (Mbw)a - hwa ’ o e ch;
1.10
rs MAX_ ’r(x,y)\ 1 ( )
(x,y)eR ] (Mzw)a =W, W ¥ 8 Wo T Woul ™ Youn’ otherwise;
s = MAX Is(x,y) ’ (1.7) ! it is easily verified by direct multiplication that M = MM,
(x,y)er ' ) '
? is given by,
Az W [atuy) |- |
(
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Now, for all h satisfying (1.8), it is éasily-seen that

[}
o
£
Q
®
o

(Mw)

107 a h’
M > A, and since (1.8) implies that |rah |< l.- and »sdhl <1,
8 8 o
= - - - - aeC H .
(Mw)a 8 Woen 8 Wo-1 6L Yo Yo osen’? h M, and My are both M-matrices by Theorem 3,10 of Varga (1962, p. 84).
4 -1 o -1
a4 Since M- = MQIMl > 0, M is monotone. : Q.E.D.
(Mw)a'= (1 + rob)wa-n-l— 8 Wt (i - rah)wa-n+l+(l + rOP)wa_z g Theorem 1.4, The matrix A defined by (1.5) is monotone for
~§ all h satisfying (1.8).
i -1
- (16 + 8 rop)wa_l+ 66-wa-(16 -8 rob)wo*]+(l - ral'u)woﬂ_2 'g Proof: We shall now show that p(M R) < I, where R = M - A,
| ' %E Define the vectors e, &, and J] to have components
i
v,
W 7 B Wy, t (- ro)‘)wo&nﬂ’ e Cps
‘ : ' E ea = | , for all @
M) = (0 +s h)w, o+ (T s pw, - (16 +8 s hlw, , |
: : = = ise: 1.12
ga ] s a € Ch, §a 0, otherwise; ( )
o+ (1 o+ soh)wa_n+l -8 Woop t 66 Wy " 8 Wl y )
o ﬂor 1, a¢ C:* + Ch + Ch ; §a = 0, otherwise.
} ) 3 : Since g >0 for all a, we have from (1.5) that
o+ (1 Sah)wa+n-l (16 - 8 SOP)Wo#n + (1 Sob)wo#n+l . a
i Ae2E. (1.13)
H |
+ (1 - Sab)wo*Zn , Qe Ch ; (1.11)
Since M > A and M is monotone, we have from (1.13) that
- -1 -l - -
(MW)a = (1 + Sah)Wa_2n + (2 + st roh)wa_n_l-(]6 + 8 so[h)wo‘_n 0<M 'R e<e-MAe<e-ME=se- pblmllg_ (1.14)

1 From (1.9), it is easily seen that Mye > 4 £ and since

+ (2 + s,h - rap)wa_n+]+(l + rop)wa_z-(le + 8 roch)wa_I : M, is an Mematrix

4 -1 1
M E<T e- (1.15)
+ 68w, - (16 - 8 r v, + (1= rpw 4 b

Using this in (1.14), we have

=1

- - - 1 -1
* (2 Hrch sy - (16 - 8 shvig, O<M Re<e-pMec<e, (1.16)

Fl—

-1
. where the last inequality follows since My e > 0, which
+ (2 - soh - rOP)WO#n+I + (1 - SOP)WO*ZH’ @€ R .
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is obvious from Definitions 1.1 and (1.12). Thus, we deduce from
(1.16), that ‘lM'lR ||m < 1. Hence, from the simply proved inequality

(see Varga (1962, p. 32))
oA <|| A]| ..
we obtain the desired result

p(MIR) < 1. (r.17)

Thus, (1.17) and Lemma (1.1) imply that A satisfies the hypothesis
of Theorem 1.3. This proves that A as defined by (1.5) is monotone. Q,E;?

We will now examine the truncation error from approximating

(1.3) by

DAvV = (1.18)

=t
.

Subtracting (1.18) from (1.3) we have from the definitions (1.4),

(1.6) and (1.12),
v - u “m - Jaome “w N L

+ K,h® nA-l(_ -7-£) “w . (1.19)

With A derived from A by setting q = 0 in (1.5), we have
by a well-known result (cf. Henrici (1962, p. 362)) that A, is monotone

and

(1.20)
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The next Lemma is due to Roudebus (1963, p. 34).
Lemma 1.2. let e, §, and 1 be defined by (1.12). Then, for

A defined by (1.5)

“A'1 e-£-1 “w < Kgh™ (1.21)

for all

In 2 In 2
h = “'“{u(zsﬂ) ’ 4(2r+|)} , (1.22)

where r and s are defined by (1.7).
Proof: Following Roudebush (1963), we define the function y(x,y)

to be

Q2r+l)x _ (2s+1)y

7(X’Y) = M - s (st)eR ’

(r+s+1)2d

where L > e and d is the diameter of R.

Let y be the
vector whose ath component,{where & corresponds to the (i,j)th

mesh point),is given by

= vk v H
7 7(xiyj)’ @€ R +C +CT+C o+ C -

By Taylor's theorem, with AO defined as above, we have

1 _ %y oy
2 h? (erz)a T T OxR )x(l) T Ty Ox )X(z)
i i

o2y _ oy ok v H
Byg)y(l) *a dy y(2)"“"h+°h *er G
J J
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where
(i - 2)h Sxi(l), xi(z) < (i+2)h, 2 < i <n-2,
G-2h< yj(_l'), yj(a) < (i+2)h, 2 <j < m-2,
and

(- Dh<x®) x®) < Gandn,  iml, nel,

G- Dh<y®, yB) o Genn, ety mel.

I
=<
A

Therefore,

(2r+l)x§1)

TElFE (Aoz)cx= (2r+1)2 e -ra(2r+l)e

(2s+1)y &) (2s+1)y &)

+ (2s+1)2 e + sa(25+l)e

for all h satisfying (1.22). Since

1

H
12 12 +C +¢C

h

sk v
(Aoz)a_>_0 for a e C +C

h h’

we have finally,
1
]2 h2 (AOZ)Z(.e_-.g-ﬂ)’

from which (1.21) follows using also (1.20).

Lemma 1.3. With the definitions of this section,

g L <i -

(2r+1)x )

b >1,0¢eR

Q.E.D.

(1.23)
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Proof: With AO derived from A by setting 9y = 0 in (1.5),

we have from (1.20)

0<An<ATY. (1.24)

We now compute Ro = M - Ao’ using (1.11), to be

(Row)a =15w, , Qae€C;

—
=
=z
~
[}

u +6 SOP)Wa-n + (4 + 6 rah)wa_] + 16 W,

- - ke,
+ (4 -6 roéh)wa_‘_l + 4 -6 sah)wo*n , Q¢ Ch‘ ;

(Row)a = (] + rah)wa_n_l + (4 + 6 sah)wa_n + (1 - rap)wa_n+]
+12wa+(l+r&ﬁwﬂm]+ @-—65Jﬂwﬁn
+ (1 - r h)w aec;
a'Motn+l? h (1.25)
(Row)a = (1 + sah)wa_n_I + (1 + sap)wa_n+] + (4L +6 rah)wa_]
+ 12 W, * L -6 rah)wa+] + (1 - SQP)Wo*n-I
H .
+ (- sah)O*n+] » GG
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(Row)a = (2 + sah + rah)wa_n_l + (2 + SQP - rap)w

+ (2 + rah - sah)wa_'_n_] + (2 - rah - sah)w

a € R .

N
let us define the diagonal matrix D to have diagonal entries

aa’a given by

A

e L 2 - ')
da,a =2, 0xe€ ch + Ch ; da,a = 3/2, a e Ch

>

d =1, aeR .

With e, § and T as defined by (1.12) we readily verify using

€1,8), that
Role - 8) <16 Dle - £) - 47

From (1.9) and (1.10), we compute directly

Wle - ) >4 - g),

]

M (e - &)

Mole - 8) 2 4( - &),

a~n+l

aEn+l

H

+ G

h

+ 8w

?

2
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and, since My and M; are M-matrices,
o .

Fe-8=Mmbe-92m (-8, (1.29)
ﬁ -84 (-8. (1.29")

Using (1.27), (1.29) and (1.29'), it is easily seen that

RM M Ble - 8) <Ble-8)-11,

(1.26)

from which it follows that
-1 - ]
a - ROleMll)?)(g -8 =251, (1.30)

Collecting these results, we have

-1 -
Ajle - &) = (1 - RM MMM (e - &)
(1.27) -1 =1.A

> 16 (1 - R My M )D(e - &) > 4, (1.31)
and since AO is monotone, (1.23) follows easily from
(1.24) and (1.31).
(1.28) Now, using (1.21) and (1.23) in (1.19), we have

Theorex 1.5. If u(x,y), the solution of (1.2) in the region

R, has bounded sixth derivatives in R, and u is a vector whose

(1.28")

&Remark: It should be noted here that all the results of this
section are equally valid for a region R which is the sum of squares,
and therefore, Theorem (1.5) is valid for this type of region.
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ath component, where a corresponds to the (i,j)th mesh point, is

given by u, = u(xi, yj), and if v is the solution of (1.18), then

for 1/2

-

h< MIN (;:—) in 2 In2 (1.32)

we have

where K, is independent of h. The constants r, s and q are
defined by (1.7).

The result of this theorem generalizes a known result

of Bramble and Hubbard (1964b) to the case where r(x) # 0. Moreover,

the proof given here is substantially different from theirs, and

gives a computable sufficient upper bound for h, (1.32), while their »

paper establishes only the existence of such a bound.

4
An 0(h ) Difference Approximation in a General"
Bounded Region

We again consider the partial differential eguation of

(1.2), but we assume now that R is a general bounded domain with

boundary C. If we construct a square grid (size h) covering R, it

can be seen from Figure 2, that, in addition to the sets of grid

points defined above, we need
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FIGURE 2
Definition 1.13. CE is the set of indices, &, of interior

grid points which have at least one and at most two of its four
nearest neighbors in Rc,the complement of R,

Note that the assumption that points in CE can have at most two
nearest neighbors in Rc,may eliminate certain regions with corners
having acute ang]es+. However, if C has a continuously turning

tangent and h is sufficiently small, this assumption can always

be satisfied.

TWe point out here that if the smallest boundary angle is

a > 0, then using a AX # Ay would allow us to cover such
angles. The assumption, &X # Ay, does not change the results
of the previous section, so we actually can consider most
cases of interest by a suitable choice of

X
MAX{?%W Ay).

— =K,

by

and h sufficiently small, where h

i
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We shall now define a finite difference approximation to
(1.2), assuming u € C8(R), in matrix notation as

]
12 h*®

Aus=

+1 . (1.33)
For the ;ets“éf §ridlboints Cﬁ*, x, éﬂ, and Rh the equations of
(1.33) are defined exactly as befo%é, (cf. (1.4), (1.5),

(1.6). We thefef;re need_only_defiﬁe the equations of (1.33)

for grid points o ¢ éﬁ.: If aipoigt is in Cﬁ, there are Qany
different cases to_consider (j.e., its nearest neighbor oﬁ the
left, right, bottom, or top, in RC; as well as its two nearest
neighborsion the:left and top, top>and right, right and bottom, or

bottom and left, are in RC). For simplicity, we shall list only

two of these eight possibilities since, from these, the others

will be obvious. First -assume for o ¢ cﬁ that the points below and

to the left of the gth point are in Rc, as shown in Figure 3.

Then,
NP T XUES T BV 5 It
12 h2 Y A+2 o+2 A+] A+ Yat1
) 72 . 12 r _h (o)
A1) (W+2) T A1) [ IWTANLY
12(3=AM)+12 r h(A-1) 12(3-p)+12 s _h(u-1)
+1{12 q h® + & + = u
0] A V) a
12 s _ph
L 120-p) REFAEDE il I
u+2 C4+2n p+i L On
i 72 N 12 Sah ( o
Butl) (ue2) 7 puer) JIVOYTH

= 12 h*f_ + 0(h*) _ | (1.34)
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where Ah is the distance, in the x-direction, and ph is the
distance, in the y-direction, to the nearest boundary,

0 <A, o<1 (see Figure 3).

+

. :{///— fth point

FIGURE 3

e
w

If for &€ C only the point to the left is in RC we have

| _l2-) o [aae-n) 2T
12 h® \ A+2 a+2 A+ At Yol

-( 72 12 r_h

MOT) (2) T x(X+?) g(x=Ah,y) +

+

12 q h® + 24 + M) uy, = (02 +6 s hu

A

- (12 - 6 sah)ua_._n>= 12 h?fa + 0(h%). (1.35)

Notice that now we are not carrying along dummy equations for the
points « ¢ Ch'
If the boundary of our region R were just the collection of
horizontal and vertical line segments connecting points of cr
the dashed line of Figure 2, then the finite difference approxi-

mation to (1.2) on this region would be given by (1.3). Also,

we have that

A x = DA x + k(x) (1.36)



172

where D, is a diagonal matrix whose diagonal entries da o
given by

(1)_~ % (1)_ .
da,a = aa,a» , Qe Ch , da,a = |, otherwise,

and k(x) is a vector whose components ka(x) are

~

ka(x) = %, %j aecC ka(x)=0, otherwise.

jFQ
Using (1.37) we may now rewrite (1.33) as
- -1 -1
Au=12h%; f -D; k(u) +12h%0D, 1,
and if v is the solution of

=1 -1
Ay =12 h2D,"f - D, k(v),

we have that the truncation error € ¥ (u - v) satisfies

- -1
A€ = i12h D' -0D; k(e).

An easy calculation using (1.34), (1.35) and the definitions of

D, and k, gives

o 2 lle.
-1 ) -1
MAX { (D, 5(6))@" MAX I(D1 g(e))alg_ E Oia, d
a a ey

€ . ’
c J#a a,a

itlel

-1
Since “01 “°° = | and A, by Theorem 1.4, is monotone if h

satisfies (1.32), we have

@) are
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]s. \s (Kyh* + }—? ||s “w)s + Keh*AT T+ KehAT (e - £ - 1),

where e, §, and T are defined by (1.,12). Using Lemma 1.2

and Lemma 1.3, we have

"e l <K ht + lg”e “
- o - 1T H= o

from whichvfollows

Theorem 1.6. If u (x,y), the solution of (1.2) in a general
bounded region R* with boundary C, ‘has bounded sixth derivatives

in R, and u.is a vector whose cth component,

FON

. ok v H
(a = (i,j)), is Uy = U(X;,yj),(xi,yj)e Rh + Ch"'“ + ch + ch + ch’

and if v is the solution of (1.38), then

- oo

for all h satisfying (1.32)

lg_-y_‘mSKh‘l,. (1.40)

"~ The results of‘this section extend the results above,
which held for regions which were sums of squares, to fairly general
bounded domains. This extension follows closely a similar extension
of Bramble and Hubbard (]964bj,‘and differs only in that we consider
a more general class of pfoblems.

In the preceeding, we have presented a detailed proof
of convergence of the sqution of a finite difference approximation

to the solution of the continuous partial differential equation.

t Excluding regions where points of Cﬁ would have more than two
nearest neighbors in RC,
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The tools presented are widely aﬁplicable and proofs of this
sort shéuld be available before attempting to solve a partial
differential equation on a computer. Many petroleum probfems do
not admit convergence proofs of this sort because of the non-
4

linearities present; however, before going to a computer, one should

at least be able to obtain a proof of this sort for the linearized

problem. Hopefully, in the near future, mathematicians will developré

tools which will enable us to prove convergence even for the badly

non-linear equations which simulate fluid flow in porous media.

i
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Section 2. Oscillation Matrices and Applications to Non-Symmetric

Difference Equations

In Section 1, we considered the truncation error of a
high order difference approximation without concern about how one
would solve the resulting system of linear equations. For one-
dimensional problems, this is not a serious consideration since
Gaussian Elimination can be used efficiently. This is basically due

to the fact that the associated matrices are band matrices of fixed

widths. However, for two-dimensional problems like the one considered
in the previous section, Gaussian Elimination is quite inefficient,
because the associated band matrices have widths which increase
with decreasing mesh size. Therefore, we need to consider other
approaches.

For cases where the matrices, arising from finite
difference approximations, are symmetric and positive definite
many block successive over-relaxation methods may be used (Varga (1962,
p. 77)). Also, for this case, a variant of ADI, like the Peaceman-
Rachford method (1955), may be used. [In this instance, conver-
gence for a single fixed parameter can be proved (cf Birkhoff and
Varga (1959)) and, in some instances, rapid convergence can be shown
using many parameters cyclically (cf Birkhoff and Varga (1959)), Pearcy
(1962), and Widlund (1966). For the case of Alternating Direction
Implicit methods, the assumption of symmetry may be weakened to some
statement about the eigenvalues and the eigenvectofs of the matrices.
Knowing properties about the eigenvalues of finite difference matrices

is also very important when considering conduction-convection-type



176

problems (Price, et al (1966)). Therefore, in this section. we
shall obtain results about the eigenvalues and the eigenvectors
of matrices arising from difference approximations. |

We begin by introducing the concept of oscillation
matrices, originally due to Gantmacher and Krein (1950), along with
their properties. These properties are then applied to show that
the H and V matrices, chosen when using a variant of ADI, have real
positive distinct eigenvalues. This result will be shown to be the
foundation for proving rapid convergence for the Peaceman-Rachford
variant of ADI.

Finally, some numerical results will be presented which
confirm both the 0(h4) truncation error estimates of Section | and
the rapid convergence of ADI for solving these finite difference
equations.

Oscillation Matrices and Their Properties

We will begin our study of oscillation matrices with some
basic definitions:
Definition 2,1. An n x n matrix A = (ai,j) will be called totally
non-negative (totally positive) if all its minors of any order are

non-negative (positive):

i1y imseresi iy < Qg < ... <

>
v
o
IA
A
o

Ky s Kaseoork ky < kg < e <k

(p = 1,2...,n).
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The square bracket notation

all,kl 'l’kE ail,k
p
. . . a a a.
|l:|2’ ,lp Ig,kl |2’k2 |a,kp
A =
ki ks s ,kp """"""
a a a
' K i i
_Ip 1 |p:k2 lp: P_‘

denotes square submatrices, while parentheses denote determinants

of such square submatrices:

[ PR 'il’iz’--~:ip
A = det A

‘kl,kz,o-o,kp kl,ka,'no,kp

Some simple properties of totally non-negative matrices are

given by
Theorem 2.1

(1) The product of two totally non-negative matrices
is totally non-negative.
(2) The product of a totally positive matr ix and a
non-singular totally non-negative matrix is
totally positive.
The proofs of the theorems given in this section are
omitted because they involve concepts which are too lengthy to develop
here. They may be found in either Gantmacher and Krein (1950,

Chapter 1), or Price (1965, Chapter 1).
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Continuing now with our development, we are ready to define We shall see later in this section that many matrices which arise

an oscillation matrix. from finite difference approximations of second order differential

Definition 2.2. An n x n matrix A = (ai j) is an oscillation f equations are in fact diagonally similar to oscillation matrices.
| 7 . , 4 | :

P . . . .
s . It is now necessary to develop some easy tests to determine if a

matrix if A is totally non-negative and some power of A, A

p > 1, is'totally positive. given matrix A is an oscillation matrix. We will state, without

The following theorem gives some of the simplest é proof, such a criterion.

properties of oscillation matrices. Theorem 2.4, An n x n matrix A = (ai .) is an oscillation matrix

Theorem 2.2.

if and only if

(1) An oscillation matrix is non-singular. (1) A is non-singular and totally non-negative, and

(2) Any power of an oscillation matrix is E (2) a. v > 0 and a ;> 0 (i =1,2,.0.,n-1).
b Py i+1,

an oscillation matrix. 1 The proof of this theorem can be found in Gantmacher and

(3) The product of two oscillation matrices i Krein (1950, p. 139).

is an oscillation matrix. Since it is quite simple to determine when the super-

The following is the basic theorem about oscil- diagonal and subdiagonal of a matrix are positive, it is

lation matrices. Its proof may be found in Gantmacher (1953, necessary only to determine if a given matrix is totally non-

p. 105), and Gantmacher and Krein (1950, p. 123). negative. We will therefore need the following

Theorem 2.3. If an n x n matrix A = (ai J.) is an oscillation

Theorem 2.5. If the n x n non-singular matrix A = (ai j) has
i ’

matrix, then r > 1 superdiagonals and s > | subdiagonals, i.e.,

(1) The eigenvalues of A are positive distinct
7 a, . = 0unless ~-ri=-j<s,
real numbers E , 5]

and if for any p <n
M > hy > 000 > Xn > 0. Y

(2) 1If g(k) is an eigenvector of A corresponding to i,itlyees,itp=]

the kth largest eigenvalue, then there are exactly E A >0,

Kokl oo, ktp=1
k-1 sign changes among the coordinates of the

()

vector, 4 (i,k=1,2,...,n-p+l; 1-r < i-k < s-1),

then A is an oscillation matrix.
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| () . ' 6 t)ve
The proof of this theorem is developed completely in Price (1965). (Hl)l,j 2 A2 @k +12 @ &F)vy,j - (12 - 16%IVen ) 9o
The Peaceman-Rachford Method for the Rectangle
1<jsM;
Let us consider the problem
()2
2y ou _ Pu Ju () =) - Hy), : = N (16 + 8 ApOx)vy ; + (30 + 12 q5" “&x )Va,j
- S M) 5 e s (y) 3 * (@ 7 ()4 (y))u = f(x,y) (Huz,; = 53 'J
.' . - . i M;
(x;y)eR, (2.1) - (16 = 8 Matx)vs,j + (1 = Aadxva,j 00 1) <
;. ]
' E R L - + 8 A, Ox)v, .
U(X:Y) = g(X’Y) ’ (XsY)ec’ ﬂ (H-\L)i,J‘ " A {(] + )"iax)vi-z,_] (]6 1 ) I'I,J
where R is the rectangle defined by ; @) . )
; - - 2.
1 + (30 +12 q Axa)vi,j (16 - 8 KiAx)vi+]’J (2.3
R = <(x,y) IO <x<L, 0<ycx< W> ;
- s ‘<N'2:l<.SM;
and C is the boundary of R. We shall now place a uniform mesh + (1 XiAx)vi+2,j 2si s =J
on R, (i.e., &x = N%T » where N is the number of interior mesh
- - (16 + 8 A, ,OX)v .
points in the x-direction and Ay = ﬁ%? » where M is the number 1 (Hl)N-l,j 2 A (1 + XN-IAX)VN-3,j ( N=-1 N-2,j
of interior mesh points in the y-direction), and define the 3
- () a2 - (16 - 8 A, Ox)v,, . )
totality of difference approximations to (2.1) by . + (30 + 12 q_ (& )VN-],j ( N-1 ) N,j
H+V)y=k. (2.2) I<j<M;
The matrices H and V are defined by (HX)N,j = Z&E - (12 +6 KNAX)VN—I,j + (24 + 12 qél)émz)VN’j »

and
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(), | #{(zu +12 of )Ay‘a)vi,, -(12-6 Sle)Vi,z} ,

1 <i<N;

(Vx)i’2 = —%;{-(16 + 8 53Ay)vi,l + (30 + 12 qg(z)Aya)v2

bdy

(16 - 8 saéw)vi’B + (1 - SaAY)V;J+}’ 1 <i<N;

Wu); |

= Ay <(I +s Ay)v i je2 " (16 + 8 SjAy)vi,j-l

+

- (=)
0 A 2 . - -
(30 + 12 qJ by )vi,J (16 - 8 sjAy)vi,j+l

(2.4)

+

(- sAy)v i +2} » 120 SN, 25 M2
1
(Vy')i,M-l =5 {(l + SM-IAy)vi,M-3 - (16 + 8 SM-IAY)Vi,M-Z

+ (30 + 12 q( ) Ays)vi Mol " (16 - Ay)v

>M-1 M7

1 <i <N;
]
(v'\"-)i,M = Z}Ta_<- (12 + 6 SMAY)Vi,M-l + (24 + 12 qf)Aya)vi,M},

I <i<N;

and k is a vector with n = NM components ki i given by

k. i = ]2 fi,j + (contributions from couplings to the boundary).
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For simplicity, we have not writfen out iﬁ full the exact
contributions of couplings to. the boundary, but these are
analogous to our treatment in thé past.

Following Varga (1962, p. 212), we define the Peaceman~-

Rachford variant of ADI by

(m+';— ) ‘ (m)

(H+I" I).\L =(rm+ll-v).¥- +5’

m+ | -7
(m+1) (m+% ) s (2.5)
Dy s (r eyt " H)v +k, m>0,

(v + P

where 1(0) is some initial guess and the rm's are positive

acceleration parameters. Combining the two equations

(2.5), we have

My g, ® ,m20

where
T 2 W+r)7 (k1= HH+ )T () - V),
(2.6)
9 = (vV+ rl)-l<(rl SH)H+ )T |>5.

Since (H + V) ismonotone, (2.2) admits a unique solution v.

Therefore, if g(m) = x(m) - v is the error after m iterations,

(me1) _ ¢ (M)

- , and in general
m+1

then ¢
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m

e ST 1 1@ o5, (2.7)

k=1
Since H and V, as defined by (2.3) and (2.4), are the‘sum
of five diagonal matrices, (Hj’ 1<j<M V., 121 gN),
such that H = Hy = ...Hy, and Vy =V = ... = V, it is
easily seen that H and V have the same eigenvectors g(k’Z).

Now defining

A = sup |k(x)| ,
0<xglL

s - sup IS(Y) l’ (2.8)
0O<ygW '

() = sup ’q(l)‘(.x)jl,

q
0<x<L

q(z) s sup [q(a)(y‘) ]
0<x<W ’

we are ready to prove

1 |72
0 < Ax 51 MIN lgx ,( ;TTT) , s

| , 172\
0<ay < MIN ?5(—(27) ,
q

the submatrices H. and Vj defined in (2.3) and (2.4) are
diagonally similar to oscillation matrices, and therefore have

the following properties:

(1) 1f (Tk, 1 <k <N) and (uﬁ, 1 < 4 < M) are the
eigenvalues of the submatrices Hi and Vj
respectively, then

O0<m <715 < ... < TN and 0 <}y < Py < .00 < Ky

(2) 1f x(k),l < k < N) and (l(/&), 1 <4 < M) are the

eigenvectors of the submatrices Hi and Vj
respectively, then each forms a linearly independent
set. Moreover, the eigenvectors, a(k:ﬁ) form

a basis for the n-dimensional vector space Vn(C)

where n = MN,

Proof: Since properties (1) and (2) follow directly from

Theorem 2.3 and H, = Hy = ... HM’ and V; =V, = ... VN’ all
that need be shown is that H, and V, are diagonally similar to
oscillation matrices. Let D be the diagonal matrix whose diagonal

entries di ; are given by
b

o)
11}
Q

H D>0. (2.9)

+ . . . .
Since B is a non-negative matrix with two super-

diégdhals and two subdiagonals, we shall establish the hypotheses

185
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of Theorem 2.5 in order to obtain this result. Let us consider

the following cases:

Case |
[ B+l iep-1
B » 10 £ N=p=T; 1 < p < N-2,
-i+|,i+2,'-c,i+p -

-

Fi+l,i+2,...,i+p

B ’ 1 < i € N=-p=1; 1 N-2.

L 0,04, .., itp-]-

(p)

IA
©
in

let us choose §

entries s, ; are given by

= (6)i-], 1 <i<p.

Then, it is easy to verify that,
Psitl,.e.,itp=1

(s®) " g | s ()

+1,i+2,...,0+p

and

( (p)) +1,i42,...,i+p (S(p))-"

i, i+2,...,i+p~1
for all

I < p < N-2,

are strictly diagonally dominant matrices and therefore,

i,itl, ..., i+p-l

kyk+l, ..., k+p=t

to be a p x p diagonal matrix whose diagonal

for all
i,k = l,2,.--,N'p'] ’ i'k=]{'] M ] S P S N-Z-
Case 11,
P,i%l, . 0u,i®p=1
8" , 1 <igNp; l<pgNIL.

isitl,y e, itp-l
From arguments similar to those given in Section 1, we have

that the matrix

is monotone. If H, = (o:i .), then it is easily seen that

2,0-0 - ],2,...,N-l

= H

4, N-1 1
2,3,...,N 1,2,¢00,N=1

Since H; is non-singular and

],2,.-.,N'2
+*
2,3,--- N-I

from Case |, we have, since Y Nep 2 0, that
b

(20

By similar arguments, ifH, ( i,p), where

>0,

187
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. isi#l, e, itp=~1l (|,p)
isitl,ee.,itp=l
is monotone for all (i=1,2,...,N-p ; 1 < p < N-1), then
defining
i,p)

(Hl(”p)) ak
we have

T4, ee ., ikp-] / P, i*l,.u., itp-]

(i,p)

0<a = 8" Hy

- I,P
i+],i+2,...,i4p iyitl,ees,itp=1

Therefore from Case | and the monotonicity of Hy (i,p), we

have

it ..., itp-l

det (H, (i,p)) >0

U]
=X
T

Py i+l e, itp-1

for all

(1 <i<N-p; 1 <pgNI).

IA

The matrix Hl(i,p) can be easily shown to be monotone for all

(1 < p < N-1) by applying the methods of Section 1. Therefore,
collecting the results of Cases | and 11, we see that B+ is

an oscillation matrix by Theorem 2.5. Since H, is similar to
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B+, the theorem is established for H, and by identical arguments V,
can be shown to be similar to an oxcillation matrix. Q.E.D.
We shall now state, without proof, a particular

theorem from Householder (1964, p. 47).

Theorem 2.7. Associated with an n x n complex matrix A is a

convex body K, depending only on the eigenvectors of A, and a norm,

A HK’ such that

IlA “ = p(A),

if and only if, for every eigenvalue Bi of A such that

Iﬁil = p(A), the number of linearly independent eigenvectors
belonging to Bi equals its multiplicity.

Clearly from Theorem (2.6) there exists such a norm for the
matrices H and V which is the same for both, since they have

the same eigenvectors.

Now, following Varga (1962, Ch 7) and using this norm,
it is clear that all the results obtainable from the commutative
theory for the Peaceman-Rachford variant of AD| are applicable to
the finite difference equations defined by (2.3) and (2.4). The
most important of these is
Theorem 2.8. If a and B are the bounds for the eigenvalues T and

H, of the matrices H and V defined in (2.3) and (2.4), i.e.,

O<acxg T By < B, 1 <1 <n,

m
and if the acceleration parameters<ﬁrk> are chosen in some

optimum fashion (cf. Varga (1962, p. 226) or Wachspress (1963))
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then, the average rate of convergence of the iterative method

defined by (2.5) is

m
K
R=-1Inp T > T
n T I"j ]n(B/a) (2010)
j=1 .

The result of (2.10) states that if we can obtain
bounds on the eigenvalue spectrums of H and V, given by (2.3) and
(2.4), then at least for the separable problem we can use variants
of AD! to solve, very efficiently, the matrix equations of (2.2).
We also have experimental evidence which indicates that the Peaceman-
Rachford variant is very effective for non-separable problems. This
has been reported by Young and Ehrlich (1960) and Price and Varga
(1962) for the standard O(ha)finite difference eduations. A very
recent paper by Widlund (1966) allows us to extend the result of
(2.10) to the non-separable problem given by (1.2) but still for
rectangular regions.

The iterative solution of matrix equations for which the
associated matrix is non-symmetric and is not of the M-matrix type
has also been considered by Rockoff (1964), who in contrast used
the successive overrelaxation iterative method and tools different
from those resulting from the theory of oscillation matrices. The
results of this section are apparently the first such applications
of the theory of oscillation matrices to alternating direction

implicit iterative methods.
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ADI for Non-Rectangular Regions
The Peaceman-Rachford matrix Tr for a single fixed
parameter is given,from (2.6), by
-1 -1
Tr ='(V +rl) (1l - H)(H + rl) (el - V) . (2.11)

Using (2.7), we have

so from Theorem 1.2, the iteration procedure, defined by

(2.5), f6r a single fixed parameter converges if and only if

p(T.) < 1. Defining

TE DT, v+

m (= H)(rl # K (et = W) (rt + W)™

we have ,
p(r.) = o(T) < HT,.L
< e - mer e m? “z i - vere w2,
wherell "2 is defined in Section 1. Therefore, to prove

Tr is convergent we need only show

“(H - H)(r) + H)'l-“2 <1
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and (2.12)

"(rl -V (r+ V) uz <.

In order to establish sufficient conditions on H and V
so that (2.12) holds, we shall use a theorem due to Feingold
and Spohn (1963). Results of this sort have been reported as
well by Wachspress and Habather (1960) and Birkhoff, Varga and
Young (1962).

Definition 2.3. If S is a Hermitian and positive definite

nxn matrix, then

_)5”5 = (wax)]/z

denotes a vector norm, and the induced matrix norm is defined

I'A “ = sup ("Aé l // "x u ).
s x # 0 s ]

We shall now prove-

by

Theorem 2.9. (Feingold and Spohn) Llet A and B be n x n

matrices with A non-singular and A-B Hermitian and positive

- -l
definite. Then HA 'B “ < 1 and nBA " 1<

(A-8)

if and only if A" + B is positive definite.

(A-B)

Proof: Since

21 -1
ATB=1-A (A-B),

-1 R
then from Definition 2,3 "A B "(A-B) < 1 is equivalent to
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”(I - A'l(A _ B))é_“(A_B) Sl'é ”(A_B), for all x # 0. (2.13)

Letting
-1
A (A-B)x=y,

then (2,13) becomes

iy

‘kA - B)'lAy -y "(A-B) < N(A - B)'lAy "(A-B) for all y # 0.

Again using Definition 2.3, and remembering that A - B is

Hermitian, we have

3 % %% -1 e % % % =1
y A-B)y-y Ay +yA (A-B) Ay -y Ay <y A (A-B) Ay,

which is equivalent to

y Ay + yAy - y (A - B)y >0,
which is equivalent to

y (A" + B)y >0,

which completes the first part of this result. The proof of

the second part is similar. Q.E.D.

If we let A=rl +Pand B =P - ri, for any r > 0
we have that A - B = 2 rl is Hermitian and positive definite,
so we have immediately

Corollary 2.1. If P is an n x n matrix, with (rl + P) non-

singular for all r > 0, then

‘ "(rl ; P)-I(P -rt) "l <1
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if and only if P*¥ + P is positive definite.

(Pu), 12 12%&1 + 12 h3q;Ju; - 24 {2-2) u

Al R

Since from Definition 2.3 and Definition 1.7

oo Ys 0<Ac<l,

"A L =“Al2’

we have that (2.12) holds if and only if HT + H and VT + V are

(Pu), = = 12 u; | + (24 + 12 h?q.)u,

positive definite. Therefore, if we wish to solve the finite i=2, n-1, (2.14)

difference equations (1.33)

(Pu); =u, , - 16U, + (30 + 12 h®q;)u,
(H+V)x=Ax=k
=16 u,, , +w, < i< n-2
using (2.5), it is sufficient to show that H + HT and V + V' Uil i+2 3sisnz,
are positive definite.
. . (Pu) =1 12 o) + 12 h*q_fu_ - 24 {2-p) u
We shall proceed by showing that the matrix P, n M nJn u+l “n-ld

4
representing the O(h ) finite difference approximation to (1.2)
(1=-p)
+ 12 ) U, O<pu<l.

for an arbitrary row or column of our mesh region R of Figure 2

. T . - .
Section 1), i h that P + P s positive definite. Fo .
(see Section 1), is suc @ 'S positive detinite r If Q is the matrix derived from P in (2.14) by setting the

simplicity, we shall neglect the first derivative terms in (1.2)

qi's to zero, we have,

since they greatly complicate the algebra and add only mesh
T T T T

spacing restrictions to the final result. The n x n matrix P, x (P + P)x 2 x (Q+0Q)x (2.15)
representing an arbitrary row or colum of our region is given

since by assumption q; >0, I <i<n. It iseasily

by:

verified, using straightforward inequalities, such as

2 2
G = %) S 20 = x0T 20, - Xy,

2

) L

that,
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xT(Q + QT)X 2
-a - b7 >0 for all 0 <y <1,

giving finally

z<_T(P + PT)A _>_1<.T(Q + QT)é_ >0 for all x # 0.

Collecting these results, we have

Theorem 2.10. The Peaceman-Rachford variant of ADI defined by

(2.5) converges for any single, positive, fixed, parameter, r,

when used to solve the matrix equations (1.33), for all h

sufficiently small,

Theorem 2.10 along with Theorem 2.8 gives us as complete
a theory for the Peaceman-Rachford variant of ADI for the high

order finite difference equations of Section | as exists for the

O(hz), standard, central, difference approximations. In the

+ (b“ X = Tﬁéflxn_l)z ?: absence of a more complete theory for the non-separable case, we
4 recommend using 2™ Wachspress parameters, once reasonable bounds
A BPIR*CTY R -b“)xz (2.16) §

for the eigenvalue spectrum have been found. An excellent upper

bound B is obtained by using the Gershgorin Circle Theorem

where . ; [see Gershgorin (]93])] » which is equivalent to
a2 = 12 S.L'_') , 7 =AM,
19 y+l1 B = MAX "H w ? "V‘, .
- ;? Also, since H and V are both monotone, the inverse power method

2 ( =11y )
4

> O2) , 7 = A,u. % » of Wielandt, [see Varga (1962, p. 288)], may be used to obtain the
7+ E

lower bound &. Excellent results are obtained by using these bounds

Also by a simple calculation, we have : ;v , and the Wachspress parameters, as seen from the numerical resul ts

of Tables 1 and 2.
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Numerical Results

We consider here numerical solution of the following

problem:

%i;“ + gj——;‘ =32 &P Y, (x,y)eR,
(2.17)
Wboy) =™ e, (oydec,,

where the Ri are the regions of interest with boundaries Ci.

The solution of (2.17) is eszsily verified to be

For each example, we again solve both the high accuracy,
0(h4), finite difference equations, presented in Section 1, and the
standard, O(hz), finite difference equations for a sequence of mesh
spacings (h) tending to zero.

In all cases the Peaceman-Rachford variant of ADI,
described above, is used to solve the matrix equations. The upper

bound, b, of the eigenvalue spectrums of H and V, is chosen to be

b = MAX{IH |L, "V"w>

The lower bound, a, is found by doing ten iterations of Wielandt's

inverse power method [see Varga (1962, p. 288)]. We use, cyclically, E

2" acceleration parameters generated using formulas presented by
Wachspress (1962). The number m is chosen, in all cases, to be the

smallest integer such that

Sl st L s e R s
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where

This is just a suggestion made by Wachspress (1962), where

® is the desired accuracy. The iterations are stopped when

ORI
1

MAX ' <1 X107 k> 1, (2.18)
i u(k)
i
where g(k) is the solution of the iterative procedure after
k cycles of m parameters and u(o) = 0.

We then compare the approximate solution of the matrix
equations to the exact solution of (2.17) and compute "3 "w,
and @, the order of accuracy. Tabulated also are the number ot
parameters 2" which were used, and the number of cycles (k) needed

to satisfy (2.18).

Example 1 Unit_Square
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Standard __High Accuracy

- ——— /" " ——

h 'e"“oo o 2" k 2 0 o Zm k

125 a7s |- | 83|35 x0i| - |83
L0625 | L5k X 107 | 1.95116 | 2 ||.266 x 107 |3.74 |16 | 2
.03125 | .11k X 10__ | 1.99 16 | 3 |f.184 X 10_ 13.86 |16 | 3
.015625 | .288 X 10 2.0 {16 {3 ||.115x 10 3.99 |16 | 3

TABLE 1

Clearly the theoretical estimates of Section 1 are

confirmed, as well as the earlier results of Section 2.

We see

from Table 1, that for a mesh size h = .03125, which is 1024

mesh points, a 100 to 1

obtained with the high accuracy method.

improvement in the relative error is

Also we see for this

example, that the high accuracy difference equations require only

1/15th as much computer time as the standard difference equations

to obtain a given accuracy.

Example 2 An L Shaped Region

RB
Standard High Accuracy
] . P " -~
h e o 12" 1k NE Y a 12" |k
125 477 x 100 - 83|l cmex 10l f - [ 83
.0625 126 X 10__ | 1.92 [ 8|3 .105 x 10_; |3.82| 8 | 3
.03125 :323 X 10_, £ 1.96 [ 16 {3 || .690 x 10__[3.92 |16 [ 3
.015625 812 X 10 1.99 {16 |3 || .436 X 10 3.98116 | 3

TABLE 2
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Clearly the theoretical results of Section | are borne
out by the numerical experiments. Moreover, the Peaceman-Rachford
variant of ADI appears as efficient for non-separable problems as
it is for separable problems. This observation has been reported
by Young and Ehrlich (1960) and Price and Varga (1962) for the
standard, O(hg), finite difference equations.

We have seen then how effective high accuracy difference
equations can be. Even though none of the examples considered here
could be called practical problems, these results are certainly
impressive. Because the high accuracy methods, in many cases,
allow one to use fewer mesh points to obtain a given accuracy,
computer time and storage can be saved.

Both the theoretical results in the body of this paper
and the numerical results presented here indicate that, when solving

practical problems, high accuracy finite difference equations

should be considered.
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By

K. H. Coats¥*
J. G. Richardson®

INTRCDUCTION

In recent years natural gas has been stored near markets in
aquifers where insufficient storage capacity is available in depleted
fields. Operators of these aquifer storage reservoirs have encountered

technical problems relating to the gas-water displacement accompanying

initial growth of the gas bubble. The injected gas tends to override
the water, with a resultant low displacement efficiency and high rate
of gas travel downstructure toward spill points. Low displacement
efficiency makes it difficult to sustain water-free gas production.
Sometimes the fingering of gas downstructure may be so pronounced that
é the injection rate must be severly curtailed, which excessively lengthens
the time required for bubble growth.

Th;a paper is concerned with estimating - for given aquifer char-
acteristics and fluid properties - the displacement efficiency, rate
9 of gas movement down-structure, and rate of gravity drainage of water
behind the gas front. Several published articles relate to the simu-
lative capability necessary to handle.this problem. The Dietz formulal

and Buckley-Leverett method2 have some applicability to the problem;

*Esso Production Research Company, Houston, Texas
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Woods and Comer3 reported one-dimensional, radial calculations which
accounted for the two-phase flow of gas and water. Most of the rece
research directed toward understanding of aquifer behavior in relation
to gas storage has concentrated on single-phase flow in the aquifer.hi
Douglas, Peaceman, and Rachford5 presented a method for calculating
multidimensional two-phase flow in reservoirs; their method has been
applied in work reported by Nielsené, Blair and PeacemanT, and Goddina

The purpose of this paper is to illustrate the use of two-"- ’
dimensional, two-phase flow calculations in simulating the gas-water
displacement. The calculations described account for capillary and
gravity forces, relative permeability, and reservoir heterogeneity.
An example reservoir is described and calculated results are presented
for a variety of injection rates and values of permeability, reservoir

thickness, and dip angle. The results are compared with those obtai

from the Buckley-Leverett and Dietz formulas.

EQUATIONS EMPLOYED

The well-known, basic equations governing two-phase flow in por-

ous media are:
(a) Darcy's Law for each fluid phase, E

(b) the continuity equation expressing conservation of mass, and%’

(¢) the definition of capillary pressure. §

These three equations are combined as shown in Appendix A to give

Equations (1).5
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The gas and water are treated as incompressible.

L ko 1) 83
V(=) - B q =08 B e b8 E (1a)
b ks gt
V'(kﬁjﬁg)“ngg"ﬁs'at -pst =B (1b)

9

Equation (2) gives the critical rate” as a function of formation
and fluid propertibks,

-6 ks Py ~ P . .
Gge = 1-124 x 10 f;i Ev:—:—'i sinc 4 MHCED, (2)

where A is cross-sectional area perpendicular to the direction of flow.
This formula is derived by balancing viscous and gravitational

forces about a small finger of gas extending downstructure into the

water parallel to the bedding plane.® Sustained gas injection above

"the critical rate is undesirable, since the displacement of water will

be inefficient and the gas will finger unstably downstructure at a high
rate. The critical rate thus serves as a useful guide or reference

rate in establishing the gas injection rate during bubble growth. Where

¥Equation (2) and the following Dietz Equation (3) may be written with

"&%krw, p.g/krg replacing M and “g' However, this replacement requires

choice of thegas saturation (e.g., frontal saturation or average sat-
uration behind front) at which k__ is to be evaluated. That question
deserves extensive consideration"8nd has in fact been the subject of
several previous papers. For the sake of simplicity, and to avoid
lengthy discussion of a subject somewhat apart from the purpose of this
paper, k__ is excluded from Equations (2) and (3). The critical rate
given byrﬁquation (2) is therefore employed here only as a reference
rate; it is not viewed as a rate at which unstable fingering of gas
necessarily begins. Rates above the critical rate given by Equation
(2) may, in fact, yield a favorable mobility ratio at the displacement
front.
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were performed on a vertical cross section in order to describe the gas
overriding the water. This overriding tendency has a great effect on

downstructure the efficiency with which water is displaced. On the other hand, areal

i ‘ : rides so the displace-
For injection rates below the critical, the Dietz formula, Equa coverage tends to be fairly good when the gas overr

) . . . t i f greater interest than
tign (3), gives the angle between the bedding plane and the gas-watey ment behavior in the vertical cross sectiom is of g
interface as a function of rate and formation and fluid properties.1

q_B VI ¥
tan g = tanc(d - 0.89 x 106 E_E8 v )gcosc( . e
d

To evaluate the utility of this formula, the predicted angle is com-

that in the areal grid.

pescription of Example Reservoir

The example reservoir treated here is patterned roughly after the

Mt. Simon aquife} storage field.11 Fig. 1 illustrates the homogeneous
d wit t . |
R ) vertical slice or cross section, 3000 ft. long and 100 ft. thick, with

One of the reservoir scaling groups derived by Rapoport and Lea : s 5° dip angle. Gas injection rate is based on a width of 7500 £t

for incompressible, two-phase flow is the ratio of viscous to gravi-
quw/Lk
tational forces, —=—-—— . Since injection rate q, and permeability k

L Ag

appear only as the ratio q/k, their effects on reservoir performance

The injection rate and fluid and rock properties for the reservoir,
given in Table 1, comstitute the base case (or Case 1) for the calcula-
tions. The relative permeability and capillary pressure curves listed

can be considered as the single effect of the ratio, q/k. in Table 1 were averaged from data on a number of permeable Eocene sand-

DISPLACEMENT STUDIES stone core samples.

Table 2 gives data and results for all seven cases calculated. Cases
2-7 involve variations in permeability, reservoir thickness, dip angle,
data not reported are
to simulate the growth of a gas bubble in a slightly dipping aquifer. and gas injection rate. For each case in Table‘2, a P
i ' des the ratio
The example aquifer or reservoir was represented by the homogeneous, identical with those given in Table 1. Table 2 also includes

. ' i ach case.
vertical cross section described below. Calculations were performed of injection rate to critical rate for e

for various values of injection rate, permeability, reservoir thickness, Procedure

» SR ¥ . 1 employing -ADIP as
and dip angle. A severely stratified case was also treated to illus- Equations (1) were solved simultaneously, employing

trate the effect of heterogeneity., The two-dimensional calculations -
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described in the literature.5 The cross section was represented by
30 x 10 grid, yielding a block 100 ft long x 10 ft thick (30 x 5 gr ’
in cases involving 50-ft thickness). Gas was injected into the top »
corner block of the reservoir as shown in Fig. 1. Water was produq ‘
from all ten blocks through the thickness at the downdip end of the
section.

Iterations at each time step were continued until the increme
material balance was less than 0.003—i.e., until the sum of the ch
in block gas saturations multiplied by block pore volume differed b
less than 0.3 percent from the amount of gas injected during the t
step. About 8 iterations per time step were required. Cumulative
material balance, defined as total gas in place divided by total gas
actually injected, was generally less than 0.5 percent, always less

than one percent in error. Time steps were limited so that the maxi~

As an example of computer time requirements, using 57 time step:
to simulate injection at one MMCF/D for 1050 days (Case 2) required
16.84 minutes of IBM TO4: time ($200 per hour),

Base Case Results

Data for the base case are given in Table 1. The injection rate

is 5 MMCF/D into a 200-millidarcy formation 100 ft thick and 7500 ft
wide. Fig. 1 shows the calculated position of the gas-water interfﬁc%
after 210 days, or cumulative injection of 1.05 Bcf., The 5 MMCF/D ra{,

is 3.62 times the critical rate and results in a severe gas override
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as shown in the scale representation of the cross section; the tongue
of gas reaches over 2100 ft downstructure. The displacement efficiency,
defined as the percentage of the water initially in place that we dis-
placed from the region invaded by gas*, is 37.2 percent. Fig. 2 shows
depth-averaged gas saturation vs distance along the cross section.

Fig. 3 shows the rate of gas travel downstructure. The gas fromnt travels

800 ft in 60 days and continues to move linearly with time.

Comp#rison With Buckley-Leverett Results

The Buckley-Leverett technique was applied to the base-case data
of Table 1 to calculate saturation versus distance after 210 days of
injection. Fig. 4 shows that the Buckley-Leverett and 2-D results are
in poor agreement; the Buckley-Leverett technique gives a gas movement
downstructure of only 700 ft com#ared with the 2100 ft predicted by the
2-D method.

Fig. 5 shows equally poor agreement between Buckley-Leverett and
2-D results for an injection rate less than the critical rate (Case 2,
Table 2). The primary reason for this poor agreement is the inability
oftheBuckléy-Leverett method to account for the two-dimensional
nature of the displacement—i.e., for the pronounced override of the
water by the gas.

The lack of applicability of the Buckley-Leverett results in-

dicates the need for 2-D or 3-D calculations in simulating gravity

override of water by injected gas.

i — ter saturation of
*¥Since relative permeability to water is O §F a water :
22 percent (see Table 1), the maximum possible displacement efficiency

is 78 percent.
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Comparison of 2-D Results With Dietz Equation

Two-dimensional calculations were performed for an injection r
less than the critical rate in order to compare the inclination of t
gas-water interface with the inclination yielded by the Dietz Equati

(3). Fig. 6 shows the position of the gas-water interface given by

two-dimensional calculations simulating 1050 days of injection at on
MMCF/D (Case 2, Table 2). Insertion of the Case 2 data into Equatio
(3) yields tan § = 0.01k2. 1In Fig. 6, the line drawn corresponding
that angle corresponds to a 100 percent displacement of mobile water
a displacement:efficiency of 78 percent. The figure shows that the

Dietz angle provides a good approximation to the inclination of the

interface over the flat portion. However, the Dietz equation predic f

only the angle, not the position of the interface. Positioning of the
interface requires that the average displacement efficiency behind t?}
front be known, and determination of this efficiency requires 2-D caIi

culations.

Effects of Permeability, Dip Angle, and Thickness ;

The 2-D results for Case 2 show how permeability affects the g'f
water displacement. This case is identical with the base case except%

that injection rate is one MMCF/D, less than critical. Injection ra{:

and permeability affect reservoir performance only through the ratiOgg
q/k, as discussed above. Therefore, Case 2 results are identical wif%
those for the case of five MMCF/D rate of injection into a 100-md foi;

ation. Thus comparison of Case 1 and Case 2 results shows how a five
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fold larger permeability affects the displacement.

Fig. 6 shows the position of the gas-water interface after injec-
tion of 1.05 Bcf. Comparison with Fig. 1 shows that the higher perm-
eability results in a more nearly horizontal interface, lesser extent
of gas travel downstructure, and higher displacement efficiency. For
the 100C-md permeability, the gas traveled only 1300 £t downstructure
compared with 2100 ft in the 200-md case. The displacement efficiency
for 1000 md was 46.3 percent, compared with 37.2 percent for 200 md.

Case 3, as nouted in Table 2, differs from the base case only in
that the sine of the dip angle is increased from .05 to 0.25. As noted
in Table 2, the higher dip angle reduces the gas travel downstructure
after injection of 1.05 Bef from 2100 ft in the base case to 800 ft.

The displacement efficiency rises from 37.2 percent to 46 percent. The
injection rate of 5 MMCF/D for Case 3 is below critical, as noted in
Table 2. These considerable effects of dip angle on rate of gas move-
ment and displacement efficiency indicate the desirability of locating
steeply dipping structures for storage purposes.

Case U4 illustrates the effect of a 50 percenﬁ reduction in in~-
jection rate to 2.5 MMCF/D. As noted in Table 2, displacement efficieacy
after injection of 1.05 Bcf rises from the baée case 37.2 percent to
EB.B percent, and gas travel downstructure decreases from the 2100-ft
base case to 1800 ft.

Case 5 shows how reservoir thickness affects displacement effic-

iency. Data for this case are identical with those for Case 4 except
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that reservoir thickness is reduced 50 percent, to 50 ft. Displacemeng
efficiency, after 0.525 Bcf injection, dropped from the 39.k-percent oé
Case 4 to 33.5 percent. Gas travel downstructure increased, reaching,?
1600 ft as compared with 1100 ft. These results indicate the desira- 5
bility of thick sands in aquifer storage structures.

Heterogenecus Case

Cases 6 and 7 illustrate the effect of severe heterogeneity.
Case 6 is a stratified formation with five layers varying from 20 to
500 md in permeability. The layer thicknesses and vertical permeabii
ities are given in Table 3. Case T is identical with Case 6 except
that the reservoir is homogeneous with the same millidarcy-feet produ
Fig. 7 compares calculated positions of the gas-water interface after
injegtion of 0.525 Bcf for the stratified and homogeneous cases. In
the stratified formation, a finger or wafer of gas in high-permeabilits
layer 4 reaches over 2600 ft downstructure; in the homogeneous forﬁ#t d
(equivalent Case T), it reaches only 1700 ft. Gas entered the tight
layers 1 and 3 in the stratified reservoir almost entirely by perco-
lation upward from high-permeability layers 2 and 4, The displaceﬁZn
efficiency in the stratified formation (Case 6) is only 9.35 percent,
compared with 32 percent for the equivalent homogeneous formation
(Case T).

Fig. 8 shows calculated gas saturation contours for the stratifig
aquifer. The 5 percent saturation contour exhibits the same character,

as the interface contour of Fig. 7, in that it is further advanced in |
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tight layer 3 than in loose layer 2. However, the 10 percent saturation

contour exhibits the contrary behavior of further advancement in layer

2 than in layer 3. The reason for this situation is that the gas enters

tight layer 3 by percolating upward from layer 4, and for small satur-
ations (e.g., 5 percent or less) the low relative permeability to gas
in layer 3 retards further percolation upward to layer 2. However,
with higher gas saturations in layer 3 (e.g., LO percent or more),
sufficiently high relative permeabilities to gas exist to allow signif-
icant flow upward to layer 2, thus causing the character of the 10
percent saturation profile shown in Fig. 8.

The significant effect of heterogeneity in Case 6 shows the need
for reservoir description. It is probably true that our ability to
simulate reservoirs at the present time exceeds our ability to describe
them. Considerable reliance on simulated performance is justified where
sufficient core data, well tests, and some history for matching purposes
are available. Simulation of performance can still be useful when little
is known about the reservoir properties, however, since calculations
assuming a homogeneous sand will generally give a conservative estimate
of the rate of gas travel downst;ucture and'an upper limit on the dis-
placement efficiency.* If calculétions assuming a homogeneous sand

indicate intolerably low displacement efficiencies and high rates of

*¥This statement holds for random arrangements of layers of differing
permeability. However, it is not strictly true since one could easily
design a stratification that would retard the gas fingering along the
caprock and thereby increase displacement efficiency relative to the
homogeneous case.
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gas travel, perhaps past spill points, then they justify dismissal o
the structure as a potential storage site. However, where permeabiliy
distributions are known for a potential storage reservoir, these shoug

be included in the calculations.

CONCLUS IONS

Based on the two-phase, two-dimensional calculations conducted
this study, and on comparisons of these with results of one-dimensioni
calculations, the following conclusions are reached:

1. Two-phase, two-dimensional calculations appear to be necessas
for reliable estimates of displacement efficiency and rates of gas moii
ment downstructure in aquifer storage projects.

2. Where at all possible, calculations should include the perm-
eability distribution of the aquifer in question. Generally, when t
sand is assumed to be homogeneous, displacement efficiencies are too
high and rates of gas movement are too low.

3. One-dimensional calculations such as the Buckley-Leverett

technique predict displacement efficiencies that are too high and raté

of gas movement that are too low.

217

References

Dietz, D. N.: "A Theoretical Approach to the Problem of Encroaching
and By-Passing Edge Water,'" Prec. Kan. Neder. Adad., Wetenshaffen
(1953) Series B-56, 83.

Buckley, S. E., and Leverett, M. C.: Trans. AIME, 146:107 (1942).

"Saturation Diszribution and In-
Trans. AIME,

Woods, E. G., and Comer, A. G.:
jection Pressure for a Radial Gas Storage Reservoir,"

1962.

Katz, D. L., et al.:
with Natural Gas,"
York, 1963.

"Movement of Underground Water in Contact
AGA Monograph on Project No. 31, New York, New

Douglas, J., Jr., Peaceman, D. W., and Rachford, H. H., Jr.: "A

‘Method for Calculating Multi-Dimensional Immiscible Displacements,"

Trans. AIME 216:297 (1959).

Nielsen, R. L., Doctoral Dissertation: 'On the Flow of Two Immis-
cible Incompressible Fluids in Porous Media," Univ. of Michigan,

1962.

Blair, P. M., and Peaceman, D. W.: "An Experimental Verification of
of a Two-Dimensional Technique for Computing Performance of Gas-
Drive Reservoirs,”" Trans. AIME 228, 19-II, 1963.

"A Numerical Study of Waterflood Per-
Jour. of Pet, Tech.,

Goddin, C. 8., Jr., et al.:
formance in a Stratified System With Crossflow,"

June 1966, p. T65.

Hill, S.: Genie Chemique, Chem. Eng. Sci. I (6): 246 (1952).

Rapoport, L. A., and Leas, W. J.: Trans. AIME, 198:159 (1953).

Rzepczynski, W. M., Katz, D. L., Tek, M. R., and Coats, K. H.:
"How the Mt. Simon Gas Storage Project Was Developed," The 0il and
Gas Journal, June 19, 1961.



218

TABLE I

DATA FOR EXAMPLE RESERVOIR, BASE CASE
Water density 433 psi/ft
Gas density .0208 psi/ft
Water viscosity 1 cp
Gas viscosity .013 rp
Water formation volume factor 1 RB/STB
Gas formation volume factor 2.55 RB/MCF
Permeability 200 md
Porosity .15
Reservoir length 3000 ft
Reservoir width - 7500 ft
Reservoir thickness 100 ft
Dip angle, sine .05
Initial saturation 100% water
Injection rate MMCFD
2-D grid 20 x 10
Critical Rate, e 1.38 MMCFD

CAPILLARY PRESSURE-RELATIVE PERMEABILITY DATA

Water Capillary Water Relative Gas Relative
Saturation Pressure Permeability Permeability
(fraction) (psi) (fraction) (fraction)

.22 15. .0 1.
.23 8.8 .00018 977
.25 6.2 .000k45 .925
3 3.57 .0013 802
.35 2.76 . 00215 683
L 2.45 .003 573
45 2.16 . 006 466
.5 1,86 .012 372
.55 1.57 .022 287
.6 1.29 .Ob .211
.65 1. .065 .152
T Tl .099 .106
.75 L2 146 .069
.8 .09 .202 .0l3
.85 - .22 .285 .023
.9 - .56 1418 .008
.95 - .91 675 .002
.99 -1.3 .932 .0

1. -1.5 1. .0

i. =200, i, .0

TABLE 2

DATA AND RESULTS FOR CASES 1 - 7T

Distance of

Cumulative Injection Rate/ Displacement Gas Travel
Down-Stxructure

Sine of

Permeability Dip Angle

Efficiency

Critical Rate

Injection Rate Injection

Thickness

Case

2100 ft

37.2 %

h6.3
L6.

3.62

1.05 BCF

MMCFD

.05 100 ft 5

200 md

1

1300

725

1.05

100

.05

200

800

.25
1.81

1.05

100

025

200

1800

3.3

1.05

2.5

100

.05

200

1100

39.4

1.81

.525

2.5

100

.05

200

L

1600

33.5

3,62

.525
.525
-525

2.5

50

.05

Q
[
*

2500

9.35

32.

50 2.5

.05

6 See Table 3

1700

4.6

2’5

.05

158

i~
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TABLE 3

DESCRIPTION OF STRATIFIED AQUIFER, CASE 6

Horizontal Vertical Permeability
Layer #, i Permeability Between Layers i & i+l Thickness

1 50 md 1.6 md 10 ft
2 200 727 10
3 20 .385 10
4 500 7.7 10
5 20 0. 10

Porosity = 0.15

See Table 1 for other data

APPEND IX

3=D Flow Equations

The basic equations governing incompressible, two-phase flow in porous

nedia are:

(a) The continuity, or material balance, equations for each phase

.. (;:) +B,q = g; - (0 Sw) (ala)
- () + 3, 4y =3 (#5) (a1b)

(b) Darcy's Law relating superficial velocities to flow potential
k
ﬁ:-k"w‘ﬂ‘
w M w

| K, (a2)
37 = -k 2 v ¢
un

n n

(¢) The capillary pressure definition

Equation (A3), along with the definition of e,

Qw = Pw - Pwh
(Ak)
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A Study of Wellbore Heat Losses during the Injection of

Superheated Steam

by C. Jeo Lingard

The Pennsylvania State University

1. INTRODUCTION

At present, steam injection operations are confined to the use
of saturated steam, Thermal units now on the market can produce up to
80% quality steam with generator pressures up to 2500 psia, and
capacities up to 20 MMBTU/hour. However, heat losses from surface
lines and from the wellbore may considerably reduce the quality of
steam at the formation, depending upon injection rate and formation
depth. Recently, equipment companies have announced that they are
capable of manufacturing thermal units which will deliver superheated
steam. This study examines the advisability of using superheated
steam, by consideration of the wellbore heat losses accompanying in-
jection into a shallow formation.

Aside from an economic viewpoint, it is apparent that the
greater the thermal energy that can be delivered to the formation dur-
ing steam injection, the greater the benefits obtained through oil
viscosity reduction, thermal expansion effects, steam distillation
of light fractions, et cetera, in the reservoir. Although this energy
can be increased, theoretically, by increasing injection rate alone,
in practice low formation permeabilities may result in relatively
low maximum injection rates. In such cases, we must resort to using
steam at higher energy levels, either higher quality, or higher tem~
peratures, possibly in the one-phase state, the latter possibility
being dependent upon injection pressures. However it must be
remembered that the prime objective of steam injection is not merely
to deliver the maximum thermal energy to the formation, but is to
obtain the maximum economic recovery., Thus the extra fuel costs for
producing superheated steam must be carefully compared with any
possible increase in oil recovery which may result, In this connection
wellbore heat losses must be considered together with losses from sur-
face lines and from the formation, and variations in bottom hole
temperature are only important insofar as they affect temperature
distributions in the reservoir,

2. LITERATURE REVIEW

Many recent papers have appeared in the literature on the
various aspects of thermal effects in the wellbore during hot fluid
injection, and a few of these will be mentioned for their relevance
to this present study.,
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Squier et al, (1) considered temperature behavior of hot water
injection wells, and used analytical techniques for calculating
bottom hole temperature as a function of time, They regarded every-
thing exterior to the tubing = annulus, casing, cement - as part of
the formations, and obtained a solution in terms of Bessel functions
by solving a system of differential equations, using various Laplace
transforms.

2.

Ramey (2) calculated heat losses to the casing and formation,
in the case of hot water injection, by approximating the total energy
equation for fluid flow. He introduced a time function to approximate
transient heat conduction through the earth, and made use of an overall
heat transfer coefficient for dealing with the different heat resige
tances in the wellbore. His solution was again analytic,

3

Leutwyler (3) presented a finite difference technique for
s?udying casing temperature as a function of time during hot fluid,
liquid or gas, injection., His results compared favorably with those
of the analytical methods of Ramey, and Moss and White (4) and also
w%th Caslaw and Jaegers' solution to the diffusivity equation for a
line source (5). However he found that, for a constant tubing temper=
ature, casing temperature did not stabilize as quickly as had been '
suggested by Ramey, and in one example, with a tubing temperature of
600°F, he calculated that the casing temperature still rose 1°F every
20 days, after 300 days of injection. He also examined the effect,
on casing temperature, of a nitrogen filled annulus, special insulat-
ing cements, and aluminum coated tubing.,

Satter (6) studied the effect of condensation during the
injection of saturated steam, and by a numerical trial-and-error step
method. He obtained a series of graphs applicable to calculation of
heat losses for a wide variety of injection conditions. He developed
?seful correlations between injection pressure and temperature,
injection rate, and heat loss per unit depth. He also examined the
effect of downhole packers on heat losses to the casing and casing
temperature.

3. ASSUMPTIONS

The following assumptions were made during the calculationms.
In this present study, the depth to the formation was 1000 feet, but
it is felt that many of these assumptions would be extremely question~
able in a similar study applied to greater depths, Te
1. The geothermal gradient is neglected. T,, the initial
earth temperature is assumed everywhere constant and is
taken as the arithmetric average of the top and bottom hole
temperature. To 1000 feet depth, the actual earth temper-
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ature increases approximately 15°F, and this variation is
less than most fluctuations in surface temperature during
the day.

Pressure is constant with depth. The effects of friction
and gravity are in fact opposed during injection, and
although unlikely to balance one another, their resultant
effect is small in shallow wells,
Kinetic energy changes are negligible. This assumes fluid
incompressibility, and is questionable.

The tubing hangs symmetrically inside the casing. Any
variation from this position would have a marked effect on
the shape factor for radiation in the Stefan Boltzman

equation and consequently, heat losses to the casing would

increase. 1If the tubing were to touch the casing, assump-
tion T would not hold, and heat losses by continuous conduc~
tion to the earth would give locally high casing tempera=~
tures. However in shallow wells this assumption may well

be true. It is also assumed that a downhold packer is

used, and that the tubing is coated with aluminum.

The diffusivity and conductivity of the earth are comstant
with depth, and with temperature, This is at best a rough
approximation, but lack of data makes it necessary for

the calculation to assume average values of these properties.
However it is possible that these average values are in
error of 0% or more. Tf sn, from a consideration of
equation 13 it is apparent that we are calculating results
applicable at suue time t' instead of at time t, where
£(t') and £(t) (Ramey's time function for transient
conduction) may vary by 10%. This varying function may
mean that, for example, when t is 3 months = the time we
assume our calculated results apply - , t' is 12 months -
the actual time that the results apply.

Conduction through the walls of the tubing and casing

is neglected, Compared to the heat transfer coefficients
for the annulus and the earth, the thermal resistance of
steel is negligible.

Conduction and convection in the annulus are neglected,
Conductivity of air is very low, and heat transfer by
convection is difficult to estimate and probably over-
shadowed by radiant heat transfer,

The cement is taken as part of the earth. In fact thermal
conductivity of cement is only slightly lower than that
of earth.
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9.

10.

Heat transfer in the wellbore is under steady-state condi-
tions, whilst heat transfer from the casing to the earth

is under unsteady state conditioms. We assume that Ramey's
graphical solution te this transient heat transfer is
applicable at times greater than one month after the start
of injection. The former assumption follows from a
comparison of the overall heat transfer coefficients for
the wellbore, with that of the earth.

Lastly, we assume, as was done in all previous work on

this subject; that injection temperature and injection rate
are both constant. However two interesting points arise in
this connection.

Firstly, it may be deemed more economical to follow
up a period of steam injection with a period of cold or hot
water injection. 1In this case,of course, the results are
only applicable to the former period. Injection tempera-
tures may be increased to offset reduced injection rates,
as the fill-up time in approached. This is the second
point of interest., No work has as yet been done on
injection behavior of steam injection wells, but undoubt=-
edly the behavior will be similar to the case of behavior
of cold water injection wells. In the latter case, in-
jection rates may fall sharply during the fill-up time.
Injection rate is one of the most important factors
affecting percentage heat loss, and thus, for the initial
period of injection heat losses will be somewhat greater .
than those calculated. i

L. DERIVATION OF EQUATIONS

By consideration of an element of depth, dz, in the wellbore

we can equate the following heat transfer rates.

dq

(a) The total energy equation for fluid movement through the tubing

is

Assuming steady flow, dWs =
Neglecting K.E. changes, du
Neglecting P.E. changes, dZ

wuu

rate of heat transfer from tubing (heat loss of steam)

rate of heat transfer to casing (radiation alone)

rate of heat transfer to earth (transient thermal con~
ductivity)

(b)
dH.,_.E..QZ..,..E_@E.

£
= dQ e = 1
8c J 8c J Q J ( )

L =
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And, since Q, the heat transferred per unit mass, is given as

aQ = - (2)
Hence dq = - W dH (3)

In the case of a cooling gas in the tubing (superheated steam),
the specific heat at constant pressure, Cp, is defined by

c, = & (4)

P 3Ty p = constant

Furthermore, Cp is a function of temperature. But within any
small step, dz in which the steam temperature falls by an
amount dT}, Cp is approximately constant, and

where C, is the specific heat at the average steam temperature
in the gnterval. Equating (3) and (5)

In the case of a condensing gas, specific enthalpy is a linear
function of quality and so

H = Y« hgg + hg (M
or di = dy - hfg (8)
Equating (8) and (3) yields

dg = = hgg W dy (9)

Thus equations (6) and (9) give the heat transfer rate from
the tubing, for superheated and saturated steam, respecitvely.

With the assumptions previously given, heat transfer from the
tubing to the casing over the element dz is given by

((m + bk (T, + h6o)4)

100 (10)
0.172 F, F

where M = D¢ (11)

a 12



232

5.
(a)

(b)

()

1
and Fe:..]:._,_.l.).E (-L-l) (12)
et dc ec

which is the Stefan Boltzman équation‘for radiant heat tramsfer,
modified for emissivity and shape factors,

Heat transfer to the earth over the element dz is given by

2n Ke

dq = O] (T2 - Tp)dz | o (13)

which is Ramey's approximate solution to the radial transient
conduction equation (diffusivity equation)., The time function
£(t) has the same relationship to transient heat conductioen

from a wel lbore, that the Van-Everdingen & Hurst constant flux
Q(t) function has to radial transient fluid flow. It is also
dependent upon the diffusivity ¢{and the outside casing diameter.

Hence by simultaneously solving equations (6), (10) and
(13) we obtain Ty (zst) and Tp (2,t) in the case of a condensing
vapor. In both cases we also solve for dq and thus obtain the
percentage heat loss in the tubing for each depth interval,

DATA FOR CALCULATTONS

Earth Properties: Thermal Corductivity Ke = 1.40 BTU/hr.°F.ft
Thermal Diffusivity = 0.036 ft2/hr
Average temperature to 1000 ft = 57°F

Tubular Goods:
Casing (4 1/2" nominalg I.D. 4.09" 0.D. 4.50"

Tubing (2 1/2" nominal) I.D. 2.441" 0.D. 2.875" e =
Shape factor = 1,0 (concentric pipes)

0-9
0.3

*

Steam Properties:

Injection Pressure U422,6 psia (saturation temperature 450°F)
Sensible heat of saturated water = 430.1 BTU/1b
Sensible heat of saturated steam = 1204.6 BTU/1b
Latent heat of steam = TTh.5 BTU/1b

Specific heat (at constant pressure of 422.6 psia) is
approximated by the following empirical equation,

233

Cp = 0.530 + 56.59 e (-0.01172 Ty ) (1)

where T; is steam temperature,

(d) Injection Conditions: The calculations were made for combina-
tions of the following conditions:

1. 1Injection Temperatures: U50°F, 550°F, 650°F, TS50°F, 850°F

2. 1Injection Rates: 2000 lbs/hour, 4000 lbs/hour, 8000 lbs/hour
16000 1bs/hour

3. Time after starting injection (months): 1, 4, 12, 24, 120

6. CALCULATION PROCEDURE

A computer program was written and executed as a means of
obtaining a solution on a depth step basis at a given injection time,
The required output consisted of steam temperature or quality, casing
temperature and percentage heat loss, all as functions of depth, for
different injection conditions., Depending upon the state of the
fluid in the tubing, the program was in two parts., In part A,
profiles were calculated for superheated steam, whilst part B was
for saturated steam., Following execution of each step calculation,
the steam temperature was tested, and if found to be 450° (satura-
tion temperature) or below, control was transferred from part A to
part B. The general computational technique for a given depth-step
was -as follows, The step size was ten feet depth.

Part A

1) The steam temperature and cumulative heat loss at the top
of the interval were calculated from the previous step,
This steam temperature is called TT.

2) A steam temperature at the bottom of the interval was
assumed - TB.

3) The drop in temperature over the interval, TDIF, and the
average steam temperature in the interval, TAV, (arithmetic
mean of TT and TB) were calculated.

k) Cp was calculated by substitution of TAV into equation (14).

5) The heat loss over the interval was calculated using
equation (6) - (PER).

6) The average casing temperature over the interval, TCAV was
calculated from equation (13),
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7) The values of TAV and TCAV, are entered imnto equation (10)
and the value of the heat loss compared with that obtained
from step (5) - PER.

8) If the values did not agree to the desired accuracy, a
new value of TB was chosen, based upon the magnitude and
sign of the discrepancy, and the computation was continued
from step (3).

9) If the agreement was sufficiently accurate, the value of
PER was added to the cumulative heat loss at the top of
the interval, to obtain the heat loss at the bottom. TB,
TCAV and the percent heat loss were printed.

10) TB was now set as the new TT and the computation was
repeated from step (1),

Owing to the nature of equation (10), it was felt that individual

step casing temperatures might be of a lower accuracy than the steam

temperatures for the same interval. (This is because casing temperature

appears to the fourth power in equation (10).) For this reason,
casing temperatures of the previeous steps were not used in the next
steps, but steam temperatures alone were the basis for the solution.
Calculated casing temperatures were therefore free of accumulated
errors,

Part B

This part of the computation was relatively simple, since steam
temperature is not a variable, and casing temperature is constant
with depth, A trial-and-error solution for casing temperature is
therefore performed only once for each profile. This is done by
combining equations (10) and (13). Then the heat loss for each
interval is calculated from (13) and the quality is calculated using
equation (9) for each step. Quality and percent heat loss are printed
out versus depth,

T. DISCUSSION OF RESULTS

The results obtaimed from the computer are given in a series
of graphs. Most of these graphs show the results quite clearly, by
themselves, but some of the main features of each one will be dis-
cussed below,

The program was such as to perform calculations for:
a) Steam temperature and/or quality

b) Casing temperature
¢) Percent heat loss,

235

under different conditions of injectiom, for depths to 1000'.
The three variables were

a) Injection temperature (°F)
b) Injection rate (lbs/hr). _
c) Time after the start of injection

The graphs, therefore, try to show the effect of these three
variables on the calculated functions mentioned above, Injection
pressure was kept constant at 422,6 psia (saturated steam at 450°F)
but the program would need little altering to take into account
injection pressure. At higher pressures, saturation temperature
increases, and for a given injection rate and temperature, this merely
means that condensation of superheated steam occurs higher in the
wellbore. Pressure vatiation alone does not greatly affect percent
heat loss or bottom hole steam temperature, but is perhaps of more
interest from its effect on increasing injection rates in those
cases where formation permeability, rather than generator output,
set limits on injection rate. Pressure variation, of course, also
affects enthalpy values at given temperatures and, to a lesser extent,
it affects the enthalpy change for given temperature changes (super-
heated steam) - this being the specific heat property.

Whilst Satter, working with saturated steam, obtained inter=-
esting correlations between certalm wvariables (injection rate,
temperature and pressyre) and percent heat loss per unit depth, in
the case of superheated steam, there are too many extra variables,
and relations between them are generally non-linear and hence similar
correlations are far more complex.

Figure 1 = shows depth-steam temperature profiles under a
given injection rate (2000 lbs/hr). Two cases are considered. During
injection of saturated steam (450°), the steam temperature remains
constant, and the quality decreases linearly with depth., At later
times, the quality at a certain depth slowly increases. During
injection of superheated steam (550°) the temperature of the steam
falls, the profile being characteristically shaped concave~downwards.
This concavity is due te the greater heat losses from the steam at
the higher temperatures. When the steam has cooled to L450°F, it
remains at that temperature whilst the steam quality decreases. At
any given time, the slope of the quality-depth line is the same for
both cases, i.e. heat loss at a given temperature is independent of
whatever temperatures occur higher or lower in the well - this
comes from the assumption that heat losses occur in a horizontal
direction only, and the formations penetrated have zero vertical
conductivity. Note the relatively small effect of time on both cases,
once the 30 day stage is reached. (Ramey's function is valid after
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this time.) During injection at 550°, the condensation point travels
downward with time, but only 50' between 1 month and 10 years after

injection.

Figure 2 - shows casing temperature profiles as functions of
time and injection temperature. Notice:

a)

b)

d)

3)

Fi

a)

b)

The profiles are concave downward, as for steam tempera-
ture.

The temperatures become constant at certain depths,
depending upon time and injection temperature. This
corresponds to the steam being at and below saturation
temperature.

The effect of time is more pronounced for casing tempera=
tures than for the corresponding steam temperatures. Thus
at 200' depth, 550° injection temperature, the casing
temperature increases 34°F between 1 month and 12 months,
whilst the steam temperature increases only 3°F.

This increase in casing temperature with time is more
pronounced near ‘the surface than at depths.

At higher injection temperatures, the profiles are more
concave « indicating greater heat losses = but the casing
temperature becomes constant at the same temperature as

in the case of lower steam injection temperatures, the
only difference being that this constant temperature is
reached at greater depths in the former case. Thus casing
temperature will only stabilize at a given injection
temperature, providing the depth to the formation is
greater than that coreesponding to steam condensation.

. gure 3 - shows casin% temperature profiles under injection
of higher temperature steam (85

0°F). Notice:
Temperatures continue to decrease with depth (steam
temperature at formation above 450°F),

The effect of injection rate on temperature profiles (to
be contrasted with injection of saturated steam, where
casing temperature is independent of rate.) At low injec~-
tion rates, heat losses are greater, when expressed as

a percent of the input energy at the surface. Hence
casing temperatures decrease more with depth, although,
at a given time, the temperature at the surface is the
same for all injection rates. Compare this divergence of
casing temperature with depth for different injection

c)
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rates to the convergence shown in Figure 2, for different
injection temperatures. At very high injection rates, the
profiles become approximately linear with depth. (At infin-
ite rates of injection, steam temperature becomes constant
and percent heat losses become zero, hence casing tempera-
ture profiles approach vertical lines.)

Approximately, a four-fold increase in injection rate
causes casing temperatures at 1000' to be doubled - for
850° steam injection.

Figure L4 - shows steam temperature profiles as functions of
injection temperature at 4000 lbs/hr injection.

a)

Higher injection temperatures suffer greater heat losses
and consequently the temperatures are reduced more. The
different profiles do not completely converge, however,
since the saturation temperature is eventually reached
whereupon heat losses become constant for all cases. This
temperature is reached at greater depths, of course, in
the case of high temperature injection.

Figures 5, 6 and 7 - all give percent heat loss profiles to

1000' showing the relative effects of time, injection temperature,
and injection rate.

a)

b)

a)

Note the small effect of time in Figure 5. Between 1l year
and 10 years. Percent heat loss decreases only 0.2% at
1000' for L4000 lbs/hr injection at TS50°F.

The curves are characteristically concave downwards, tend-
ing to linearity with depth, since steam temperature
approaches saturation temperature. (Figure 5) For
saturated steam injection the lines are straight.

Note the much more pronocunced effect of injection tempera-
ture in Figure 6. A 300°F increase in injection temperature
almost doubles the percent heat loss.

Again in Figure 6, note that percent heat loss is related
to input energy at the surface. Although for higher injec-
tion temperatures, the total input energy is greater (at
constant rates) the actual heat loss over any depth incre-
ment is greater still for higher injection temperatures.
These two effects do not balance one another, with the
result that percent heat loss increases with injection
temperature.

Injection rate has a marked effect upon percent heat loss
(contrasting with saturated steam injection) for the same
reason as mentioned above. At higher rates, input energy
is greater in BTU/hr, although at constant temperature



of injection, heat loss over any increment is a function
only of the temperatures at the top and bottom of the
increment, Hence higher injection rates yield lower per-
cent heat losses at a given depth (Figure 7).

f} At very high rates of injection, the relationship becomes
approximately linear {percent heat loss vs depth), for the
same reasons as mentioned in discussing casing temperature
profiles (Figure 3).

Figure 8 - shows percent heat loss as a function of time for
various injection conditions. All the curves are typically shaped,
dropping very steeply during the first month, then undergoing a more
gradual decline up to 1 year and thereafter the curves flatten out,
with very small changes in heat loss percent for further times. These
curves, reflecting the use of Ramey's time function, f(t), could
perhaps be slightly in error, according to Leutwyler's study (see
Literature Review), although the basic shape would be the same. These B
curves further emphasize the fact, mentioned previously, that time
plays little part in terperature (steam, profiles, compared to other
factors such as injection rate and temperature. Comparison of the
four curves in Figure 8 show this to be true. For example, injecting
2000 lbs/hr of 550°F superheated steam, the heat loss percent after
10 years is still more than after injecting the same rate of 450°F
steam (saturated) for 2 months. Put another way, the percent decrease
in percent heat loss (2000 lbs/hr) from 1 year to 10 years after
injection 450° steam is 2 %, whilst the percent decrease in percent
heat loss fat the same injection rate, after 1 year), between injected
steam at 550° and 450° is 8%,

Notice the much lower heat loss incurred during injection of
L50°F steam at 4000 lbs/hr as compared te 2000 lbs/hr {curves (A)
and (B)).

It is apparent from the curves that the shape is very similar
whether the injected steam is saturated or superheated.

Figure 9 = shows a similar set of curves, this time plotting
steam temperature at the formation instead of percent heat loss. Again
the curves are characteristically shaped, but now, in contrast to
Figure 8, the shape of sach curve can be seen to reflect the injection
conditions. For example, two points are apparent,

a) At constant injection rate {4000 1lbs/hr), the curved
porticns of the graphs become more pronounced at higher
injection temparatures,

D) AL constant injection temperature, the curved portions
become more pronounced at lower injection rates., This
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means that at lower injection rates and higher injection
temperatures, it takes longer for the bottom=hole steam
temperature to stabilize, whereas under the reverse
conditions, bottom steam temperature increases very rapidly
during the initial few months then levels off.

Figure 10 - constructed after one month of injection, shows
clearly the relation between percent heat loss at the formation and
injection temperature and rate,

a) Percent heat loss increases almost linearily with injection
temperature.

b) Percent heat loss declines exponentially (approximately)
with increasing injection rate. At very high rates, per-
cent heat loss approaches zero whilst at very low rates,
the percent heat loss climbs rapidly and approaches 100%
(presuming enthalpy of water at initial earth temperature
is zero) of course in the region of low injection rates,
the water condenses completely before reaching the forma-
tion.

Figure 11 ~ constructed after one month of injection shows
bottom hole steam temperature as a function of injection rate and
temperature. Increased injection rate increases the steam tempera-
ture at the formation, but the limit is the injection temperature,
i.e. whatever injection rate is used, the maximum possible steam
temperature at the formation is governed by the injection temperature.
This is a rather obvious point, but it is the basis for preferentially
injecting higher temperature steam, possibly at lower rates. For
example, if we wish to have steam entering the formation at, say,
525°F we can either inject 650°F steam at 5000 lbs/hour, or 550°F
steam at a rate 5 times as large. And few formationms to be flooded
will accept 25000 lbs/hour of steam (1750 B/day equivalent condensate).

At sufficiently low rates, steam temperature at the formation
becomes much less dependent upon injection temperature. For example
at just less than 2000 lbs/hour any steam injected at 850° or below
will have reached saturation temperature at the formation. The
difference then between the various injection temperatures is one of
steam quality.

Figure 12 - is a modification of Figure 11 and it brings cost
into the picture. The cost of a steam injection operation is largely
a matter of the cost of fuel to produce the steam, or since generator
efficiencies are largely independent of throughput rate, the cost bears
a direct relationship to the product (W.H) where W = injection rate
(ibs/hour) and H is the specific enthalpy of the produced steam (BTU/
l1b). Neglecting heat losses between generator and well-head, therefore,
the cost of injection is directly proportion to the (W.H) product at
the well-head.
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Figure 12 is constructed from Figures 10-and 1l as follows:
a) Select a certain injection temperature - say T50°F.
b) Select an injection rate = say 4000 lbs/hr.

c) From Figure 10 obtain percent heat loss at formation =

8.35%.

d) From steam tables obtain enthalpy of 750°F steam at
injection pressure (422.6) = 1388 BTU/1b.

e) Calculate input heat (BTU/hr) = 1388 x 4000 = (5.55)106.

f) Calculate heat throughput at'forgation = (5055)106 X
(1 - 0.0835) = (5.09)10° BTU/hr.

g) From Figure 11 obtain bottom hole steam temperature at
T50° injection and 4OOO lbs/hr = 545°F,

h) Enter Figure 12 and at point

Temperature (steam) = 545°F 6
Formation throughput = (5.09)10° BTU/hr

plot point corresponding to injectéon temperature of 750°
and surface throughput of (5.55)10° BTU/hr.

By repeating this technique for other injection temperatures
and rates and by connecting lines of equal injection temperature (°F)
and surface throughput (BTU/hr), Figure 12 is constructed.

One important comsequence of Figure 12 is apparent. Since the
lines of constant surface rate (BTU/hr), denoted by Q, are nearly
vertical, and since Q is a direct measure of operational cost, it is
seen that by injecting higher temperature superheated steam and main-
taining the same heat throughput into the reservoir, a much greater
steam temperature at the formation is obtained with quite a small
increase in Q, or cost.

For example consider two alternatives, both costing the same
for their operation, i.e. Q constant. In the first we inject 550°
superheated steam at such a rate that the heat throughput into the
formation at 1000' is 14,7 MM BTU/hr., From the graph which one we
find Q = 15 MM BTU/hr and the formation steam temperature to be 512°F.
In the second case, we inject 750° saturated steam at such a rate
(lower than in case one) that the heat throughput into the reservoir

is 14,35 MM BTU/hr. From the graph we again find Q to be 15 MM BTU/hr,

but now the formation steam temperature is 653°F, Hence, at the same
cost we have increased this temperature by 140°F whilst our heat
throughput at the formation has decreased by only 2.k%.
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At first these figures may seem either to reflect a mistake
in the calculation, or else an increase in thermal efficiency to more
than 100%! However the real reason for the high increase in bottom
hole temperature at the expense of a low heat throughput rate, is due
to the rather misleading scale of temperature, i.e. a 25% increase in
temperature (°F) corresponds (in the realm of values discussed above)
to less than a 5% increase in enthalpy. (BTU/lb) Hence a 140°F
increase in bottom hole temperature is not as impressive from a B.T.U.
point of view as it might seem,

Another point to be noted, therefore, is that the cost of
injection is far more dependent upon injection rate than upon injection
temperature,

To return to the above example, what we require is a knowledge
of which combination of formation heat throughput, and formation steam
temperature, will produce the best recovery. This is further than
the scope of this present study, however, two points will be made.

a) In the latter case discussed above, with higher steam

temperature and lower heat input to the formation heat losses

will be more rapid in the reservoir than in the former case.

b) Since recovery by steam injection is primarily dependent
upon viscosity ratio reduction (po/uy) and the viscosity
ratio is more a function of temperature than heat content
of the fluids, it is possible that the higher steam temper=-
atures at the reservoir in the latter case will help
recovery, even at the expense of a lower heat throughput
rate,

8. SUMMARY

The following are the more relevant and interesting of the
results described in detail above.

1. Too many variables involved in the problem to obtain
correlations between them.

2. Time is of little importance in steam profiles, compared
to injection rate and temperature. It is more important
in casing temperature profiles,

3+ Casing temperatures are increased by increased steam
injection temperatures at a constant injection rate, and
by increased rates at constant injection temperature.
These increases in casing temperature can be quite large.
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9. ACKNOWLEGEMENT

10.

Te

Higher injection temperatures suffer greater heat losses
as do lower injection rates.,

At times greater than 1 year, percent heat loss and steap
temperature at the formation become approximately constapt

At high injection rates, increased injection temperatures
produce large increases in steam temperature at the
formation. At low injection rates, increased temperatureg
of injection produce only small increases in steam temper-
ature at the formation.

Percent heat loss at the formation is approximately linear
with injection temperature in the range of pressures and
rates used in this study. Percent heat loss is approximatel;
exponential with injection rate (inverse exponential),

For the same cost of injection, marked increases in forma-
tion steam temperature can be obtained with relatively
small corresponding decreases of heat input into the

reservoir, The effect of this on recovery is questionable

In formations where injection rate is limited by low
permeabilities, the use of superheated steam as a means of
getting increased formation steam temperature; and increased
heat input to the formation, cannot be ignored and the :
effect on viscosity ratio of the higher temperatures achiew
may justify the extra fuel costs involved.

This report was prepared as a term project in PNG 515 =~ a
course on modern petroleum recovery methods, taught by Professor
D. A. T. Donohue in the Spring of 1966. As such it was done as an
educational endeavor, and the author is well aware of its basic
resemblance to the pepers published earlier by Satter (6). The
present paper gives a more detailed explanation of wellbore heat
losses and injection behavior for injection of superheated steam into
a shallow formation.
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Specific heat at constant pressure

Inside casing diameter

Outside casing diameter

Outside tubing diameter
Emissivity of casing
Emissivity of tubing

Shape factor for radiation
Emissivity factor for radiation
Gravitational acceleration (32)

Conversion factor

Enthalpy

Sensible heat of saturated water
Latent heat of steam

Sensible heat of saturated steam
Mechanical equivalent of heat

Thermal conductivity of earth

Heat transferred from surroundings

Heat transfer rate

Time

243

k. Moss, J. T. and White, R. D., Oil and Gas Journal No. li,
March 1959.
5. Caslaw, H. and Jaegers, J., "Conduction of Heat in Solids",
Second Edition, Oxford University Press, 1960.
6. Satter, A.,, Journal of Petroleum Technology, July 1965.
NOMENCLATURE

BTU/1b°F
Inches
Inches

Inches

- ap 2 an 42 o
-~ oe oo &0 Gn oo
)

o & 6D G a0

32 ft/sec2

%2 ft 1b mass/
sec2 1b force

BTU/1b
BTU/1b
BTU/1b
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778 ft 1b force/BTU

BTU/ft=hour-PF
BTU/1lb mass
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THERMAL EXPANSION OF CEMENTED CASING

By

F. M. Smith
Gulf Research & Development Company, Pittsburgh, Pa.

ABSTRACT

Increased use of thermal methods for oil-well stimulation,
such as steam injection, prompted an investigation of the effects of
heating cemented steel pipe. In this investigation, cemented steel
pipe was repeatedly heated to a temperature of up to 670°F. Pipe
elongation and cement bond strength were measured and thermal stresses
determined. In addition, the effects of heating on three commonly
used cement compositions were evaluated.

Steel pipe cemented with neat cement was found to elongate
about 0.73 x 10-6 in./in.-°F when heated. Using a neat cement -
40 per cent silica flour slurry, the elongation was about 1.04 x
10_6 in./in.-°F; and, using a Lumnite - 40 per cent silica flour
slurry, the elongation was negligible. Axial stress in the pipe
caused by restrained thermal expansion exceeded the yield stress of
the pipe after a temperature rise of about 200°F. Cooling after a
temperature rise of more than 200°F resulted in cement bond failure
at the cement top and pipe shrinkage. Repeated heating cycles resulted
in progressive cement bond failure and additional pipe shrinkage.

At temperatures of 450°F and above, deterioration of the
neat cement occurred, resulting in a decreased cement bond strength.
Cement bond failure of the neat and Lumnite cement - 40 per cent

silica flour slurries resulted from leakage through cracks
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in the cement matrix. Neat cement appears to be the best material for
mixtures, was heated to a temperature of up to 670°F for various numbers

cementing wells to be thermally stimulated, especially where casing tempév
of times. The effect of heating the pipe and cement was evaluated.

atures are 450°F or less.
The following discussion consists of (1) a description of the

A qualified extension of the test results to oil-well conditionsg
' ' test apparatus and procedure, (2) a detailed discussion of the tests

indicated that casing cemented with neat cement could be heated to about
performed, and the implication of the test results when extended to

430°F without adverse effects. To avoid possible casing and cement bond
actual oil wells, and (3) conclusions reached from the results of the

failure at higher temperatures, use of a down-hole thermal packer in

tests.
conjunction with tubing injection is suggested. This investigation
TEST APPARATUS AND PROCEDURE
serves to emphasize the need for good cement jobs in wells to be
Apparatus

thermally stimulated so that casing failure can be avoided.
The test apparatus, shown in Figures 1 and 2, consists of a

INTRODUCTION

10-ft length (two coupled 5-ft lengths) of 1/2-in. standard pipe centered

Production stimulation using thermal methods has become an . . .
inside of a 10-ft length of 7-in. OD, 20-1b/ft casing. The 1/2-in. pipe

increasingly popular oil-field practice. Two common thermal methods for . .
was rigidly attached at one end by threading it into a 1/2-in. thick

production stimulation are in-situ combustion and steam injection. Steam | .
steel plate welded to one end of the casing. All pipe surfaces were

injection is the most widespread thermal method used at the present time
solvent-cleaned before assembly.

because of its low cost and simplicity of application. When steam in- ]
Temperature measurements were made using three tubular steel

jection from the surface is used for production stimulation, the temperat

1.2.3 4% Chromel-Alumel thermocouples, as shown in Figure 1. These were located
3 b b

of the entire bore hole is raised. Research publications have

at the mid-length of the 7-in. casing. The first thermocouple was

presented methods for estimating the casing temperature during steam . . . . .
located in the outer wall of the 1/2-in. pipe; the second in the casing

injection. Leutwyler and Bigelow5 extended their research to include . . . . .
annulus at its mid-point; and the third, on the outer wall of the casing.

an analysis of the mechanical problems associated with this stimulation . .
The first thermocouple served as the heater temperature control point,

method. However, their analysis of the mechanical problems was confined .
The thermocouples were connected to a strip-chart temperature recorder-

to the free pipe in a well, excluding the cemented portion of the well’
controller.

casing. Since the cemented portion of the well casing encompasses the ) . . . .
& P & P The electrical equipment used is shown in Figures 3 and 4.

il-productive int 1, th ib £f f heating thi ion
oll-productive interval, the possible effects o eating ts reglo The electric heater was located inside the 1/2-in. pipe and extended

needed investigation. This paper presents the results of such an investi-~ . . . ) . .
g pap P through its entire length. The control circuit provided intermittent

ation. Steel pipe, cemented with one of three commonly used cement . . .
& pipe, Y heater operation by use of the timer which actuated the solenoid switch.

* References given at end of paper.
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Temperature control was very good. Excessive temperatures were prevented

by the temperature-actuated limit switch.

Test Procedure

The test procedure consisted of testing, cementing, heating,
cement bond testing, and sectioning. Each of these steps is discussed

below.

Prior to cementing the pipe in the casing, the apparatus was

assembled and measurements were made of the thermal elongation of the free
pipe. The pipe temperature was raised to 200°F and dial gage values were
recorded. Thermal elongation of the pipe was calcuiated and, if found to
be 6.9 x 10-6 in./in.-°F (thermal elongation value for steel)é, the next
step in the procedure was followed. If the thermal elongation was in
error, the apparatus was adjusted and the calibration heating cycle
repeated.
1. Cementing
The casing annulus was cemented using three commonly used cement’

slurries. Data for these mixtures are given below:

Cement Data

Set Time
Test No. Cement Type gal Water/Sack (hr)
1-5 Neat 5.2 72
6 Neat w/40% 7.0 72
Silica Flour
7 Lumnite* w/40% 6.5 72

Silica Flour

The apparatus was then sealed and pressurized to 1000 psig with a

hydraulic pump. The inside and outside of the 1/2-in. pipe were

* Calcium-aluminate refractory cement.
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pressurized simultaneously to simulate actual well conditions during

cementing operations,

2. Heating

After the dial gages and electric heater had been installed,
the pipe was heated to the test temperatures for a prescribed length
of time and then cooled to ambient temperature. The heating cycle was
then repeated a various number of times. Dial gage and temperature
readings were recorded throughout each heating cycle.

The temperature rise rate was controlled to approximate
actual well conditions during steam injection and thus simulate the
effect of transient thermal stresses. About a four-hour heating
period was used to reach the maximum temperature in each test.

3. Cement Bond Testing

Eight 1/8-in. holes at a 90° spacing were drilled through the
steel plate on the bottom of the casing. Four holes intersected the
outer wall of the pipe while the other four holes intersected the inner
wall of the casing. The apparatus was then filled with dyed water and
pressurized simultaneously on the inside and outside of the 1/2-in. pipe
in 100 psi increments until water flowed through the holes in the plate.
The cement bond strength was considered to be the pressure which caused
fluid communication through the apparatus at a flow rate of 1 cc/min.

4. Sectioning

The casing was saw-cut at 1- to 3-ft intervals and the cross-
sections obtained were visually inspected for cracks, discolorations or
other irregularities and then photographed. One-inch diameter cores were
cut adjacent to both the 1/2-in. pipe and the inner wall of the 7-in.
casing for compressive strength tests. Some sections were used for

penetrometer tests, where the cement strength was further evaluated.
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DISCUSSION OF RESULTIS

Results of seven tests made to determine the linear thermal
expansion of cemented casing are presented in Table I and a discussion
of these results follows.

Net values for elongation of the cemented pipe were plotted
versus temperature change as shown in Figure 5., For neat cement, with
a temperature change of less than about 450°F, the plot has a slope of
0.73 x 10-6 in,/in.-°F, which appears to be the linear thermal expansion
of cemented steel pipe at a stress below its yield stress. For temperatur
differences above 450°F, pipe elongation increased considerably, indicatin
that pipe slippage had occurred and a cement bond was no longer effective :
over the entire length of the cemented pipe.

For neat cement with 40 per cent silica flour, at a temperature:
difference below 190°F, the linear thermal expansion of the pipe was about
1.04 x 10-6 in./in.-°F. At a temperature difference above 190°F, results’
similar to those for neat cement were had.

Tests with Lumnite cement containing 40 per cent silica flour
resulted in a linear thermal expansion of about 1.04 x 10-'6 in./in.-°F
at temperature differences below 110°F., However, at temperature differ-
ences above 110°F, pipe elongation stopped. This phenomenon can be
explained by the fact that Lumnite cement shrinks7 when it is heated
instead of expanding like neat cement. Therefore, the mechanical bond
between the pipe and the cement would be expected to improve as the
temperature increased.

Stress
Since the axial stresses created in the 1/2-in. pipe by the

heating were almost completely absorbed by the cement and the casing,
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the stresses were treated as if they had been created by rigidly confining

the pipe at each end and then heating it. The axial stress was calculated

“using the following equation:

S=E'oeoAT
where: S = stress - psi

E = modulus of elasticity -

30 x 106 psi for steel

e = coefficient of thermal

expansion - 6.9 x 10-6 in./in.

AT

1

temperature difference - °F

Since the linear thermal expansion for pipe cemented with neat
cement was established at 0.73 x 10-6 in./in.-°F, the effective value
for e used in the above equation was (6.9 - 0.73) x 10-6 or 6,17 x
10-6 in./in.-°F. A yield stress of 37,000 psi for the 1/2-in. pipe
was experimentally determined. Substitution of this yield stress in
the above'equation resulted in a AT of 200°F. The test results show
that, virtually every time the yield stress of the pipe was appreciably
exceeded (a AT above 200°F), the pipe shortened after cooling.

Similar results were obtained with the other two cements
tested. 1In the case of the neat cement - 40 per cent silica flour
mixture, the pipe shortened after cooling when a temperature difference
of about 190°F was reached. With the Lumnite - 40 per cent silica flour
mixture, pipe shortening occurred after cooling from a 155°F temperature
difference.

An explanation of pipe shortening is as follows: During the
heating cycle, with the pipe restrained by the cement in the vertical

direction, the internal stresses generated exceeded the yield stress
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of the pipe. Pipe deformation occurred, therefore, resulting in a sligh

thickening of the pipe wall. During the cooling cycle, an opposite acti;

took place. The pipe and cement both contracted but, since the elastici

of neat cement is but 1/15th that of steel, the cement did not contract

quite as much as the pipe. Thus, the internal pipe stresses were reliev

which resulted in pipe shortening and slippage along the pipe wall-cemen

interface. This phenomenon apparently took place at or near the cement

top and progressed downward as the number of heating cycles increased.
In Test No. 7, an effort was made to determine the extent of

the pipe wall thickening. A section at the mid-length of the pipe was

machined and the ID and OD of the pipe carefully measured. After heatin
this section of pipe was remeasured. It was found that the ID of the pipe

had not changed but the OD had increased by 0.002 in. The volume of 1/2-i
pipe lost to cumulative pipe shortening (0.586 in.) was then assumed Fo
distributed on the outer surface of the remaining pipe. The calculated
increase in pipe OD to accommodaté this volume was also 0,002 in. Althoug

this result is not conclusive, it does indicate that pipe thickening tak

place.

Cement Bond Strength

Results of the cement bond strength tests are shown in Table I

The neat cement bond strength of unheated pipe was taken from

published 1iterature8 and was about 1500 psig. Based on cement compressi

strengths, the bond strength of the other two cements tested would give

similar values. Cement-bond testing the cemented pipe prior to heating

would have destroyed the test sample.
Test results indicate that the cement bond strength increases

as a function of the cement curing pressure. For example, at a 0 psig
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cure pressure, the cement bond failed at 50 psig; when the cement was

cured at 1000 psig, the cement bond failed at 1500 psig. The temperature

to which the cement is heated also affects the bond strength. For example

when neat cement was cured at 1000 psig and heated to 645°F, the cement
3

bond failed at 500 psig. During Test No. 5, where the cement was cured

at 1000 psig and heated to 200°F, the cement bond did not fail at a
pressure of 2000 peig., The type of cement used had the greatest effect

on the cement bond. Where 40 per cent silica flour was added to the neat

cement and heated to 500°F, the cement bond failed at 300 psi. This was
considerably below the >2000 psi bond strength of the neat cement heated
to the same temperature,

In the case of the Lumnite - 40 per cent silica flour cement,

the cement bond after heating to 650°F was only 40 psi,

Sectioning

After completing the cement bond tests, the cemented casing was

sectioned to permit visual examination of the cement. Typical sections

are shown in Figures 6, 7 and 8., With neat cement (Figure 6), the center
portion showed several colored concentric rings around the pipe while

radial cracks were observed at each end. Fluid leaked only along the

Pipe; no dye appeared in the cracks or at the 7-in. casing-cement

interface.
Appearance of the neat cement - 40 per cent silica flour
mixture, shown in Figure 7, was similar to that of the neat cement. In
addition to the colored rings and end cracks, very slight radial cracks
Were noted throughout the total length of cement.

Fluid leaked along

the pipe and through the radial cracks in the cement.
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Appearance of the Lumnite - 40 per cent silica flour cement wa
significantly different from the other cements as shown in Figure 8.
Cement discoloration was slight, but three radial cracks were evident
throughout the length of the cement. Cement shrinkage away from the cas§
wall was also apparent. Dye deposits showed that fluid leaked at the pipy
and casing-cement interfaces and through the cement cracks.

Penetrometer and compressive strength tests were made on the
cements at various radial distances from the 1/2-in. pipe, the results of
which are given in Table II. Significant differences in compressive
strength were noted between the neat cement cores taken close to the
casing and those taken close to the pipe. With the other cements, no
significant differences in strength were noted between core locatioms.
However, addition of silica flour made the cements brittle and they
fractured readily. The Lumnite cement was found to be especially
brittle,

Penetrometer results confirm the core results for, with neat
cement, they indicate an abrupt decrease in strength at a distance of
about 3/4 in. from the pipe. Relating this distance to temperature,
using Figure 9 where typical temperature profiles versus distance were
plotted, the neat cement strength decreased at about 450°F. Similar
results were found with the neat cement - 40 per cent silica flour
mixture.

Where the Lumnite - 40 per cent silica flour cement was used, .
the penetrometer results showed only a slight decrease in cement strength
near the pipe wall. The remainder of the cement appeared unaffected by

heating.

259

EXTENSION OF RESULTS TO WELL CONDITIONS

The test results are believed to be fairly representative of
actual well conditions. Although the geometry and materials in the two
systems are different, calculations indicate that the yield stress of
well casing would be reached at only a 16 per cent lower temperature
difference. Other limitations to extending the test results are:
First, cementing results were probably better than is realized in most
wells since all metal surfaces were cleaned prior to cementing. Second,
the test section represents only a very small segment of a length of
cemented oil-well casing, Thus, end effects in the test apparatus may
appear to be of greater significance than they actually are in a well-
bore. With these limitations in mind, it is believed that some
qualitative conclusions can be reached by extending the test results
to actual oil-well conditions.

If a yield stress of 70,000 psi at 500°F is taken for
commonly used J-55 oil-well casing, and neat cement is used, a AT
of about 350°F can be reached before plastic deformation of the casing
occurs. Assuming an 80°F starting temperature, a steam injection
temperature of 430°F into the well casing would not be expected to
cause any adverse results to the cemented casing. At higher steam
injection temperatures, ranging from about 450°F to 670°F, cement bond
deterioration and casing shrinkage might be expected with the possibly
serious result of interzonal communication. This would be especially
true if the well underwent several heating cycles. However, Satter9
and others have shown that high casing temperatures can be avoided
by injecting steam intc the tubing alone in conjunction with a down-

hole thermal packer. Under these conditions, casing températures
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would be low enough that casing or cement bond failure would not be ex-

pected.

These results emphasize the need for good cement jobs in wells

to be thermally stimulated to avoid casing failure.

tests:

The following conclusions are made on the basis of the foregoin

=

I

lw

CONCLUSTONS

Steel pipe cemented with neat cement thermally expands
linearly (below the yield stress of the pipe) with an
elongation of about 0.73 x 10-'6 in./in.-°F. Using a
neat cement - 40 per cent silica flour slurry, the
elongation was about 1.04 x 10-6 in./in.-°F; and,
using a Lumnite cement - 40 per cent silica flour
slurry, the elongation was negligible.
The bond strength of neat cement was higher
than that of the other two cements tested at
all temperatures up to 670°F. Above 500°F, neat
cement bond failure resulted from cement degradation
at the pipe-cement interface. Cement bond failure
of the neat and Lumnite cement - 40 per cent silica

)
flour slurries was caused by extensive cement cracking
in the cement matrix.
When cemented steel pipe was heated to a temperature
where the axial stress created in the pipe exceeded the
yield stress (a AT of about 200°F) and then cooled,
plastic deformation of the pipe occurred. Pipe
shortening and cement bond failure resulted. Re-

peated heating cycles produced additional pipe

shortening and progressive cement bond failure.
4. On the basis of these tests, neat cement appears
to be the best material for cementing wells to be

thermally stimulated - especislly where casing

temperatures are 450°F or less.
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Strength of Heated Cement

Compressive Strength Tests

TABLE II

Remarks

Cores brittle -
some fractured

when coring

Cores very brittl
many fractured

when coring

Maximum Average
Test Compressive
Test Temp . Approximate Strength Cement
No. OoF Core Location psi Type
3 670°F 1/2-in. Pipe 2770 Neat
Short Time 1/2-in. Pipe 3075
Test
7-in. Casing 5945
4 645. 1/2-in. Pipe 2200 Neat
7-in. Casing 3370
5 500 1/2-in. Pipe 2050 Neat
1/2-in. Pipe 2355
7-in. Casing 3225
6 500 1/2-in. Pipe 5570 Neat with
407 silica
7-in. Casing 4870 flour
7 650 1/2-in. Pipe 2985 Lumnite with
: 40% silica
7-in. Casing 3510 flour
Penetrometer Tests
Test Average Strength (psi) at Distance from 1/2-in. Pipe Wall
No. 1/8" 1/4" /2" 3/4" i 1-1/2" A
3 33,800 37,000 40,300 40,800 38,000 60,000 41,000
4 5,500 4,750 5,450 6,100 10,500 17,000 11,900
5 14,900 13,800 13,400 11,300 13,000 13,000 15,800
6 20,500 24,000 30,000 50,000 41,000 36,200 41,000
7 23,700 27,600 26,600 25,100 26,500 30,500 26,500
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Dial Gages

Test Apparatus for Thermal Expansion
of
Cemented Pipe

FIGURE 2

Apparatus

Temperature

Limit Switch

110 Veasco fp—

{ [ 1 1 Solenoid
L / Switch

Heater

\\ <; Electric
Timer é)
S

a

270 V.a.c.

Electrical Control Circuit

FIGURE 3



‘NI 021/°Nl - 3did G31N3IN3D 40 NOILVONOI3

20’

10°

mo. mo. ho. wo. no. vo.
I I I 1 1

€0°
T

4N0d VIITIS % Ob
H1lIM LN3INW3D u..._z_z:.._

3did d3LN3N3D 40 NOILVONOT3

SA
JON343 4410 3H¥NIVHIdNEL
S 3¥N9OId
\‘\\

— ¥NO1d VIITIS %Ot

——X HLIM LN3W3D LV3N
+
*»
LN3W3D 1VaN

* +

anmm——

5
A

”*

.\
v

—°

—00]

-1Q0¢

-100¢

-00b

-100S

3
Q

Electrical Control Circuit

FIGURE 4

009

30N3Y¥34410 3HNLVY3dN3L

do



Near Mid-Length Bottom

Typical Cross Sections
of
Cemented Pipe
Neat Cement

. S FIGURE 6

One Foot from TOp » Near Mid-Length

One Foot from Top Near Mid-Length

Near Mid-Length Bottom

Typical Cross Sections
of
Cemented Pipe
Lumnite Cement -~ 40% Silica Flour

FIGURE &
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A DOWN-HOLE BURNER - VERSATILE TOOL FOR WELL HEATING
By

F. M. Smith
Gulf Research & Development Company, Pittsburgh, Pa.

ABSTRACT

A versatile down-hole burner has been developed for supplying
large amounts of heat to oil-producing formations. Although the burner
is normally fueled with propane because of its availability, the burner
can be operated with any hydrocarbon more volatile than gasoline. The
device is unique in that it is capable of much greater heat-release
rates than other down-hole burners despite its simpler and smaller
combustion chamber. Destruction of the burner tube is prevented by
a vortex of relatively cool air around the inner surface of the tube;
the vortex is created by tangential slots on the side of the combustion
chamber. A thermocouple, located in the burner exhaust pipe, measures
the exhaust temperature.

In practice, the burner is lowered inside of well tubing,
under pressure, on the end of a spooled l/4-in. OD fuel tube containing
a thermocouple lead wire. A pyrophoric liquid pumped into the fuel
tube ahead of the fuel ignites the burner. Temperature is controlled
by the fuel-air ratio.

This burner has been used in tﬁe field during the past six
vears for thermal stimulation, in-situ combustion ignition and warm air
coking. It has been operated at (1) depths to 4400 ft, (2) pressures
to 5000 psi, (3) temperatures from 150°F to 1500°F, (4) heat-release

rates to 1,300,000 Btu/hr and (5) air rates ranging from 200 MCFD
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to 3000 MCFD. The burner is simple to install and control, and it has
proven to be a useful tool for well heating under a wide range of

operating conditions.

INTRODUCTION

Before the recent interest in thermal stimulation and the
recovery of oil by in-situ combustion, there was little use for a down-
hole burner. However, such a device can be used today for an increasing
number of purposes. At low operating temperatures (150-400°F), it can be
used to consolidate sand by the warm air coking process. At higher
operating temperatures (400-1200°F), it can be used to initiate in-situ
combustion, provide thermal stimulation by lowering oil viscosity, and
decrease wellbore damage caused by clay swelling, emulsion blockage, and
paraffin deposition. Recognizing the need for a down-hole heating method
capable of higher heat-release rates than is feasible with electric heaters
several 0il companies have undertaken the development of down-hole burners.
Although many of these burner systems have enjoyed increasing use, all of
the burners reported in the literature have rather limited capabilities.

This paper reports the development of a versatile down-hole
burner which is capable of high heat-release rates. The burner is simple
and relatively inexpensive to make, install, and operate; and it is capable
of continuous operation on the inside cf conventional oil-well tubing. The
burner is normally fueled with propane but can be operated with any hydro-
carbon more volatile than gasoline. It has been used in the field during
the past six years for a variety of purpcses and under a wide range of

operating conditions,

DOWN-HOLE BURNER SYSTEM

The equipment used for down-hole burner operation includes

surface equipment for installing the burner and for supplying metered

* References given at end of paper.

277

quantities of air and fuel, the thermocouple-fuel tubing, and the burner
assembly itself. Installation, ignition, and dependable burner operation

with excellent temperature control are easily accomplished.

Burner Assembly

The basic burner assembly is shown in Fig. 1 and consists of a
(1) burner and burner stop, (2) fuel check valve, (3) "Y" block, and
(4) thermocouple. In addition, a sinker bar is incorporated in the
complete burner assembly (shown in Fig. 2). The assembly is designed
for use inside tubing with a minimum ID of 2-3/8 in.

The burner shown in Fig. 1 consists of a 1-1/2-in. IPS stainless
steel pipe that is tangentially slotted near the top end with one set of
four slots spaced 90° apart. An open-ended fuel tube with a flame anchor
on the end passes into the burner and terminates at a point above the
tangential slots. A number of equally spaced sweep holes are located
on the top end of the burner adjacent to the fuel tube. Attached to the
open or lower end of the burner is the burner stop, a tapered steel nose
containing asbestos seals. The burner stop ultimately makes a seal in
a burner seating nipple, located at the bottom of the production tubing.
Thus, with the burner landed in the seat, all air injected into the
production tubing is forced through the burner with flow being divided
between the sweep holes and tangential slots. The sweep holes provide
a primary stream of air which mixes with fuel discharged from the flame
anchor. Secondary air flow through the tangential slots results in a
highly turbulent air stream inside the combustion chamber which (1)
enhances fuel-air mixing, (2) promotes complete combustion of the fuel-

air mixture, and (3) provides a vortex of relatively cool air around

the inner wall of the burner. The resultant flame is stable within a
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wide range of air velocities and is confined to an area close to the
longitudinal axis of the pipe.

A fuel check valve, located immediately above the burner,
prevents backflow of well fluids into the fuel tubing. Attached to
the upper end of the check valve is a hollow sinker bar (see Fig. 2)
which permits the burner assembly to be run into and out of a well under

pressure. Both the burner and sinker bar are equipped with centralizers.

The length of sinker bar used depends upon the wellhead pressure; a weight
of about 50 1b per 1000 psi pressure is required to lower the assembly
into a well.

The "Y'" block is an "X" shaped block of stainless steel having
one entrance passage and two exit passages. One exit passage, attached to
the upper end of the sinker bar, is for fuel flow. The second exit provide
a quick-disconnect junction for a thermocouple and lead wire. An Inconel-
sheathed thermocouple is clamped along the outer wall of the sinker bar and
burner with the hot junction being located inside the burner exhaust pipe.

The thermocouple-fuel tubing consists of a continuous length
of 1/4-in. OD Monel tubing through the center of which extends a Teflon-
insulated thermocouple lead wire. With a burner and 100-1b sinker bar
attached, the maximum setting depth for this type assembly is abou;

5000 ft. The tubing size is such that it is (1) sufficiently large to
allow a minimum restriction to fuel flow with the thermocouple wire in-
stalled, (2) flexible enough to be spooled, (3) strong enough to withstand
high pressures and yet (4) small enough to require a minimum sinker ba;
weight for burner installation under elevated pressure. The fuel tubing
is attached to the top of the "Y" block, with the thermocouple wire

extending into the quick-disconnect thermocouple adapter.
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Surface Equipment

The basic surface equipment is shown in Fig. 2 and includes
(1) a simple wellhead installation and (2) a mast and hoist for in-
stalling the burner. 1In addition to that shown in Fig. 2, air and
fuel supply, metering facilities, and temperature recording and safety
control instruments are part of the installation.

The wellhead hookup is quite like that used for most wire-line
operations, having a lubricator with a set of blowout preventers and a
line wiper located at its upper end. The Christmas tree is equipped
with wing valves to enable both tubing and casing to be used for either
injection or production.

A mast, extending above the lubricator, is required for the
installation of the burner assembly, and may be simply a light-weight
gin pole or an "A" frame. A 3-ft diameter idler sheave is installed
close to its peak.

The hoist equipment for spooling the burner fuel tube consists
of a hydraulically operated spooling device which, again, is quite
similar in operation to many wire-line units.

The air supply must be capable of uninterrupted operation at
pressures up to 1 psi per foot of depth to the zone to be treated. Both
air compressors and liquid air systems with capacities in the range 0.2-
3 MMCFD have been used. The air supply is connected to the tubing and
casing through a parallel set of control valves and orifice meter runs,
thereby permitting the control and measurement of the air flow into each.

Fuel is metered to the burner with a diaphragm-type metering
pump. Although the burner can operate on most paraffin hydrocarbons

more volatile than gasoline, propane is the preferred and most widely
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used fuel since it can be readily metered, is widely available, and is
relatively inexpensive.

A continuous measurement of the burner exhaust temperature is
had by connecting the upper end of the thermocouple lead wire to a temper
ature recorder. Automatic safety control during burner operation is
primarily provided by a temperature limit switch which stops fuel injection
to the burner should an excessive temperature develop as a result of an
Supplementary shut-down mechanismsg

air supply failure, wellbore fire, etc.

are also used.

Installation and Operation

Well preparations for burner imstallation are minimal in that a
rig is required only to rum production tubing with a burner seating nipple
on bottom. Once the tubing has been landed, usually no more than 5 ft
above the perforations, thorough cleaning of the well is necessary to
prevent a down-hole fire or explosion. This is accomplished by circulating
a solvent, such as diesel fuel, and a detergent solution until the returns
are clean. Air injection into the formation is then begun. Meanwhile, the
burner is installed in the lubricator, lowered inside of the well tubing,
and landed in the seating nipple.

Although the bulk of the air is normally injected into the tubing
during ddwn-hole burner operation, a small air flow rate is maintained into
the casing to keep the casing annulus purged and prevent the formation of
an explosive mixture., In instances where a tubing packer is used, of course,
all the air is injected into the tubing and through the burner.

Preparations for burner ignition are made by beginning fuel in-
jection and adjusting the air and fuel rates for the desired temperature

rise. Ignition is accomplished by injecting into the fuel tubing a small
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volume of triethylborane, a liquid pyrophoric coﬁpound. When the igniter
fluid enters the air stream passing through the burner, ignition occurs.
The use of triethylborane has proven to be a safe, inexpensive, and
extremely dependable method for igniting the burner.

Desired changes in burner exhaust temperature are made simply
by adjustment of the air and fuel rates. The burner has proved to burn
clean and operate efficiently at temperatures between 150 and 1500°F,
Air requirements range from four to 10 times that of stoichiometric
conditions at the foregoing temperatures, and, thus, complete combustion
results. The only products of combuétion entering the formation are COZ,
and water vapgr“with very little to no deposition of carbon on the
burner itself.v“

Upon completion of the heat treatment or at any other time,
the burner can be shut off and retrieved without stopping air injection
or lowering the well pressure. If desired, the well can then be put

on production without the services of a rig.

System Advantages

All of the burners reported in the literature are run in the
well on either a single or dual string of large-diameter oil-well tubing
or pipe; therefore, a rig is required to install and retrieve the burner.
Most of these burners are large, elaborate, ceramic-lined, and gas-fired
units which must be run inside the casing; furthermore, they are incapable
of being run into and retrieved from a well under pressure. Few of the
burners are equipped with thermocouples for continuously monitoring
exhaust temperature. Despite the large size of these burners, their

maximum heat-release rates are quite low -- of the order of 100-400,000 Btu/

hr.
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By way of comparison, the down-hole burner described in this
paper operates on any fuel more volatile than gasoline and is run into
and out of a well under pressure on a continuous length of flexible,
small-diameter fuel tubing. A rig is required only to install and,
eventually, remove the burner seat. In instances where a bottom-lock
pump is to be used in the well, even this becomes unnecessary; the pump
seating nipple can be used as a burner seat, The burner is made from
ordinary stainless steel pipe, is simple in design and is relatively
inexpensive; and, it is sufficiently small to be run inside commonly
used sizes of production tubing. Owing to this feature, the burner
can be operated in wells equipped either with or without a tubing packer;
Finally, the thermocouple wire contained in the fuel tube and the thermo-
couple attached to the burner itself permit continuous observation of
burner performance,

Full-scale laboratory tests and field applications have
demonstrated a heat-release capability in excess of 1,300,000 Btu/hr,
Further, this burner has been operated at (1) depths to 4400 ft, (2)
pressure to over 5000 psi, (3) temperatures from 150°F to 1500°F, and

(4) air rates ranging from 200 MCFD to 3000 MCFD. Field applications

during the past six years include thermal stimulation, in-situ combustion,

and warm air coking for sand control.
SUMMARY

A down-hole burner has been developed which is an improvement

over other burner systems. Although installation and operation are simple,

the burner is capable of releasing very large amounts of heat under a wide

range of operating conditions. It has proven to be a useful tool for a

variety of well heating applications.
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THEORETICAL AND FIELD WATERFLOOD PERFORMANCE,

KANE OILFIELD, ELK COUNTY, PA,

by

Leo A. Schrider,l/ John R. Duda,l/ and Harry R. Johnsong/

ABSTRACT

A prediction for oil recovery from a pilot waterflood in the Kane
oilfield, which is located in Elk, Forest, and McKean counties, Pa., was
made and compared with actual field performance.

The calculated behavior of the pilot waterflood, which wés initiated
in January 1963, was predicted using a modified Craig, Geffen, and Morse
calculation technique. Maximum recovery from this low-permeability,
preferentially oil-wet formation was predicted to be about 22,500 barrels
of o0il ;fter 300,000 barrels of water had been injected into the pilot
area, After additional field data were collected, it became necessary to
reevaluate the pilot flood area. The gas saturation prior to the flood
was estimated to have been 20 percent, based on an assumption regarding
the required volume of water injected to initiate oil production. In view
of the actual field performan;e, a gas saturation of 13 percent is indicated.
When this gas saturation and the method originally proposed by Craig, and
others, are used, the predicted results are more representative,

—

1/ Morgantown Petroleum Research Laboratory, Bureau of Mines, Morgantown,
W. Va,

2/ Office of Director of Petroleum Research, Bureau of Mines, Washington,
D. C.




)

N
O

Tn December 1965, field performance was further analyzed using a

hyperbolic decline curve as presented by Arps. Based upon this evaluatio
method, the pilot waterflood in the Kane sand should produce 37,000 to
42,000 barrels of oil with the injection of 300,000 barrels of water. By ;
continuing this secondary-recovery project to a reasonable economic limit

ultimate oil recovery may be as much as 50,000 to 55,000 barrels, or 129 te

142 barrels per acre-foot from 36.5 acres.

INTRODUCTION

The Bureau of Mines is studying selected Appalachian area reservoirs
to determine their susceptibility to secondary recovery. The objective of
this work is to increase the recovery of oil from known pregsure-depleted,
reservoirs. The Kane oilfield was selected for study under the program,
since it afforded the Bureau an opportunity to compare theoretical and
field performances.

Two wells were cored in the pilot waterflood area; one by the operatd
Fords Brook Drilling Company, and the other by the Bureau of Mines. The ¢
analyses along with well logs and field-production data were used to predi
the performance of this secondary-recovery waterflood project. Following
three years of injection-production data, a comparison of the original pre
reevaluation of the

diction with the actual performance and subsequent

project was accomplished.

GEOLOGY AND HISTORY

The Kane oilfield, approximately 12 miles long and 1 mile wide, is
located in parts of Elk, Forest, and McKean Counties, Pa., (fig. 1) along

the northwestern flank (surface axis) of the Smethport anticline.
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Initial oil production was from the Nansen, Sackett, and Duhring pools

which were discovered about 1881. Subsequent development combined these

into the Kane oilfield. Drillers in the area correlated the Kane sand of

this field with the Kane sand found in the Bradford District, McKean County,

The Kane sand is in the Upper Devonian system at a depth of approxi-

mately 2,200 feet,

Published records (10) show that the first successful oil well in the

Kane field was drilled in 1881, Nine years later, the first well was drilled

on that portion of Land Warrant 3777 covered in this report. By January

1891, 17 wells had been drilled; and by October 1900, the development was
completed with an additional 52 o0il wells on an approximately 10-acre

spacing.

Initial production rates in the Kane field were as high as 100 barrels

per day per well (10). The average production rates for the 10~-year period,

prior to waterflooding, were less than 1 barrel per day per well in Land

Warrant 3777 with producing gas-oil ratios ranging from 200 to 500 scf per

barrel. Estimates of cumulative oil production range from 6,000 to 14,000

barrels per well., No water was produced before initiation of the pilot flood.

Original reservoir energy in this field is attributed to a combination

solution-gas and gas-cap drive. Production of the gas cap and subseqﬁent

shrinkage has inactivated the gas-cap drive and permitted the oil to

migrate updip into the original cap area. O0il production from wells that

originally produced only gas is evidence of this migration. Not all of this
up-structure oil is recoverable by natural means since a portion will

become residual oil in the invaded gas sand.
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DEVE T _OF PIIOT 0,
The operator chose a location for the pilot waterflood where the wells

for the most part were already drilled. The spacing and location of the

e

wells selected for the test are shown in figure 2. This area consists of

nine injection and four producing wells enclosing an area of 36.5 acres.
01d producing wells were converted to injection wells and new producing
wells were drilled and completed, resulting in four normal five-spot
patterns.

All wells in the pilot project were subsequently hydraulically frac-
tured, using 300 to 500 barrels of water and 9,000 to 12,000 pounds of sandl
Treating pressures in the four new wells Were\about 800 psig less than in
the old wells owing to the use of 3=inch tubing in the new wells as opposedf
to 2-inch tubing in the old. The average breakdown and treating pressure
was about 4,500 and 3,000 psig, respectively. Before fracturing, the wells:
produced only a few gallons of oil per day; after fracturing, they produced%
a few barrels per day. The major increase in production was not experiencéf
until "fill-up" occurred.

In January 1963, surface water was injected into the Kane sand. This
water was treated with a corrosion inhibitor and injected at a wellhead
pressure which ranged from 1,500 to 1,700 psig.

An unusually large amount of water was produced in June and July of 19
This large volume of water which broke through was attributed in part to
fractures which the operator believed existed from injection to production
wells. This was later confirmed in August 1963 when the operator slugged

fluorescein dye into the injection wells. The extremely short time (1 to 3

days) required to produce the injected dye confirmed the existence of com

municating or near-miss fractures.

o
D
o

Additional tracer tests conducted by the Bureau of Mines will be dis-

cussed later.

Producing wells E-1 and E-3 (fig. 2) were cored and logged. Well E-1
was cable-tool cored using dextrose water as the drilling fluid and well

E-3 was rotary cored with air.
Electrical logs were run through the Kane sand in all the producing

wells (E-1 through E=4) and were used to evaluate and correlate this sand

throughout the pilot-flood area. The logs indicate that the Kane sand is

approximately 36 feet thick. These electric logs and cores from wells E=1
and E=3 also show that the sand is heterogeneous with considerable shale

interbedding. Consequently, all of the formation cannot be considered

floodable or effective sand. Approximately 16 feet of the formation is

shale and separates the 20 feet of sand into thin lenses.

RESERVOIR CHARACTERISTICS

Only 60 percent of the core was recovered from well E=3, therefore the
sequence of formation characteristics is indistinguishable in this well.
This core analysis, therefore, cannot be used to evaluate the sand with any
degree of reliability. In well E-1, however, 95 percent of the core was
recovered. Approximately 96 percent of the total injection capacity of
well E-1 is contained in the sand interval with air permeabilities above
1 millidarcy., The total of these intervals (10.6 feet) is the effective

sand thickness. The weighted=~average air permeability of this effective

sand is 4.4 millidarcys. Table 1 summarizes the core and log analyses of

wells E=1 and E=-3.
Representative core samples of the Kane sand were tested to determine

preferential wettability. Five adjacent pairs of samples were chipped from
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the fresh core obtained from well E-3. One sample of each pair was immers
in oil and the other in distilled water. The initial rate of water or oil

imbibition into each sample (11) and the total amounts imbibed were deter=

mined. The results are given in table 2., The Kane sand samples imbibed
both 0il and water; however, oil was imbibed much faster than water and al
in greater volume. In a preferentially oil=-wet system, water will not ent
the smaller pore channels because the capillary forces causing imbibition
are greater for oil than for water. This behavior was exhibited by the
samples taken in the Kane sand, indicating it to be a preferentially oil-
wet system.

The relative=-permeability characteristics of a reservoir also reflect
the effect of wettability (8). The average relative permeability to water
at residual oil saturation is 4.7 times greater in figure 3 than the
relative permeability to oil at residual water saturationm.

The average water saturation determined by log and core analysis of
well E-=1 and log analysis of well E-3 was 13.2 percent (table 1). This wa
is immobile since water is not produced from the Kane sand.

The journal article published in the August 1964 issue of Producers
Monthly (3) predicted the oil recovery from the pilot-flood area using an
assumed gas saturation of 20 percent. This prediction was necessarily based
on several assumptions and the assumed gas saturation was apparently too
high. The field data now indicate that an initial average gas saturation
of about 13 percent existed in the Kane sand reservoir., Based on this curre
knowledge, the oil saturation prior to initiation of the flood would have
been 73.8 percent. The residual oil saturation from relative=-permeability
tests is 46.3 percent (fig. 3). A stock-tank sample of oil was taken from

well E-1 in November 1962. The measured viscosity and specific gravity of

N
5
H

the sample was 3.05 cp and 0.795, respectively, and the API gravity was

44.7°. All tests were made at the bottom=hole temperature of 80° F.

PREDICTION METHOD

The method originally employed to predict secondary recovery of oil
from this area by waterflooding was that proposed by Craig, Geffen, and
Morse with a modification in the injected volume of water required to
initiate oil production (3). In the paper by Craig, and others (6), it was
assumed that all of the free gas space within the confined area need be
liquid filled before oil production begins. In preparing the Kane sand
prediction, however, the authors assumed that only the gas space in the
initially swept area need be liquid filled. Other authors (7, 13) state
that all the gas space must be liquid filled. It was therefore necessary
to reevaluate the pilot=-flood prediction.

This reevaluation was made using a composite of the original Craig, and
others, method and that proposed by Suder and Calhoun (14). The Suder-
Calhoun technique, based on Darcy's radial flow equation and a material
balance of the injected Eluid, was applied up to water breakthrough. This
results in a realistic profile of water=-injection rates until the beginning
of the steady=~-state flow. After water breakthrough, emphasis was placed on
the method originally proposed by Craig, and others. This method accounts
for continued oil production from the invaded region through the use of the
frontal-advance equation proposed by Buckley and Leverett (4) and modified
by Welge (15). Also considered is oil production from the newly invaded
region as the areal sweep efficiency increases with continued water through-
put. The data required to perform these calculations are presented in

table 3.



PREDICTED AND ACTUAL WATERFLOOD PERFORMANCE

Figure 4 shows a plot of the dimensionless production rates as a

function of the cumilative water injected into the pattern. The predicted
performance for gas saturations prior to waterflooding of 13 and 20 percent
is compared to the actual field performance of the waterflood.

It is readily apparent from figure 4 that the original estimated gas
saturation of 20 percent (3) yields low production-rate values. This is
further confirmed in figure 5 which indicates a low cumulative oil
recovery as compared to the actual recovery.

The difference between the originally predicted results (using 20
percent gas saturation) and the actual field data is believed to be due to
an assumption made in developing the original prediction. It was assumed
that only the gas space in the initially swept portion of the reservoir
need be liquid filled in order to initiate response at the producing wells
The theoretical minimum gas saturation that existed in the reservoir was
then eetablished by noting the volume of water injected until a response a
the production wells was observed. The pilot flood indicated this respons
by June 1963, and a gas saturation of approximately 20 percent was calculate
When these same field data are viewed under the assumption that all of the
gas space within the confined area must be liquid filled, an initial gas
saturation of about 13 percent was calculated. Although a gas saturation of
13 percent is now accepted as approximately correct, the results of predic-/
tion calculations using this figure still do not match actual performance.
In making the calculations, the Kane sand was assumed, for purposes of
simplification, to consists of a single, homogeneous layer. Such an assump~g 5
tion is weak for several obvious reasons. Because this sand is highly

stratified, the injected water can move through the sand at varying rates
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depending on the permeability of the individual strata and breakthrough will
not occur simultaneously in all layers. Perhaps a more important factor in
the discrepancy between actual and predicted results is the fact that the
wells were hydraulically fractured during completion. Some of these
fractures provided almost direct communication between injection and produc-
tion wells. As a result, a very early water breakthrough was experienced
and a percentage of the injected water has done little or no work in
displacing oil. The sweep efficiency and displacement efficiency have
improved with continued injection, and production rates have held up well.
Ultimate recovery from the pilot flood may therefore approximate the

predicted ultimate recovery.

PRODUCTION-DECLINE ANALYSIS

0il production from the Kane sand pilot waterflood has declined since
April 1964. Various methods and mathematical relationships were investi-
gated to evaluate this decline. Exponential, hyperbolic, and harmonic
declines were utilized for fitting the production data.

The hyperbolic or log-log type of decline can be recognized when the
difference of the loss ratios is constant, or nearly so. Differences of
consecutive initial values in the loss ratio are sometimes referred to as
the b exponent (12) and can vary between 0 and 1. For the Kane sand produc~
tion, the calculated loss ratios were not constant nor could a constant
difference of loss ratios between 0 and 1 be found, Therefore, an alternate
method was used (1), and a b exponent of 0.5 was found to best approximate a
Straight line. The hyperbolic-decline curve as presented by Arps was then
derived. The result of this mathematical techniéue is shown graphically in

figure 6.
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The Kane sand, as for most waterfloods, consisted of first a period
of fill-up and then a period during which the oil-production rate responde
to water injection. After the peak oil-production rate was attained, the
oil-production rate started to decline as the flood reached maturity. Dur
this time, the water saturation and relative permeability to water increas
while the oil saturation and relative permeability to oil decreased. The
oil-production decline, however, may or may not be a direct function of
time (9); although at all times it is a function of thé volume of water
injected. Therefore, it should be emphasized that true decline for secondat
waterfloods seldom exists since water injection and thus, oil production i
subject to the control of the operator (9).

As indicated, a recovery of 37,000 to 42,000 barrels of oil is expected
if 300,000 barrels of water is injected into the pattern. If the flood is
continued to a production rate of 1 barrel per day per well, an additional
13,000 barrels of oil may be produced, or a total of 50,000 to 55,000
barrels (129 to 142 barrels per acre-foot), may be recovered. This compare%
to about 45,000 barrels of oil predicted by the technique described earlier;

Figure 6 can also be used to estimate the cumulative oil production at%
a particular time. Suppose, for example, that an estimate of cumlative oii
production to January 1968 is needed. The first step is to estimate the
production rate for that time from the rate-time curve using the scale on
the left of figure 6. For January 1968, the rate indicated on the figure
is an estimated 350 barrels per month. This rate value is then transferred
to the right-hand scale on the figure and extrapolated to the rate-
cumulative curve.

As shown, the predicted cumulative production for January

1968 is 39,500 barrels. Inherent in any estimate from this figure is the

n
L0
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assumption that the operator will continue to inject water at about the
current rate of 11,600 barrels per month.

Figure 7 illustrates the cumulative history of Kane sand oil production
from Land Warrant 3777 in the Allegheny National Forest. O0il recovered
through January 1966 by primary (2) and secondary-recovery methods is

estimated to be 1,047,000 stock-tank barrels, and continued water injection

into the pilot-flood area should give an additional 20,000 barrels.

DISCUSSION OF RESULTS

The likelihood that communicating fractures existed in the formation
was confirmed by the operator in August 1963 when fluorescein dye tracers
were injected. Further tracer work was initiated in January 1965 by the

Bureau of Mines to reconfirm that fractures or near-miss fractures existed

in the Kane sand reservoir. It was also hoped that if they did exist, the

percentage of water going through the fractures could be determined. A
paper presenting the results of these tests (5) will follow this presentation.

In preparing a study of this nature, the various parameters inherent to
the method are very difficult to establish. When viewing the predicted
results for the pilot flood it is quite evident that the originally assumed
initial gas saturation of 20 percent was in error, whereas a saturation of
13 percent may be more realistic.

The favorable field response of the pilot waterflood has prompted the
operator to expand his present project. The addition of 180 acres to the
southwest of the current pilot flood was initiated in January 1966 and will
add approximately 10 normal five-spots to the existing flood pattern.

Orientation of the fracture system will also be attempted in order to

establish communication between injection wells and thus create a linear-
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flow system for the flood. The knowledge gained in fracture extent and
orientation from the current flood will, if successful, lead to a more

efficient waterflood pattern in the Kane field.

CONCILUSIONS

The assumed gas saturation of 20 percent used in the original predic-

tion was incorrect. The maximum oil recovery predicted at the time the

assumption was made is considerably less than the actual field performance

Furthermore, the field performance indicates that an initial gas saturatio

of 13 percent existed in the reservoir.

predicted results for ultimate recovery agree with calculated values derived

by decline-curve analysis. Based upon the latter calculations, the pilot

waterflood in the Kane sand should ultimately produce 50,000 to 55,000 bar

of oil, or 129 to 142 barrels per acre-foot.
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TABLE 1. - Results of core and log analyses, Kane sand
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13. Prats, M., C. S. Matthews, R. L. Jewett, and J. D. Baker. Prediction Effective sand thickness. ft 10.6 10.6
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1/ Based on the average of core and log analyses of well E~l
and log analysis of well E=3,
2/ Based on results of core analysis of well E-1.
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0il imbibed Water imbibed

Initial Total Initial Total
Sample rate, fraction rate, fraction
number pore vol/hr of pore vol pore vol/hr of pore vol
lieeceocenae 0.59 0.30 0.34 0.07
zoaﬂac-o.ooa .73 .48 .64 .15
3.00.0..00.0 095 .66 ‘52 .25
4..00....... 1.39 .76 .20 .15
5..0...'.... 1.35 .54 .81 .37

Average 1.00 .55 .50 .20
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TABLE 3. =~ Data required to perform waterflood calculations, pennsylvania

Kane sand, Highland Township, Elk County, Pa,

[ ]
oil viscosity......'...'0..0‘..'..0...IOOO.D....Olii.l.ﬂ.ﬂﬁ.-....ﬂl.3.05 c *
. L ]
Water viscosity at reservoir conditionS..ceeeceseescssssosssssssesessls * W
McKean /@\\
Relative permeability characterisStiCS..ieveseescessccececncessssssofigure | County /e ‘\Qi\ ¢
* W38 .
Interstitial water saturation......cecssceceocccsccessseesl3.2 pPct pore vo mmgCALMy e ,}5 - \j%m
. / ® Cored-logged
) E1 !
Gas saturation before water injectioNn...eeeeeeeessssel3 and 20 pct pore vo] Allegheny w@(i?m&mﬁd )
it of Allegneny, R €4 /{
ional Forest, 7] S W .
Total area floodedu..o---c-o...un-u'oooo'-oooo-ooooo-oo---oo-o.-03605 acre ‘:::Warrant3777 P \V(IQS\ /
: \\t// N
ThickneSS...co‘.ooo.o'oo'ooonooco-00.0c-..co.oo‘oo.tcoooooootoo--oo01006 f W-17
L ]
L ]
Porosity.ﬁ.'00.'.0".O.'.I.O'.0..0.99.0...00..0....'.....ll..o.....lo.s Pc
& LEGEND .
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ducti N @ Water injection weli Scale, feet
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FIGURE 2. - Pilot-flood area and first-line offset wells.

Wellbore TadiUuS.seessereressssnocossoasssscassonssssses.approximately 10 £t

PIGURE 1. - Kane oilfield, Highland Township, Elk County, Pa.

Pressure at the sandface...eccesececcscesssssccsssssssanascccssssl, 500 psi

Pore volume of confined area....ecscececssssessccscecocenoaesses324,000 bbl
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Oil formation-volmne faCtorQ......o.0................'.00..0..0...0..1‘05 5 E
c, 8 180 =
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PIGURR 3. - Average vater and oil relative-permeability curves
for the Kane sand, well E-3.
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MULTIPLE TRACERS AID EVALUATION
OF A PILOT WATERFLOOD

by

Edward L. Burwell

Morgantown Petrcleum Research Laboratory, Bureau of Mines
Morgantown, West Virginia

ABSTRACT

Many materials have been used to trace fluid flow in porous media.
This report describes the use of five different tracers to help define the
orientation and flow capacity of a fracture system believed to be present
in a reservoir during a pilot waterflood project on the Fords Brook
Drilling Company lease, in the Kane oilfield, Elk County, Pa. The presence
and nature of the fractures were established, the preferential flow direc-
tion was indicated, and the approxiﬁate volume of injected water being

produced through the fracture system was measured,

INTRODUCTION

The search for a suitable material to trace fluid flow in porous media
has included such diverse substances as sugar, boron, ammonia, fluorescein,
iodine, and probably ﬁany others (2, 3, 5, 6, 7, 9). This report concerns
the use of five tracers in a pilot waterflood on the Fords Brook Drilling
Company lease, in the Kane oilfield, Elk County, Pa. Three series of tests,

each lasting 1 to 2 months, were conducted during a 2-year period to help
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define the presence, orientation, and flow capacity of a fracture system
believed to be present in the reservoir. To avoid confusion, each series '
will be discussed separately.

The injection pattern (fig. 1) consisted of four normal five-spots wi
nine injection and four producing wells, All injection lines were connect
to a common header on which the pressure was maintained at approximately
1,600 psig. Water injection began in January 1963, and by June 1963 the
injection rate had staBilized at 330 barrels per day at a wellhead pressur
between 1,650 and 1,700 psig. During June 1963, cumulative water producti
increased from 37 to 1,330 barrels. The first series of tracer tests was

performed to help explain the source of this water production.

First Series of Tracer Tests

A series of seven tracer injections into all wells, except for W-39 and
W-16 (fig. 1), of about 75 grams of fluorescein each was begun in August 19
During this series, the wellhead pressure was between 1,490 and 1,630 psig
The injections were scheduled to prevent interference between tests. Pre-
vious calculations, based on core data for wells in the pattern, indicate
that injected tracer should travel through the formation to a producing we
in not less than 40 days. This is an absolute minimum figure derived by
assuming that all injected water travels through the most permeable 1 foot
of formation, The injected dye was produced within 1 to 3 days from three
of tbe four offset producing wells (fig. 2). This proved the existence of
a fracture system, but subsequent o0il production demonstrated that the

fracture system was not extensive enough to prevent economic operation of

the waterflood (4).

307

Second Series of Tracer Tests

As has been previously presented (8), during 1963 and 1964 this pilot
waterflood was the subject of a thorough reservoir engineering study (1, 4)
and a second series of tracer tests was planned to help explain an apparent
lack of correlation between the predicted and actual performance of the
waterflood,

The second series was designed to determine the amount of injected
water that was bypassing the sand body through fractures. Prior to actual
testing, the nine injection wells were equipped with recording flow meters
so that accurate records of volumes injected into each well could be
obtained. The following five tracers were used: Boron as boric acid,
Rhodamine B and fluorescein as fluorescent dyes, gold-198 as gold chloride,
and hydrogen-3 as tritiated water (table 1). The conditions for the six
tests in this series are shown in table 2.

Analysis for the Rhodamine B was performed both visually with a ratio
fluorometer having a sensitivity to this dye of about 10 parts per billion.
As this dye is adsorbed to some degree on sandstone, an open fracture would
be necessary for the dye to be produced; and as no Rhodamine B was produced,
it was concluded that such a fracture was not present.

The boron analysis was sensitive to boron concentrations of about 2
parts per million which we later found to be the background boron concen-
tration in the brine in this area. The injected boron was not detected at
any time although samples were collected for 8 to 10 weeks at regular
intervals.

On January 14, 5 curies of tritium as tritiated water were injected.
Produced water samples were collected and analyzed using a liquid scintilla-

tion counter. Tracer was found to be present in one well (E-3) in less
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than 4 hours and was present in all four producing wells within 48 hours,
The percentage of tagged injection water produced daily from the four pro-
ducing wells during the 28 days following injection is shown in figure 3.
About 5 percent of the amount injected during the 15.5-hour injection
period was produced from the four wells within the project boundary during
this 28-day interval.

In an attempt to correlate this test series with the 1963 work, a
slug of 200 grams of Rhodamine B was injected into well W-11 (fig. 4) on
January 27, 1965, followed on January 28 by 320 millicuries of gold-198
slug-injected into the same well, Neither of these was produced nor was
fluorescein which was slug-injected into well W-11 on February 2. The
gold-198 was not produced because it tended to plate out of solution on
metal surfaces with which it came into contact. However, the failure of
the fluorescein to be produced definitely established that there had been

a change in the performance and response of the reservoir to injection,

Third Series of Tracer Tests

The third series of tracer tests in the summer of 1965 was accompanied

by injection pressure increases and designed to investigate the (1) varia-

tion in performance data between the 1963 and 1965 tests, (2) flow pattern

of injected fluids, and (3) effect of injection-pressure fluctuation on the
fractures in the reservoir.

Before the tests were started, the reservoir was conditioned by main-
taining a constant pressure on the common header serving the nine injection
wells and establishing a stable injection rate. Accurate pressure and
injection volume data were recorded for the entire series. As soon as rea-

sonably stable conditions were reached, a dye tracer was slug-injected and
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the pressure was increased 60 to 90 psig. The individual injections and
conditions are shown in figure 5. Using this test procedure, tracer injec~
tion into three of the injection wells was followed within 1 to 3 days by
tracer production in a well in an easterly direction from the injection
well., At no time was there indication of tracer flow in any direction other
than east. This easterly flow may reflect the existence of pressure gradi-
ents effected by earlier, relatively rapid depletion of the gas cap to the
east.

Water-injection rates and pressures were recorded continuously during
the entire third series. The pressure-volume relationship for three of
these wells (fig, 6) shows an almost linear increase of intake rate with
injection-pressure increases, but the other wells (fig. 7) show a sharp,
nonlinear increase in intake rates between 1,630 and 1,640 psig wellhead
pressure. Evaluation of these data explains the pilot waterflood perform-
ance and the performance of each series of tracer tests; namely, that there
is an east-west oriented fracture system of low-flow capacity present in the
reservoir which can be opened and closed when differential pressure is varied
in the reservoir.

When the first tests were performed in 1963, water injection into the
pattern had been underway for only a few months and there undoubtedly existed
a high differential pressure in the reservoir close to the injection wellbore.
Injection pressures during the 1963 dye tests were 1,490 to 1,630 psig. The
fracture system--later proved to be present in the reservoir~~should have
opened under these conditions, and this explains the short time required to
produce the dye injected during the 1963 tests. At that time, the dye was
injected in small amounts (approximately 75 grams) and was produced in high

concentrations. At the time of the second series, early in 1965, the
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waterflood had been in progress for over 2 years and condition of equilib-
rium had been more nearly established in the reservoir. If no appreciable
differential pressure existed in the reservoir immediately surrounding the
wellbore, the fractures may have partially closed. However, they must have
remained open wide enough to permit the short travel time of the tritium
tracer which would not be adsorbed or absorbed in any appreciable amount.
An adsorbable dye would have been removed from the water because the frac-
tures were nearly closed, thus causing more intimate contact with the sand
body.

The third series of dye tests was designed to detect such a fracture
system and determine its response. Dye injections were accompanied by
injection pressure increases. Under these conditions, dye was produced in
such a short time that it could not have traveled through a sand body but
rather through a fracture. The easterly flow of tracer observed from these
tests indicates that the fractures are oriented in an east-west direction

and confirms the results of the earlier (1963) injection tests.

CONCLUSIONS
The 2-year multiple-tracer study demonstrated the problems involved
in finding a suitable material for use in tracing waterflow., The selection
of the tracer must be governed by the information desired. Traéer produc~

tion thfough a sand body over a long distance (300 to 1,000 feet) requires

a chemical not easily adsorbed and which can be detected in extremely minute

quantities. For these purposes, tritium is excellent and may be the only
practical tracer. If a fracture system is present, information may be

obtained as conveniently and more economically by use of a suitable dye.
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All test data should be correlated with any other available information such
as intake volume, pressure fluctuations, production volumes, and changes in
chemical content of brine produced. During this particular tracer study,
the following information was indicated or proven:

1. Production of large volumes (in the range of thousands of barrels
per month) of water during the early stages of a waterflood should not be
taken, by itself, as an indication that the flood will be unsuccessful,

2. A fracture system with an east-west orientation is present in the
reservoir described in this report.

3. The fracture system in this reservoir may be opened or closed by
control of the injection pressure.

4, Approximately 5 percent of the injected water produced from the
four wells in the pattern is bypassing the sand body through a fracture

system when a condition of equilibrium exists in the reservoir.
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Boron as Boric Acid

Rhodamine B as a Fluorescent Dye

Fluorescein as a Fluorescent Dye

Gold-198 as Gold Chloride

Hydrogen-3 as Tritiated Water

Tracers Used for Pilot Waterflood Flow Studies.

TABLE 1 -~
. 1
Date injecticn well Tracer Method of injection Results
1-13-65 All wells Rhodamine B Continuous for 8 hours No show
at 19.2 ppm ‘
1-13-65 All wells Boron Continuous for 5 hours No show
at 99 ppm
1-14-65 All wells Tritium Continuous for 15.5 hours E-1,2,3,4
at 0.150 pc/ml
1-27-65 W-11 Rhodamine B Slug-200 grams No show .
1.28-65 W-11 Gold-198 Slug-320 millicuries No show
2-2-65 W-11 Fluorescein  Slug-55 grams No show
mane 2. -  Second Series of Tracer Tests.
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EFFECT OF ADDITIVES ON PHASE DIAGRAMS: NORMAL
BUTANE ADDED TO CONDENSATE-NATURAL GAS SYSTEM

By

Byron A, Baker and C. Kenneth Eilerts*

ABSTRACT

The effect on phase-boundary pressures of a related series of
condensate mixtures of additions of normal butane was determined with
a windowed P-V-T cell, The investigation was conducted at pressures
up to 5,000 psia and at temperatures in the range 70° to 310° F, Rela-
tionship of the critical state to changing compositions was evaluated.
The fluids were a mixture of intermediate hydrocarbons and selected
distillation cuts from a field condensate combined with mole fractions
of natural gas in the range 0. 800 to 0. 933.

The data were subjected to statistical analysis using a computing
program that provided a polynomial for interpreting the results. The
polynomial yields phase-boundary pressures, and independent variables
are temperature, natural gas content, and mole fractions of normal
butane additive. A method is described for approximating such a
polynomial before measurements are complete using a mathematical

model that requires more measurements than are available.

*Bartlesville Petroleuw Research Laboratory, Bureau ol Mines,
Bartlesville, Oklahoma



INTRODUCTION

Processes used in recent years to increase the recovery of oil
from reservoirs have involved injection into the reservoir such addi-
tives as enriched natural gas and mixtures of hydrocarbon components
including ethane, propane, butane, and pentane, These additives
.combine with reservoir hydrocarbons to form a miscible front
(3, 5, 7) -l-/ which can be forced through the reservoir with a lean gas
or perhaps water. Ideally this front is a single, gas-like phase that
does not bypass oil in place but in the course of the process converts it
to a gas also. Thus retention of oil in the reservoir as "irreducible!
liquid saturation during the recovery process is minimized. This paper
is concerning the quantity of an additive needed to lower phase-boundary
pressure of a reservoir material a required amount to comprise the
front,

The authors have reported @_) results of a computing investigation
using published correlations of phase relationships to determine relative
effectiveness of various materials as additives, This reportis of a
laboratory investigation made to determine the effect of one such additive,
normal butane, upon the phase-boundary pressures of a related series of

prepared condensate mixtures with liquid gravities in the range 41° to

1/ Underscored numbers in parentheses refer to items in references
at the end of this report. Page and section citations are included
in some instances,

65° API, Dew-point, bubble-point, and critical pressures were measured
in the temperature range 70° to 280° F. Normal butane was added to the
condensate fluid in amounts up to 0. 2 mole per mole of fluid, A digital
computing program was used to analyze the data by statistical methods,
and measured pressures of the phase boundary were represented by a
polynomial with temperature, natural gas content, and additive concen-
trations the independent variables,

EXPERIMENTAL INVESTIGATIONS
Apparatus

The phase-boundary pressures of condensate mixtures studied were
measured using a windowed cell (4, sections A7e through A7k). The
volume of this cell is varied by use of mercury, and phase equilibrium is
achieved by rocking the cell.

Phase volumes are determined to the nearest 0.5 ml by measuring
the angle the axis of the cell makes with the horizontal when the mercury-
liquid or the liquid-gas meniscus is opposite the center of the window. This
angle is related by calibration to the volume of the phase or phases being
viewed. Pressures of phase equilibrium achieved in the windowed cell
were measured with a piston gage. It is estimated that the overall
accuracy of these measurements was T 25 psi, including the uncertainty
of attaining equilibrium and control of temperature.

The windowed cell was operated in a bath of 50-weight motor oil.

Temperatures in the range 40° to 310° F were obtained by using electrical
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heaters and a portable cooling coil for 70° F and lower temperatures,
A selected temperature was maintained constant to 1 0.2° F.

Gas for a sample was measured in the windowed cell. The quantity
of liquid required for mixing with the gas was measured into the cell
under pressure from a cylinder fitted with a movable piston which
will hereinafter be referred to as the piston displacement meter, The
piston has attached to it an external stem calibrated in milliliters to
indicate volume displaced by the piston.

Fluid Constituents

The fluids investigated were mixtures of 3 constituents, a natural
gas, a mixture of 6 hydrocarbons, and distillation cuts of a gulf coast
condensate. The respective terms used for these constituents in this
paper are ''Natural Gas'', "Intermediates'', and ""Distillation Cuts 3
through 10",

Composition of the natural gas used is shown in column 2 of table 1.
Values of the compressibility factor needed to measure the natural gas
were available from an unrelated investigation in progress (1).

The Intermediates mixture was prepared by combining weighed
quantities of technical grade hydrocarbons. The lightest of these
components including normal butane was cooled to 25° F to reduce
evaporation during the weighing and mixing operation. Composition of

the Intermediates mixture is given in column 3 of table 1. The isomer

V]
s

2, 2 dimethylbutane represented the group of components designated
135-56 C5, normal hexane represented 56-35 Cg, 2,4 dimethylpentane
represented 35-17 C,, and normal heptane represented 17-11 C,.

The fluid constituent designated Distillation Cuts 3 through 10 was
prepared using fractions obtained by distillation of a gulf coast condensate
in a 4-foot, screen-packed, Stedman column. Amounts of distillation
fraction thus obtained are listed in column 3 of table 2. Only that
distillate recovered in the boiling range 167° to 347° F comprised the
constituent. Higher boiling cuts were not used because they could contain
high-molecular weight waxes or asphaltic material which could coat the
high-pressure glass windows of the P-V-T cell and make volume measure-
ments difficult or impossible, Cuts 1 and 2 were not used because they
were volatile, and hydrocarbons in them could be provided for the fluid
under better control as Intermediates, The specific gravity of each frac-
tion was used to determine relative weights of the fractions and weight
percents distilled. Mole fraction composition of the fractions, as given in
column 4 of table 1, was computed from the weight percent distilled using
a method that has been described (4, Sec. A9f). The component designa-
tion nCg, for example, represents all hydrocarbons in the boiling-point
range of the isomers of octane,

Based on a consideration of separator gas and liquid compositions of



7 field condensates the composition of an average gas-condensate fluid
was defined as shown in the following table for the purpose of this

investigation.
Average gas-condensate fluid

Constituent Mole fraction
Natural Gas 0. 98007
Intermediates . 00751
Distillation Cuts 3 through 10 . 01242
Total 1. 00000

Based on this information the ratio of Distillation Cuts to Intermediates

for.an average condensate was calculated as follows on a mole fraction

basis .
Distillation Cuts _ 0.01242 = 1.654
Intermediates 0,00751 .

This ratio was used throughout the study. In effect the number of con-
stituents became 2; Natural Gas in a range of concentrations and a
mixture of Distillation Cuts 3 through 10 and Intermediates in a constant
ratio. Density of Distillation Cuts was 0.761 gm/cc at 75° F. Density of
Intermediates was 0, 637 gm/cc at 75° F.,

Preparation of Test Fluids

The first step in preparation of one of the original fluids was to

charge the windowed cell at a selected volume with the natural gas. With
temperature maintained constant, pressure of the gas in the cell was
measured. The molal quantity of gas contained in the cell was calcu-
lated (4, equation 2.11) using the gas equation N = PV/ZRT. Because
compressibility factors for this natural gas had been measured at 100° F,
this temperature was cell temperature for the mixing operation,

Volume of the mixture of Distillation Cuts and Intermediates re-
quired for injection into the cell to mix with the contained gas was
calculated from density of the liquid and the mole fraction of gas required
in the test fluid, Table 3 contains compositions of 5 original condensate
mixtures prepared in this manner. These are fluids GI800, GI840, GI876,
GI910, and GI933 containing 0,800, 0,840, 0. 876, 0.910, and 0,933 mole
fraction natural gas, respectively.

Fluids with Additive

After phase-boundary pressures of a fluid had been determined for
the range of temperatures of the investigation, normal butane was added to
it in the amount of 0.1 moles per mole of the fluid. The addition was
accomplished by means of the piston displacement meter. Volume of the
butane was measured to 0. 001 ml at room temperature and.cell pressure.
The volume of normal butane to be injected was calculated from its
density under the conditions of transfer., Table 4 shows compositions of

the 5 original fluids modified by the first addition of normal butane. In



the text, tables, and figures that follow these fluids are identified by
constituents of the original fluid and the molal proportion of added butane,
For example, the identification GI840 + 0.1 nC, implies that an amount
of the original fluid which would contain 0. 840 moles of natural gas had
added to it 0, 1 moles of normal butane,

After phase-boundary pressures were measured on a modified fluid
containing the first addition of normal butane, a second addition was made
in the proportion of 0,1 moles of butane to 1.1 mole of the modified fluid,
A resulting fluid is identified by the total content of additive, for example,
GI840 + 0.2 nC,. Compositions of all such fluids are given in table 5,

Measurement of Phase-Boundary Pressures and Temperatures

Phase equilibrium was attained in the windowed cell by rocking it at
constant temperature and pressure perhaps for as much as 30 minutes.
Equilibrium was indicated to have been attained when successively meas-
ured volumes of the sample differed by no more than 0.5 ml and there was
not a monotonic drift in this property. Examples of typical dew-point and
bubble-point pressure determinations are shown in figure 1. Attainment
of equilibrium at the bubblepoint took less time than attainment of

equilibrium at the dewpoint. Normal procedure is to attain equilibrium

at the highest pressures first. Pressures for the attainment of equilibrium

usually were selected in increments of about 200 psi.

As shown in figure 1 two separate straight lines of pressures were
obtained for each phase-boundary pressure determination, The upper
line in each instance represents pressures of the single phase. The
lower line represents pressures of the two-phase region which is pre-
dominately liquid for bubble-point determinations and predominately
gas for dew-point determinations. Intersection of the two lines is the
phase-boundary pressure sought.

The critical pressure is a phase-boundary pressure but is unique
because phases at temperatures and pressures closely approximating
those of the critical state are identical in properties, On the phase-
boundary curve the critical temperature represents the division between
dew-point and bubble-point states.

Determination of the critical state requires measurement of the
relative liquid volume L/F. This relative volume is a ratio of liquid-
phase volume to total-fluid volume and is determined with the aid of
observations made through windows of the cell, The interpretation of
relative volume data to determine unique states on the phase-boundary
curve has been described (4, Sec. 2. 4e),

EXPERIMENTAL RESULTS

Only original fluid GI840 had a critical temperature within the

temperature range of the investigation, The configuration of relative

liquid volumes, measured to determine the critical state, and pressures
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and temperatures of those volumes is shown in figure 2. As indicated,
bubblepoints and related states were measured at temperatures as high
as 170° F, and dewpoints and related states were measured at tempera-
tures as low as 175° F to bracket the critical temperature 172.5° F.
Figures 3 and 4, respectively, indicate the change in critical state

properties of fluid GI840 that occurred when normal butane was added

to it in the proportions 0.1 and 0. 2 moles of butane per mole of original

fluid, The critical temperature of normal butane is 306. 0° F, and added
butane had the effect of increasing critical temperature of the original
fluid to 207, 5° and 232.5° F, respectively.

Figure 5 shows the phase-boundary pressures of fluid GI840 includ-
ing the critical pressure. As it happens the critical pressure is an
approximation of the cricondenbar pressure or maximum pressure for
coexistence of gas and liquid phases of the fluid, The curves for fluid
GI840 modified by added butane show that temperature of the cricondenbar i
state was increased more by the addition of butane than the critical
temperature was increased by the same addition.

Phase-boundary pressures (dew-point and bubble-point pressures)

for the 5 original fluids and their respective mixtures formed by the addi

tion of normal butane are given in figures 6, 7, 8, 9, and 10. Smooth
curves fitted to the data points were obtained by statistical means and

computing that will be described. Because of the computing it was

possible to estimate curves of phase-boundary pressure for tempera-
tures and compositions not actually explored experimentally. In
figure 6, for example, pressures were measured only for the original
fluid,

These figures show that the overall effect of adding normal butane
to a related series of condensate mixtures is to iower the phase-boundary
pressure in every instance. The maximum pressure lowering for given
amounts of additive occurs at the lowest temperatures and for those
fluids for which the concentration of natural gas is the highest. For
example, at a natural gas concentration corresponding to 0. 933 mole
fraction and at 70° F the phase-boundary pressure is lowered about 1, 100
psi by the addition of 0,1 moles of normal butane per mole of fluid. At
the same concentration of natural gas (0. 933 mole fraction) but at 310° F,
the phase-boundary pressure is lowered only about 600 psi by the addi-
tion of 0.1 moles of normal butane per mole of fluid. Now at a natural
gas mole fraction of 0.800 and at a temperature of 310° F, 0,1 moles of
additive per mole of fluid lowered the phase-boundary pressure only about
350 psi, However, if the temperature is 70° F with the natural gas mole
fraction 0,800, 0.1 moles of butane added to 1. 0 mole of fluid will lower
the phase-boundary pressure 900 psi.

Critical pressure as measured for fluid GI840 was lowered 765 psi

by the addition of 0.1 mole fraction of normal butane per mole of



condensate. When the second O.1 mole of normsl butane per mole of
fluid GIBLO was added the critical pressure as measured on fluid
GIBLO + 0.1 HCH was lowered 480 psi. The overall effect of normal butane

on the critical pressure was to lower it but at a diminishing rate.

STATISTICAL ANALYSIS
A mathematical model was devised to represent the experimental

dats. This model is a polynomial with powdered transforms as arguments

Y (Xi.’ Xg’ X5)' Here Y is phase-boundary pressure, and Xy, Xg; and X3 are,

respectively, transforms representing natural gas content of the fluids,
temperature, and concentration of the additive used to modify the fluids.
In the beginning the X matrix to represent arguments and response values
was 15 x 75 in size, but this size was reduced as terms originally con-
ceived were found to lack significance.

Inversion of the X matrix was accomplished using standard techniques.
Methods described by Mendenhall (€) were followed in solving for and
testing coefficients B to represent the test results. The computing pro-
gram was appliad to the problem before it was experimentally coﬁplete, and
less than 75 measured values of Y were available. For the first analysis
estimates of Y were used where measured values of Y were not available.
After the coefficients 8 had been obtained values for all responses were

computed using the matric multiplication YC i 7 Xqi' The estimates of
2
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Y then were replaced with computed values Y., ; and coefficients B, .,
were computed. This step followed by the computation Yoo 441 = XBy g
constituted an iteration. Each time the iteration was repeated Yoo 141

used iI:1 the place of a Y that had not been measured contributed less and

less to the values of resulting coefficients, because

im (Y441 - ¥, 4)° = 0
i__atn s

and, as shown in Appendix A, at the limit only measured values of Y
determined the va.lues'of computed coefficients,

The transforms X;, Xj and X; devised to represent variables for
the model were as follows:

Variable Transform Range

Natural Gas

concentration X = &0_—(12& 0.80 < NG < 0.933
Temperature, t °F X, = t 2 115‘2601900 70° <t, °F < 310°
Moles nC, added per

mole fluid, m X = -——-—-—mo_. 10' 1 0.0 <m <0.2
Pressure, psia Y

Before selecting a mathematical model to represent the phase-
boundary pressures as determined from laboratory measurements,
these pressures were plotted against natural gas concentration on glass

plates to provide relationships similar to those illustrated in figure 11.
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These glass plates were mounted vertically in special metal holders
and arranged in the order of descending temperature. Three distinct
surfaces were thus defined by the three-dimensional array of plotted data,
Each of these surfaces of pressure was convex within the experimental
range of the independent variables.

Because data were available for 5 gas concentrations, the original
mathematical model was made fourth degree in X;,. Because data were
available for 5 temperatures, the original model was made fourth degree

in X,, but term by term the higher powers were found unnecessary until

only powers up to and including the second remained. Data for 3 concentra--

tions of the additive were available, so X; was represented to the second
degree. The final model had the form,
Y = BXot BiX; +BX] +B3X7 + BaXp + BsX3 +

BeXs + BrX2 + Bg X7 X5 + BeX; X3 + Bro XX

Elimination of terms to arrive at the above equation was not conducted

solely on the basis of computed relative size of the Student's t for each
coefficient and the Student's t according to the 95-percent confidence
interval elected and the degrees of freedom available. When representa-
tion of the transform X, seemed excessive, as indicated by low values
of Student's t for certain of its terms, the term with the highest power
was eliminated first. All lower powers of X, were retained, if values

of Student's t for these terms found in a subsequent computation of

coefficients were acceptable,

Coefficients of the final model and data pertaining to them are given
in table 6. The column of Student's t indicates that all coefficients ex-
cept the one for X? met the requirements for the confidence interval.
Because this term does contribute in a substantial way to the value of
Y, and because the X3 argument may be more significant in other
systems that may be studied than in this one, the term was retained for
the purpose of later comparisons,

The curves in figures 6, 7, 8, 9, 10, 11, and 12 represent values
of Y computed with coefficients of table 6. Surfaces for each of the
3 concentrations are convex within the range shown for the independent
variables,

Table 7 shows significant items of output from the last 3 iterations
of the model of table 6. The sum of squares of errors contributed by
those pressures Y, that were not measured is subtracted from the sum
of squares of errors SSE for all pressures and divided by degrees of
freedom for the measured pressures to provide the variance s®. The
standard deviation s is 69. 2 psi. If additional iterations were performed,
SSE and s both would be lowered but by decrements which are diminishing

in size,
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Square-Root Model

The mathematical model in table 6 provides single values of the
pressure for all values of the arguments., Because the phase diagram
of gas-condensate fluids is such that phase-boundary pressure can have
two values at high gas concentrations and also at relatively high tempera-
tures, a model that would provide more than one pressure might afford
an especially good fit for pressures representing the convex surface.
The following set of transforms was designed and used in a model to
provide more than one pressure for given argument values.

Variable Transform Range

Natural Gas

concentration X, = NG -0, 889

/0. 880 -0, 800
T - 7649.7

0.800 < NG <.933

Temperature, T °F

abs. X, = =— 529.7 < T < 769.7
/64 . - y .
Moles nC, added per /649.7 N529.1
mole fluid, m Xs = m - 0.1 0,0 <m <0.2
0.1
Pressure Y

Only positive roots were used in interpreting these transforms to
fill the X matrix in preparation for a computation of coefficients.

The device of using estimated pressures in the Y matrix where
measured pressufes were not available was used with this model also.
Results of the second iteration to find coefficients are given in table 8.
The sum of squares of errors SSE did not indicate that this model would

have any marked advantage over the one represented in table 6. Some

~
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other model which would provide representation of more than one pres-
sure for given values of arguments might afford an advantage, but the one
of table 8 apparently did not. Because this model to provide more than
one pressure for given arguments seemed to provide no better fit than
the one defined in table 8, when all argument roots were interpreted as
being positive, it was abandoned. Interpretations with various possi-

ble combinations of negative roots did not yield a helpful result,

Utilization of Statistical Results

Phase-boundary pressures computed by means of coefficients in
table 6 are plotted in figure 11, The three curves in any one of the 5
sections of this figure represent phase-boundary pressures for the origi-
nal fluids and for the two modified fluids obtained by butane additions.
Temperatures identifying sections of the figure are parameters, so that
each section shows the effect of gas concentration on phase-boundary

pressure at selected temperatures,

Comparison of curves in the sections will reveal that lowering the
phase-boundary pressure by additions of normal butane is the most
effective when temperature is low and concentration of natural gas is
high,

Phase-boundary pressures of figure 11 are shown in figure 12 as
contours with mole percent natural gas and temperature as variables.

Three plots representing the original fluids and the two modified fluids
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can be devised to represent measured phase-boundary pressures of
obtained by additions of normal butane represent three convex surfaces, P P VP

) ] o gas-condensate fluids with a standard deviation of the magnitude 70 psi.
Configurations of the contour curves at 250-psi intervals show how

For applications to gas-condensate fluids, in general, such a model is
cricondenbar temperatures are changed by the additive, Both criconden- & ’ g

expected to be more accurate for estimating the effect of changes in
bar and critical state temperatures are increased when the concentra- P g 8

the independent variables than for providing absolute phase-boundar
tion of butane is increased, Pressures of these states are lowered. P P 8 P Y

pressures,
CONCLUSIONS
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APPENDIX A
EFFECT OF ESTIMATED RESPONSES
In matrix notation the sum of the errors SSE is given by
SSE = Y'y - 8'X'Y . - - (A1)

An equivalent expression in algebraic notation, assuming certain of the

Y's to be estimated or computed values Y, is
" /o _ -
(ssE) + (ssE), = {ZYY+Zvy v}
L8 {xt+ Zxv} (a2)

where m designates that part of SSE due to measured Y's and c designates

the part due to computed values YC. The term of equation A2 representing

557

-8'X'Y may be manipulated to provide the steps,
-38{¥XY + XY},
-IBIXY - SBEXY, ,
-XBEXY - XXY, XB,
-EBEXY - XY ZXB . (A3)
Now if iterations progress to a limit condition such that Y. 's used pro-
vide coefficients that will yield these Y,'s exactly then Y, = ¥XB and a
final step for the terms A3 is
-ZBEXY - XY, Y, .
Thus for the limit condition equation A2 may be written
(SSE), + (SSE); = XYY + £Y, Y, - ZBEXY - XY, Y,
or, because (SSE), = 0,
(SSE), = ZYY - XgEXY . (A4)
Thus for an iteration representing a close approximation of the limit
condition, coefficients B calculated depend for their values only on
measured values of Y,
For this method to be helpful there should be enough measured Y's,
compared to the number of estimated or calculated Y's, so that the

iterations will not only converge but converge at a satisfactory rate.



339

338
. ’ Table 2. - Distillation analysis of gulf coast
Table 1. - Compositions of liquid and gas ) condensate 61069
constituents used to prepare
fluids
1 2 3 4 5 6 7 8
) ’ Volume Sum
- 5 3 Y ; Cut percent volume Specific Relative Sum
Fraction temp., by percentl gravity, weight of Weight weight
Intermediates Distillation number °F analysis _adjusted 60°/60°F _ fractions percent percent
v ‘Natural Gas, Mixture 1/, Cuts (3-10)2/,
Component mole fraction mole fraction mole fraction : ’ Distillation pressure, 740 mm.
N, 0.002, 820 -- -- 1 122 4.3 6.4 0,626 4.01 5,18 5.18
co, , 1010, 000 . - 2 167 6.9 13.3 . 672 4. 64 5.99 11.17
G, .893, 310 - -- 3 212 8.9 22,2 .720 6. 41 8.28 19. 45
nC, . 063, 980 - .- 4 257 8.9 31.1 .733 6.52 8.42 27.87
nC, . 016,250 -- ' == 5 302 6.6 37.7 . 747 4.93 6. 37 34,24
6 347 9.7 47. 4 . 760 7.37 9.52 43.76
iC, - . 002,520 -- -- 7 392 7.0 54,4 L7171 5. 40 6. 98 50.74
nC, .003, 680 . 0. 160, 000 - : 8 437 6.7 61.1 . 784 5,25 6.78 57.52
iCg . 001,130 . 160, 000 -- ;
nCg : . 000, 960 .150,000 -- ;
1 Distillation pressure, 40 mm.
135-56 Cq . 000, 050 . 170,000 -- IS
56-35 Cq . 002, 325 . 190,000 -- o 9 302 6. 4 67.5 . 802 5.13 6.63 64.15
35-17 C, . 000,775 . 170,000 -- : : 10 347 9.7 77.2 . 819 7.94 10, 26 74. 41
17-11 C, . 000, 775 o - 0.159,100 » 11 392 7.5 84.7 .823 6.17 7.97 82. 38
i 12 i 4372/ 5.0 89.7 . 833 4.16 5.37 87.75
nCqg . 000,775 -- . 185, 200 o Residuum -- 10.3 100.0 . 920 9.48 12.25 " 100.00
nCq ‘ . 000, 650 -- . 149, 200 . Loss -~ 2.1 - - - __ .
nCyo -- -- .119,100
nCy, - -- . 090, 000 : 77.41 100. 00
nC;2 -- -- . 074, 900 *
nCys - - ., 069,100 = _1_/ Distillation loss of 2,1 percent assumed to be all in fraction number 1.
nCy, e -- . 058,400 & E/ Distillation discontinued here,
nCys - .- . 066, 200
nCaes _ = 028,800
Total ’ 1. 000, 000 1. 000, 000 1. 000, 000

}_/ Actually used 2,2 dimethylbutane for iCe and 2,4 dimethylpentane for iC,.
2/ Values listed were calculated from values taken off of distillation curve,

AT S SEREPE RIS
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Table 3. - Compositions of original fluids
Mole fraction composition of indicated mixtures
Component GI800 GI840 GI876 GI910 GI1933
Ny 0.002, 256 0.002, 370 0,002,470 0.002, 566 0.002, 630
C, . 714, 648 . 750, 380 . 782,240 .812,911 .833,770
CO, . 008, 000 . 008, 400 . 008,760 . 009,100 . 009, 330
C, .051,184 . 053,740 . 056,030 . 058, 222 . 059,720
C, .013,000 .013, 650 .014, 230 .014,788 .015,170
iC, . 002,016 . 002,120 . 002, 210 . 002,293 . 002, 350
nCy .015,002 .012,740 . 010,720 . 008,775 . 007, 450
iCg .012,962 . 010, 600 . 008, 480 . 006, 454 . 005, 070
nCg .012,072 . 009, 850 . 007,870 . 005, 961 . 004, 670
135-56 Cq4 .012,851 . 010, 290 . 008,000 . 005,811 . 004, 320
56-35 Cqg .016,178 . 013,400 . 010, 940 . 008,561 . 006, 940
35-17 C, . 013,431 . 010, 900 . 008, 640 . 006,470 . 004, 990
17-11 C, . 020, 450 .016,510 .013,010 . 009, 628 . 007, 330
Cq .023,703 .019,120 . 015,040 .011,092 . 008,400
Cgq .019,116 . 015,430 .012,130 . 008,960 . 006, 810
Cio .014, 845 .011, 880 . 009,230 . 006, 680 . 004, 950
Ci ' .011,218 . 008,970 . 006, 970 . 005,048 . 003,740
Ciz . 009, 336 . 007,470 . 005,800 . 004, 201 .003,110
Cia . 008,613 . 006, 890 . 005, 350 . 003,876 . 002, 870
Cie . 007, 279 . 005, 820 . 004,520 . 003,275 . 002,430
Cis . 008, 251 . 006, 600 . 005,130 .003,713 . 002,750
Cie. . 003,589 . 002,870 . 002,230 . 001, 615 . 001, 200
1. 000, 000 1. 000, 000 1. 000, 000 1.000, 000

Total 1,000, 000

K o

Table 4.

- Compositions of fluids modified with

normal butane (0.1 moles of nC, per

mole of fluid)

3h1

Mole fraction composition of indicated mixtures

GI800 + GI840 + GIig876 + GI910 + GI933 +

Component 0.1 nC, 0.1 nC, 0.1 nC, 0.1 nC, 0.1 nC,
N, 0.002, 051 0.002, 155 0.002, 250 0.002, 333 0.002, 390
(o . 649, 680 . 682,164 . 711,130 . 739,009 . 757,960
CO, . 007,273 . 007, 636 . 007,960 . 008,273 . 008, 480
Cz . 046,531 . 048, 855 . 050, 940 . 052,929 . 054, 290
C, .011,818 .012, 409 . 012,940 . 013,444 .013,790
iC, . 001,833 . 001, 927 . 002,010 . 002,085 . 002, 140
nC, . 104, 547 . 102, 489 . 100, 650 . 098, 886 . 097, 680
iCg .011,784 . 009, 636 . 007,710 . 005,867 . 004,610
nCg . 010,975 . 008, 955 . 007,150 . 005,419 . 004, 250
135-56 C4 .011, 683 . 009, 355 . 007, 270 . 005, 283 . 003,930
56-35 Cq4 .014, 707 .012,182 . 009,950 . 007,783 . 006, 310
35-17 C, .012,210 . 009, 909 . 007, 850 . 005,882 . 004, 540
17-11 C, .018,591 .015, 009 .011,830 . 008,753 . 006, 660
Cq . 021, 548 .017, 382 .013,670 . 010,084 . 007, 640
Cg . 017, 378 .014,027 .011,030 . 008,145 . 006,190
Cio . 013,495 . 010, 800 . 008, 390 . 006,073 . 004, 500
Ch; .010,198 . 008,155 . 006, 340 . 004, 589 . 003,400
Cia . 008, 487 . 006,791 . 005, 270 . 003,819 . 002,830
Cia . 007,830 . 006, 264 . 004, 860 .003,524 . 002,610
Cis. . 006, 617 . 005, 291 . 004,110 . 002, 977 . 002,210
Cis . 007,501 . 006,000 . 004, 660 . 003, 375 . 002,500
Cies . 003,263 . 002, 609 . 002,030 . 001, 468 . 001,090
Total 1. 000, 000 1. 000, 000 1. 000, 000 1. 000, 000 1.000, 000
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Table 5. - Composition of fluids with additive
(0. 2 moles of nC, per mole of fluid)
Mole fraction composition of indicated mixtures

GI800 + GI840 + GI876 + GI910 + GI933 +

Component 0.2 nC, 0.2 nC, 0.2 nC, 0.2 nC, 0.2 nC,
N, 0.001, 880 0.001, 975 0.002, 060 0.002,138 0.002,190
C, . 595, 540 . 625,317 . 651,850 . 677,427 . 694,810
CO, . 006, 667 . 007,000 . 007, 300 . 007,583 . 007,780
C, . 042,653 . 044,783 . 046, 690 . 048,518 . 049,770
C, .010,833 .011, 375 .011, 860 .012, 323 . 012, 640
iC, . 001, 680 . 001,767 . 001, 840 .001,911 . 001, 960
nC, .179,168 .177, 284 . 175, 600 .173,979 .172, 880
iCg . 010,802 . 008,833 . 007,070 . 005, 378 . 004, 220
nCy . 010,060 . 008, 208 . 006, 560 . 004, 968 . 003, 890
135-56 C4 . 010,709 . 008, 575 ..006, 670 . 004, 842 . 003, 600
56-35 Cq . 013,482 .011, 167 . 009,120 . 007,134 . 005,780
35-17 C, . 011,192 . 009,083 . 007, 200 . 005, 392 . 004,160
17-11 G, . 017,042 .013,758 . 010,840 .008,023 .006,110
Cq . 019,752 .015,933 . 012,530 . 009, 243 . 007, 000
Co . 015, 930 .012, 858 . 010,110 . 007,467 . 005, 680
Cio .012, 371 . 009, 900 . 007, 690 . 005,567 ..004,120
C, . 009, 348 . 007,475 . 005,810 . 004, 207 . 003,120
Cio . 007,780 . 006, 225 . 004,830 . 003,501 . 002,590
Cis . 007,178 . 005,742 . 004,460 . 003, 230 . 002, 390
Cia . 006,066 . 004, 850 . 003,770 . 002,729 . 002,020
Cis . 006,876 . 005, 500 . 004, 280 . 003,094 . 002, 290
Cis, . 002,991 . 002, 392 . 001, 860 001, 346 . 001, 000
Total 1.000, 000 1.000, 000 1.000, 000

1.000, 000

1. 000, 000

Table 6. - Coefficients of mathematical model
and related statistical data

Argument Coefficient, B Student's t
X5 4,025.83 299.8
X, -77. 84 2.4
Xf -629.92 13.5
X3 -20.29 .2
X5 73.91 9.6
X2 -316.43 24.8
X5 -703,17 106.1
Xz 33. 44 2.9
X1X2 -393c 86 24- 9
X; X4 -155,40 11.3
XoXa 276,07 29.8
Degrees of freedom 28
Confidence interval .95
Table Student's t 2. 05
SSE basis last iteration 133,900
Standard deviation 69, 2
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Table 7. - Convergence of iterations co Table 8., - Coefficients of mathematical model to
' provide more than one pressure for
given arguments

Standard deviation, psi

Sum of squares of errors Basis Basis ;
All Estimated all measured Argument Coefficient, B ' Student's t
Sequence pressures pressures pressures pressures ' :
, Xo 4,022, 69 256.5
i+ 1 159, 200 4,500 49.9 74.3 X, -56. 89 1.9
. X? -430, 22 11.3
i+ 2 146, 200 3, 200 47. 8 71.5 ' x3 -100, 30 1.8
i+ 3 136,400 2,500 46,1 69, 2 Xz 37.2 3.9
X3 -342,72 21.1
Xa -699. 41 90. 3
Xz : 34, 32 2.6
i X, X, . -328.05 21.0
| X, X5 -139.70 10.8
X, X, 270. 35 24.0
Degrees of freedom basis all pressures 64
Confidence interval _ .95
Table Student's t 2. 00
SSE basis last iteration 185,100

Standard deviation basis all pressures 53.8
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PHASE-BOUNDARY PRESSURE , psia

PHASE - BOUNDARY PRESSURE, psia
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ON THE RELATION OF MULTI-WELL VERTICAL FRACTURES
TO FIVE-SPOT SWEEP EFFICIENCY

by

Jeo To Hansford and D.A.T. Donochue
The Pennsylvenia State Tuiversity

INTRODUCTION

Several recovery stimulation processes have been developed by
the petroleum industry, some having widespread application to a
variety of producing conditions and other, more exotic, techniques
requiring special conditions in order to be beneficial, Of the
former, two important recovery aids have proven especially successful:
hydraulic fracturing and waterflooding. In some cases, these two
techniques can be combined to take advantage of the benefits of both.
However, the effects of such a combination on fluid flow patterns
and pressure distributions must be examined. A common measure of
the effectiveness of a particular flow pattern in displacing oil with
water is areal sweep efficiency, a factor dependent upon fluid flow
patterns and pressure distributions.

An extensive review of literature (see Reference 1) concerning
hydraulic fracturing establishes the fact that vertical fractures do
occur in many cases and that, at least in some cases, these fractures
have a preferred, azimuthal orientation. For optimal operation of a
fractured reservoir undergoing pattern waterflooding, knowledge of
fluid flow behavior for any existing set of fracture conditions is
essential. The object of this investigation was to determine the
effects of vertical fractures of various lengths and orientations on
the sweep efficiency of a normal five=-spot waterflood pattern having
all wells fractured along a particular azimuth. A potentiometric
model and a numerical technique were employed to obtain values of
sweep efficiency,

PROCEDURE OF INVESTIGATION

Experimental Model

A potentiometric model geometrically scaled to similate a
completely developed reservoir was constructed using Teledeltos
paper, an electrically conductive paper, as the conductive medium.
A potentiometric plotter conmnected to a network of sources and sinks
was used to obtain potential distributions in the center five-spot,
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a pattern surrounded by five-spots to represent a completely confined
pattern (see Figure 1), Fractures of the desired length and orienta-
tion were simulated by painting lines with conductive silver paint
radiating from each well location, represented by a brass screw. By
virtue of the analogy between Ohm's law and Darcy's law, the resultant
potential distributions determined with the experimental model are
identical to the pressure distributions in the reservoir prototype.

A series of runs was made to determine potential distributions
for the confined five-spot with vertical fractures at all wells
oriented at angles of 10°, 20°, 30°, 40°, and 45° as shown in Figure 2,
For all of these runs, half-fracture length L was 20 percent of the
spacing between like wells, W. An example of the resulting potential
distribution is shown in Figure 3 for an angle of orientation of 10°,
Construction of a network of curvilinear squares yielded the lines of
force orthogonal to the equipotential lines, or streamlines. Flood
front position at breakthrough was calculated for each case (see
Figures L4 through 8) and sweep efficiencies were obtained by plani-
metering the swept areas, ,

Numerical Technique

This investigation concerned a two-dimensional, stead - rdis,
incompressible fluid flow problem described by Laplace's equation:

2p 32p
&+ 2 -0 (1)

Such behavior governs problems investigated using the potentiometric
model. The solution to Equation 1 with appropriate boundary condi-
tions gives the pressure distribution of the system. Since boundary
conditions for a fractured five=spot are a function of the fracture
geometry, an explicit expression for values of potential at the
boundaries is required. For fractures parallel to the boundary of a
five-spot element (0° orientation), empirical correlations of boundary
potential (pressure) as a function of L/W were obtained to explicitly
define these conditions., Runs were made with the potentiometric
model for L/W values of 0.0 (unfractured), .20, and .30 for which
values of potential on the boundaries of the center five-spot were
recorded. These data were correlated using standard techniques for
obtaining empirical equations such as are presented by Davis (2)e -
The resultant analytical expressions giving boundary potentials for
any L/W value may be found in Appendix A.

A numerical approximation to Laplace's equation was calculated
for various values of L/W using these empirically determined boundary
conditions with an iterative process, Liebmann's extrapolated
technique, which is first order correct. Pressure values were cal=-
culated for model points of a grid superimposed on the five-spot.
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These values were then used in a particle~-tracking scheme similar to
that described by McCarty and Barfield (3). A velocity field is
calculated and particles are moved through the field from injection ,
fracture to producing fracture by integrating at chosen time intervals
to obtain new particle location:

X

1]

+ t
X vx A

t+ 1 t :
(2)
Ve + 1 Y * vy At
where the velocities Ve and vy are given by Darcy's equation:
dx k 3p dy k 3p
Vv = —— = - — - - b -_ - o—
X dt L oax ° Vy dat B oy (3)

Flood front positions at breakthrough (or earlier) were calculated
for the chosen L/W values, and sweep efficiencies were obtained by
measuring the swept areas. The entire procedure lended itself readily
to programming for a high~speed digital computer. A proper choice of
the time interval, At, allowed execution of the program on the IBM
7074 in 2-3 minutes for each run. ' '

. Throughout this study, the following assumptions governing
fluid flow behavior apply: - :

(1) The fluids are ideal, incompressiblé, and immiscible with
a mobility ratio of unity.

(2) The porous medium is horizoﬁtal, of constant thickness
and uniform permeability. Effects of gravity are
negligible,

(3) The fractures are symmetrical with respect to the well~

bore, completely penetrate the producing zone, and have )
an infinite capacity compared to that of the reservoir.

RESULTS

Computer simulations of the runs involving fractures oriented

at 0° produced the data shown in Figure 1k, Sweep efficiencies are

given for various values of L/W. Values of L/W ranged from 0.0
(unfractured) to .4, with L/W = .5 known intuitively to give 100 per-
cent sweep efficiency. The same calculations yielded the flood fromnt
location at breakthrough for each of these cases. Results are shown
in Figures 9 to 13, ’ :
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. *Obtained from potential distributions of the experimental
model, flood fronts in patterns having oriented fractures, all with
'L/W = .20, are shown in Figures 4 to 8. The calculated sweep.
efficiencies are given in Figure 15, with angle of fracture orienta-
tion as the parameter. Sweep efficiencies for the interior fracture
pattern, the exterior fracture pattern, and the total flood pattern
are presented.

DISCUSSION OF RESULTS

Fractures at 0°

- Sweep efficiency is increased by increasing the L/W value of
the well fractures. Values of sweep efficiency range from T3 percent
for L/W = 0.0 (unfractured) to 100 percent for L/W = .50. Only a
slight increase in sweep efficiency over the unfractured case is
obtained for L/W-values of .20 and less. For values of L/W greater
.. "than .20, sweep efficiency markedly increases. In general, the shape
‘. of the flood .front is.altered by both the injection fracture and the
producing fracture. The first determines initial partical location,
and therefore, influences the early stages in the front movement.
The second affects the shape of the front as it nears the producing
fracture, The longer the producing fracture, the greater is the
degree of linearity, desirable for sweep efficiency, finally approach~
ed by the flood front, This degree of linearity may be described as
. ‘the extent to which the flood front is uniformly flat. A line-drive
flood would yield a front of the highest degree of linearity, com-
pletely linear.

For L/W = .10, the flood pattern resembles the unfractured
five-spot flood and the T4 percent sweep efficiency is close to the
T3 percent given by the latter, Effects of the short injection
fracture are seen on early shape of the front, but the producing
fracture induces little linearity in the front and "cusping" is
evident at breakthrough. For L/W = .20, cusping has been reduced
by the longer fracture and the sweep efficiency increases to 76 per=
cent, Sweep efficiency is increased to 85 percent for a value of
L/W = .30. The flood front is flattened somewhat by the longer
producing fracture, For L/W = .40, the flood front is highly linear
at breakthrough and a sweep efficiency of 93 percent is achieved,
Completely fractured boundaries, given by L/W = .50, would intuitively
give 100 percent sweep efficiency.

The orientation of fractures is the most favorable for water-
"flooding since it is perpendicular to the flooding direction. Previous
investigators (4=6) have studied some aspects of this case but with
only one type of well fractured, never both injection and producing
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wells, The results of these past studies show sweep efficiency to
decrease when only one type of well is fractured. A more complete
discussion of these findings may be found in Reference l. The pre-
sent investigation clearly shows the advantage of fracturing both
injection and producing wells locataed such that 0° orientation exists,

Oriented Fractures

Sweep efficiency increases as the angle of fracture orientation

decreases, The limiting factor for the case of oriented fractures

is the length of the shortest streamline in the system, i.e. the

path along which breakthrough occurs. As the fractures are oriented
at greater angles, the limiting streamline from injection well (or
fracture) to producing well (or fracture) decreases in length and
allows earlier breakthrough. Earlier breakthrough, in turn, limits
the growth of the flood pattern and yields lower sweep efficiencies.

For all orientations, two distinct flood patterns are observed,
The first, and larger, pattern is in the vicinity of the "interior"
injection fracture, that fracture which lies partially within the
five-=spot. The second flood pattern originates at the "exterior"
injection fracture, that fracture lying completely without the five-
spot. In all cases, the flood pattern surrounding the interior
fracture is the larger. It is noted that the term "breakthrough"
used in conjunction with oriented fractures refers to earliest break=-
through, from the interior injection fracture, and not for break-
through of both of the two distinct flood patterns. As the angle of
fracture orientation increases, the ratio of the exterior fracture
pattern area to that of the interior fracture pattern diminishes.

Due to the relation between lengths of limiting streamlines
and relative sweep efficiencies, the 45° fracture orientation yields
the lowest sweep efficiency, 26 percent. Breakthrough occurs along
the linear flowpath connecting the interior injection fracture to the
producing fracture., The short time to breakthrough allows the flood
front to advance only a small distance from the exterior injection
fracture., Breakthrough occurs at the tip of the producing well
fracture, An immediate deduction from the above data is that increased
sweep efficiency is possible by eliminating the fracture in the
producing well, A five-spot pattern having only injection wells
fractured should gain in sweep efficiency by virtue of the delay
in time to breakthrough. This deduction is verified by past investi-~
gations of patterns having only injection wells fractured. Dyes et
al (5) obtained a sweep efficiency of 45 percent for fracture that
would be slightly shorter (L/W = .18 rather than .20) when adopting
the basis for L/W measurements used in this study and a mobility
ratio of ls1. A potentiometric study by Simmons et al (4) for a
similar case (mobility ratio of one, L/W = .15) yielded 50 percent
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sweep efficiency. This smaller L/W value indicates another method
for increasing sweep efficiency when fracture orientations are near
45°: limit the length of the injection well fractures to delay time
to breakthrough but still obtain benefits from the fracturing such
as increased injectivity. Eliminating the fracture in the producing
well would, of course, reduce the productivity for a given well-to-
well pressure drop.

Several practical applications result from these investigations
of oriented fractures. By setting proper five-spot boundaries such
that the fractures are oriented at 0°, the operator will obtain
maximum recovery. For such an orientation, the longest possible
fracture length in both the injection and producing wells is desirable,
giving higher sweep efficiency and thus greater recovery to break=~
through. In case knowledge of the fracturing plane of the reservoir
is either inconclusive or not obtainable, it is advisable to: (1)
limit the length of fractures through suitable planning of fracturing
treatments; and, (2) avoid completely the fracturing of the producing
wells.

CONCLUSIONS

From this study of the flow behavior of a pattern displaéement
process in which all wells are fractured, the following conclusions
can be drawn:

l, With several limiting conditions, the potentiometric model
described herein was found to satisfactorily simulate
the field-size prototype and yielded data that, when
empirically correlated, supplied the necessary boundary
conditions for computational calculations of sweep
efficiency. The potentiometric model also directly
provided equipotential distributions from which flood
front locations and resulting sweep efficiencies were
determined.

2. For a given fracture length, breakthrough sweep efficiency
of a normal five-spot having all wells fractured decreases
as angle of fracture orientation increases. The greatest
sweep efficiency results from a fracture orientation of
0°, and the manner in which it decreases as the fracture
angle increases to 45° is illustrated.

3. For the most favorable fracture orientation of 0°, sweep
efficiency at breakthrough increases as fracture length is
increased, the greatest increases occurring at values of
L/W greater than .20 in nearly uniform increments. Sweep
efficiency is slightly increased at L/W values equal to,
or less than, .20.
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APPENDIX A

Empirical Correlations of Boundary Pressure Values

0° Fracture Orientation (see Figure 2)

Sides A~B and C-D:
P= A+ (.05+ 0.1 L/W) [cosh ('6—5'."%}{'1?/?} - 1]
- 7

where

A = .52 + .0021 cosh (15.5 L/W) - .00k exp (3l L/W - 0.93)
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Sides A~D and B-C:
P=A+ .05 [cosh (61x]) -1 ] for unfractured case
P=.2x +A [1.10 exp (= J471 [x' ) = .10 ]for fractured case

where

A= .53« [ cosh (3 L/W) = 1.] [.282 exp (.66 L/W) ]for both cases,

For the above:
P = wvalue of pressure on boundary

x = distance toward injection well from center of side

|
"—— 10"l

-
k

i

Figure 1- lxnri—u{ 1 Reservoir Model

o
Shown by Shaded® Area)

Injection Fracture {100%)

Angle of Orientstion c

-~ w

Lr

Figure 2 = Geometric Modal of & Pive~Spot Pettern
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Figure 5~ Location of Flood Front at Breakthrough for a
Practured Five-Spot, Angle of Orientation = 20°
Sweep Bfficiency = L%
(LMW = .20)

Figure & - Location of Flood Front at Breakthrough for a
Practured Five-Spot, Angle of Orientation = 30°
Sweep Efficiency = 35%
(LW = .20)

Z

Figure 7 - Location of Flood Front at Breakthrough for a
Fractured Five-Spot, Angle of Orientation = 40°
Sweep Efficisncy = 20%
L/ = .20

/\r

Figure 8 - Location of Flood Front at Breskthrough for & .
Fractured FPive-Spot, Angle of Orientstion = &5’
Sweep Efficiency = 26%
(LW = .20)

\

Figure 9. - Location of Flood Front at Breakthrough for
a d Five-Spot Quad L/W = 0.0
Breakthrough Sweep Efficiency = 73%

€= 1,56

Figure 11 - Locatior of Flood Front at Relative Times for
a Fractured Five-5Spot Quadrant, L/W = .20
Breskthrough Sweep Efficiency = 764
(Angle of Orientation = 0°)
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Figure 10 - Location of Flood Front at Relative Times for
a ed Five-Spot Quad L/W = .10
Breakthrough Sweep Efficiency = Th%
{Angle of Orieutation = 0°)

£ = 1.34

Fipure 12 - Location of Flood Front at Relative Times for
a Fractured Five-Spot Quadrant, L/W = .30
Breakthrough Sweep Efficiency = 87%
{Angle of Orientation = 0°)
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Pigure lb - Bffect of Fracture Length on Sweep Efficlency of
s Piva-Spot Pattern, Angle of Orfentation = 0°
(Computer Results)
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COMPUTATION OF SWEEP EFFICIENCY IN ALCOHOL FLOODING

Y. C. Chiao, S. M. Farouq Ali and C. D. Stahl

Abstract

A simple technique is described for calculating the sweep
efficiency obtained in alcohol flooding in a five-spot flow pattern.
The method is applicable to other areal flow problems involving direct
liﬁe drive, seven-spot flow etc.

The technique described herein utilizes two simplifying
approaches. The first of these is division of a flow pattern into
channels, and thg subsequent division of channels’into cells of equal
volume. The se;ond feature is the use of the cell model to simulate
alcohol slug displacement. The combination can be used for predicting
the sweep efficiency, fluid production history, and the distribution
of the unrecovered oil in a miscible displacement process such as
alcohol floeding.

Computations were carried out to predict the sweep efficiency
and displacement behavior in a five-spot flow pattern. The computed
results were compared with the expérimental and field data reported
in the literature by various investigators. The agreement was
generally good, thus indicating that the assumptions of constant
boundary channels and of negligible material transport across the

channels constitute good approximation of the physical situation.
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Introduction

During the past decade numerous papersl.5 have appeared on
field and laboratory studies of miscible displacement for oil recovery.
Several of these have dealt specifically with "aicohol displacement"
or the "alcohol slug process", introduced by Gatlin and Slobodl.

Alcohol displacement or alcohol flooding, as generally under-
stood, involves the injection into the reservoir of a small volume
or “"slug" of a solvent (geénerally, a suitable alcohol), which is
miscible with both’the 0il and water in ;he reservoir. Subsequently,
the slug is driven by injection of water. The injected solvent slug,
by virtue cof its miséibility characteristics, effectively removes the
capillary forces; responsible for the retention of the residual oil
in a conventional waterflood. In this manner, the solvent slug dis-
places the oil and water in the reservoir more or less like a piston,
and theoretically, 100% oil recovery can be obtained. In practice,
however, the solvent tends to dissipate in the formation through
convective mixing or dispersion. That is to say, there is no clearly
defined solvent front. Rather, there is a 'transition zone" within
which the solvent concentration varies from O to 100%. Since the
transition zone grows with time and distance traversed, the displace-‘
ment efficiency is greatly impaired, and the oil recovery is low.
Both laboratoryl-5 and field investigations6 have confirmed the

presence of this sort of behavior.
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All investigations of alcohol‘flooding reported to date have
been concerned with displacements in linear models of porous media.

A few st:udiesrr-lo of miscible displacement in areal patterns of
various types have been conducted. Miscible displacement involves
the use of two mutuaily soluble liquids, and thus bears only a
limited similarity to alcohol flooding, in which two phase flow and
phase equilibria must be considered.

The present paper outlines a simplified approach for determin-
ing the sweep efficiency in alcohol flooding. The computations
included here are concerned with the displacement of a hydrocarbon and
water by two different types of alcohols in a five-spot pattern. The
technique is, however, equally appiicable to other flow pattevns.

The computed results for the miscible regime are compared with
experimental and field results of various investigators. The agrec-

ment is found to be good.

Mechanism of Alcohol Displacement

The mechanism of alcohol displacement, for the zase where the
alcohol is injected continuously, rather than in small amcunts, has
. , , L 1 ) 2

been discussed by Gatlin and Siobod , Taber, Kamath and Reed”™ and

> 2 . i ,
Holm and Csaszar”. Taber et al”, in particular, presented a clear
picture of the mechanism involved in the displacement process. They
noted that the actual displacement mechanism is closely related to

the phase behavior characteristics of the alcohol-hydrocarbon-brine

system involved. Such ternary systems show a small region of mis-



376

cibility (i.e. compositions for which all three component systems
are completely miscibie) and a large region of immiscibility, wherein
two phases, each éontaining all three components, coexist. Depending
on the phase behavior involved, either of these phases would diminish
in volume as increasing amounts of the liquid common to the two
miscible pairs, i.e. .the alcohol, are added. Taber et all showed
that if the oil-riéh (6leic) phase decreases in volume, the alcohol
displacement‘involved would be governed by a residual oil type
mechanism. In this ;asé, a cerﬁain propértion of the oil in place
is left in the porous medium, which could be recovered only by a
process of solution by the advancing alcohol as opposed to displace-
ment. If a small alcohol slug is used, this quantity of oil would be
unrecoverable. On the other hand, if the water-rich (aqueous) phase
decreases in volume, the oleic phase remains continuous, and piston-
like displacemeﬁt of oil is ensureéd. The above theory neglects
dispersion of alcohol in the oil and water, which would be present
in both cases. Recent work by El-Salehll has shown that in a slug
type process,dispersion or convective mixing would largely modify
the displacement mechanism outlined above, since thé oil remaining
in the porous medium would greatly accelerate the loss of miscibility
of the slug material.

Examples of two typical alcohol-hydrocarbon-water systems;
showing opposite phase behavior as far as displacement of oil in a

porous medium is concerned, are presented in Figures 1 and 2.
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Figure 1 shows the isopropyl alcohol-Soltrol-brine system, character-
ized by a plait point on the oil side. The displacement of oil in
this case would be incomplete due to the deposition of an immobile
oleic phase in the porous medium. Figure 2 shows the tertiary butyl
alcohol-Soltrol-brine system, having the plait poiﬁt on the water
side. The displacement of oil in this case would be 'piston-~like".
It should be noted that a brine is substituted for water in order to
prevent the swelling of clays in the porous medium used.v However,

5

as shown by Farouq Ali’, the use of brine (2% CaCl, by weight) rather

2
than water is indispensable in the second ternary system to obtain
the desired phase behavior.

Both of the systems depictéd by Figures 1 and 2 were employed

in the calculations of sweep efficiency discussed in the present

article.

Sweep Efficiency in Miscible Displacement

Before discussing the calculation of sweep efficiency in
alcohol flooding, it is imstructive to consider the previous investi-
gations of sweep efficiency in miscible displacement (involving two
mutually soluble liquids), since the two processes, though different,
are closely related.

Some pf the earlier laboratory investigations of sweep
efficiency in waterflooding involved the use of miscible liquids.
Within limitations, these would more appropriately represent sweep

efficiency in miscible displacement. Some caution must be exercised
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in judging the results, however, since the models were not dimension-
ally scaled for miscible displacement. The early work of Dyes, Caudle
and Erickson7 among others falls into this category. Their findings
regarding the influence of the mobility ratio on waterflooding are
equally applicablg to miscible displacement. They found that the
sweép efficiency showed a sharp decreasevwith an increase in the
mobility ratio, which, in this case equalled the ratio of the viscosity
of the displaced liquid to that of the displacing liquid.

| Habermann8 studied the efficiency 6f miscible displacement,
using artificially consolidated éand models. He found a decrease in
sweep efficiency; both on the bases of the area contacted and the
volume injected, with an increase in the mobility ratio. Moreover,
he found that changes in the model size, rate and direction of flow,
and permeability did not produce any signifiéant changes in the sweep
efficiency.

Blackwell, Rayne and Terry12 found that oil recoveries at
breakthrough decreased from valugs of over 96%, for a mobility ratio
of unity, to values as low as 13%, for a mobility ratio of 383. They
observed excessive viscous fingering at the higher mobility ratios.

A field investigatiop of sweep efficiency in miscible dis-
placement has been reported by Greenkorn, Johnson and Haringg.
Mobility ratios of 0.1, 1 and 10 were employed in this test. They
concluded that the sweep efficiency was a pronounced function of the

mobility ratio, thus indicating that the viscous fingering as observed
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in simple laboratory models, occurred in the field as well.

An additional complication in miscible displacement is intro-
duced through vertical sweep efficiency arising from the segregation
of the solvent and the in-place fluids, due to the differences in the
densities of the fluids. Very little information is available on this

effect. Enright13 has considered vertical sweep in LPG injection.

Computation of Sweep Efficiency in Alcohol Flooding

The present scheme for calculating sweep efficiency in alcohol
flooding in an areal pattern involves two basic concepts. The first
of these is the distribution of a flow pattern into flow channels,
and the subsequent division of the flow channels into cells of equal
volumes. This type of scheme has been utilized by Higgins and
Leightonlu for calculating sweep efficiency in waterflooding. The
flow of the fluids is then assumed to be confined to the various
channels, proceeding from cell to cell,‘in a step-wise manner. Since
the choice of the channels is based upon the streamline pattern
involved, the latter must be obtained by an experimental or analytical
technique, for the given mobility rgtio. Following the procedure of
Craig, Geffen and Morsels, the mobility ratio in a waterflood can be
taken to be constant. However, in an alcohol displacement it varies

from point to point, due to the presence of a transition zone. In

this case mobility ratio is defined as

rol¥ol

M = %

m/uaq
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where k__and k__ are the relative permeabilities to oil and water,
ro ™ . . .
Cell Model for Simulating Alcohol Displacement

respectively, while ot and paq are the viscosities of the oleic and
Representation of a flow process in a porous medium by means
the aqueous phases, respectively. It is tacitly assumed that the
of a cell model is equivalent to dividing the process into a number of
relative permeabilities to the conjugate phases are the same as those 1
discrete stages. Aris and Amundsen 9 utilized the concept of a number
for the corresponding oil-water system. ,
of cells connected in series to simulate diffusiomn. Dean320 proposed
Therefore, it follows that, strictly speaking, the flow channels
a three-parameter cell model of miscible displacement in a porous
in an alcohol displacement are time-dependent. However, the shape of
medium, and showed analytically that, if certain conditions were met,
the streamline pattern, though depending upon the mobility ratio,
' the model simulated miscible displacement. Donohue21 used a similar
changes rather slowly with an increase in the mobility ratio. In fact,
model for simulating alcohol displacement. A more general model has

been proposed by Farouq Ali and Stah117’18. A brief description of

Higgins and Leightonlu successfully used the same streamline pattern
for mobility ratios ranging from 0.083 to T54. The agreement between
: this model will be given below, since it was used in the present com~
their calculations and those conducted on the basis of a mathematical
' : putations.
model was excellent. In view of the above considerations, the stream-
It is assumed in ti:& cell model of Faroug Ali and Stahi, that
line pattern employed by Higgins and Leighton was used for all alcohol
the porcus medium can be represented by means of N cells connected in
flood computations conducted in this study. 1In this way it was
series. The number of cells, N, is the only unknown involved. How-
possible to utilize the geometrical shape factors for the individual
.- . 16 : : ever, it can be chosen on the basis of the length of the porous medium.
cells as reported by Higgins and Leighton in a more recent publica-
Next, each cell is assumed to contain immovable oil and water fractioms,
tion.
being equal to the residual oil and irreducible water saturations,
The second concept employed in the present calculations is that
; respectively, charactexistic of the porous medium under consideration,
of the "cell model" for simulating an alcohol displacement. Such a
, ) ) 17,18 This is a logical assumption, considering that the same fractional
model has been successfully employed by Farouq Ali and Stahl™ "’ to
11 volumes represent the immovable saturations in a porous medium. If
simulate alcohol flooding. El-Saleh = used the same model for
the volume of each cell is taken as unity, the remzining cell volume
simulating the alcohol slug process, and investigated the slug break-
is termed the movable volume.
down behavior. A brief description of the cell model used will be ‘
In simulating alcoheol displacement, one movable cell vclume of
given in the next section.
alcohol is initially injected into the first cell, while the displaced
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material is transferred into the next cell, and the process is con-
tinued until an equal Qolumé is produced from the last cell. The
injected alcohol is now allowed to reach phase equilibrium with ﬁhe
resident fluids. A second movable volume of alcohol is then injected
into the first cell, and the whole procedure is repeated. This process
is continued until a desired volume of alcohol is injected, following
which, injection of water may be initiated, if so desired.

The above cgll model has been tested for different types of
alcohol displacements, and has been found to simulate the formation
of a stabilized bank, as well as other typical features of experimen-
tal data.

The application of the above model requires the representation
of ternary phase behavior data by means of mathematical equations.
This can be accomplished by the simple technique developed by Farouq Ali
and Stah122. Similarly, the relative permeability data as well as the
three-component viscosity data must also be represented by means of
mathematical equations. All of the information thus formulated is
employed in a computer program for conducting alcohol displacement

calculations.

Mathematical Representation of Phase Equilibrium, Permeability’and
Viscosity Data

The ternary systems employed in the present investigation are
depicted in Figures 1 and 2, which also give the equations of the
segments of the binodal curves and the tie lines. Details of such

representation have been reported elsewhereze.
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The relative permeability data used in the present computations

were taken from Leverett25 and Muskat24 for typical unconsolidated and
consolidated porous media, respectively. The respective curves are
shown in Figures % and 4. The curves were fitted by equations of the

following type:

k. =a, (s -8 _..)+ - S .. )2+ S - 3
™w l(bw Sw1r) bl(sw Sw1r) Cl(gw Swir)
k = a - + b - 2 - 3
ro 2(80 Sor) 2(80 Sor) * CQ(SO Sor)
where
k.o = relative permeability to water (or aqueous phase), fraction.
k., = relative permeability to oil (or oleic phase), fraction.
SW = water (or aqueous phase) saturation, fraction.
s, = oil (or oleic phase) saturation, fractionm.
Sw‘r = irreducible water (or aqueous phase) saturation.

§,, = residual 0il (or oleic phase) saturation.

and the constants aps bl’ Cis s b2 and c, were as follows:

2
Unconsolidated Sand Consolidated Sandstone
a; -0.129 0.0156
b1 1.800 -0.917
<y -0.125 3.000
a, 0.083 0.993
b, 1.000 -4.900
<, 0.k17 32.600
SOr 0.100 0.420
S . 0.200 0.280

wlir
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For saturations of the aqueous or the oleic phase below the
respective critical saturation (Swir or Sor), the relative permeability
to the particular phase involved was taken to be zero.

The viscosities of the two-phase, three-component mixtures were

; 17
taken from the data presented by Farouq Ali™', for the two alcohol-
hydrocarbon-brine systems studied. The viscosities of a number of

miscible, threc-component mixtures were measured and the data filled

by a simple relationship of the following type:

p,m = A+ By + Cy'
where,
Hy viscosity of a miscible mixture, centipose.
x = fraction of oil in the mixture.
y = fraction of alcohel in the mixture.

The experimental data as well as the mathematical approximations
of the same ave presented in Figures 5 and 6 for isopropyl alcohol-
Soltrol-brine and tertiary butyl alcohol-Soltrol-brine systems,
respectively. While more complicated schemes can be devised for
representing the viscosity data involved, the mathematical expressions
given in Figures 5 and 6 were considered to be sufficiently accurate

for the computer program, over the variable ranges involved.

Calculation of the Resistance of a Flow Channel

The present scheme for computing the sweep efficiency in

alcohol flooding essentially considers an octant of a five-spot pattern,

385

because of the eight-fold symmetry. Figure 7 shows a quadrant of a
five-spot, divided into two sets of four flow channels. Each of the
flow channels is divided into 40 equal volume cells. It is assumed
that a constant pressure differential is maintained between the injec-
rion and the production wells. Under these circumstances, the flow rate
in a given channel will depend on the saturations and viscosities of
the fluids in each cell within the channel, in addition to the geomet-
rical shapes of the individual cells. This means that, as alcohol
displacement calculations are carried out for a given channel, a
complete account must be kept of the compositions and the viscosities
of the fluids occupying each cell of the channel. Given the relative
permeabilities and viscosities of the two phases, the geometrical
shape factors would determine the rate of flow. The geometrical shape
factor; G, introduced by Higginé and Leightonla’l6, is defined as the
ratio of the average length, L, of the cell, to its average width, W.
It is tacitly assumed that the porous medium involved has a uniform
thickness. Then, the flow rate q at time step i, in cubic feet per

day, is given by

4; = 6.3%% HK AP
N
G
n
k K
T o
[P
n=1 ©
where
K = absolute permeability of the porous medium, millidarcy.
AP = pressure differential between the injection and production

wells, psi.
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Subscripts i and n refer to the number of time step and the cell no.,

respectively.

Computational Procedure

Having expressed all the data in wmathematical form, the computa-

tionzl procedure essentially consisted in conducting alcohol displace-

nel, and then combining the individual production
histories, afier normalizing the data on the basis of equal times.

. the cell model approach requires that the same volume (the
movable voluwe), or ifs multiples, be injected at any time step, it
was necessary to calculate the flow rate at a given time, and then

compute the time neaded to inject the movable volume. This time was
added o the previous figure for the cumulative time, and the new

flow rate was caiculated for the next time step. In this ﬁanner, four
different Fluid produciion histories were cbtained for the four
represeniavive fiow channelz. These azta were then reprocessed through
interpolation so¢ that sll production figures referred to a common time

. >

cale. Fimallyv the dara wewre vombined, allowing for the fraction of

D)

the total five-spot area represented by channels of each type, to
obtain the owverall production behavior.

The sweep efficiency was computed on the bases of the first
appearance of the injected alcoliol (2% alcohol in the invaded cell)
and the first appearance of a zone of wmiscibility. Furthermore, the
cumulative production of the fluids in place was also determined for

various times.
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At the end of each run, a meterial balance check was performad,
and the areal distribution of the oil leir in the formation was
detefrmined.

A lengthy computer program was written for performing the
computations described above on an IBM 707& digital computer. On
account of severe storage limitations, six tape unite had to be emplouyad
for loading the core storage at the appropriate moment. A typical
computer run took 500 seconds. The computational procedure is des-

cribed schematically in Figure 8.

Results of Computations

In waterflood operatidns, there is a distinct front (neglecting
the variable zone due tosapillary effects), and therefore, sweep
efficiency can be defined on the basis of the area invaded by the
water front at any given time. For unit mobility ratio, the sweep
efficiency at breakthrough is known to be about 72%.

In alcohol flooding, there is no distinct front, and as wentioned
in the previous section, it was necessary to define the sweep efficiency

.

on an arbitrary basis. TGO criteria were employed - one on the basis

of the presence of abtracé §f ;1coho1 (2% by volume), and the other on

the basis oi the first appearéﬁce of a single miscible phase in & cell.
i

In addition, an indirect measﬁre of the sweep efficiency was provided

by the plots of cumulative oil production as functions of cumulative

fluid injection.
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All computations were based upon a five-spot pattern having a
side of 400 feet and a formation thickness of 50 feet. Porosity and
permeability were assumed to be 20% and 200 md, respectively. The
pressure differential was maintained constant at a value of 50 psi.

Figure 9 shows the computed oil and alcohol production curves
for the individual channels. It is seen that alcohol breakthrough
occurred earliest in channel 1 (containing the shortest path between
the injection and production wells), and successively later in the
other channels. This type of behavior was observed in all of the 100
or so computer runs conducted,

Figures 10 and 1l depict plots of sweep efficiency vs pore
volumes injected, for a number of slug sizes, for the isopropyl alcohol-~
Soltrol-brine and tertiary butyl alcohol-Soltrol-brine systems,
respectively. The sweep efficiency at breakthrough, both on the basis
of 2% alcohol concentration and the miscible zone front, was found to
be 77% in the case of isopropyl alcohol, and 78% in the case of
tertiary butyl alcohol. The anomalously large sweep efficiency, when
the 2% alcohol concentration is used as a basis, is attributed to the
excessive dispersion of alcohol. On the basis of Figures 10 and ll, it
can be concluded that the areal sweep efficiency in alcohol flooding
does not depend on the phase behavior of the alcohol-hydrocarbon-
brine system involved. One might expect the sweep efficiency to be
much higher in the case of the tertiary butyl alcohol on account of.

its higher viscosity. However, the attainment of miscibility in this
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system requires a higher alcohol concentration than in the correspond-
ing isopropyl alcohol system, so that the advance of the miscible
front is slower.

Figure 12 shows plots of sweep efficiency vs pore volumes
injected, based upon the miscible zone front, for the isopropyl and
tertiary butyl alcohol systems. Also shown is an experimental curve
for miscible displacement at a mobility ratio of unity, as reported by
HabermannB. The dashed curve shows the approximate values of sweep
efficiency as obtained experimentally in a displacement study, ewploy-
ing isopropyl alcohol. The agreement between the computed and the

experimental values is seen to be reasonably good,

0il Recovery Behavior

Figures 13 to 18 show computed cumulative oil recoveries for
the two ternary systems studied. Figures 13 and 14 show plots of the
cumulative o0il recovery vs pore volumes injected, for the isopropyl
and tertiary butyl alcohol systems, respectively. A comparision of the
curves shows that oil recovery in the case of the tértiary butyl
alcohol is always higher. 1In fact, a 29.5% slug of isopropyl alcohol
recovered as much oil as a 1lh.1% slug of tertiary butyl alcohol. It
should be made clear that although the areal sweep efficiencies in the
case of the two alcohols were almost identical, the more favorable
phase behavior of the tertiary butyl alcohol led to greater recovery

from the area contacted,
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The oil recovery behavior is better seen from Figure 15, which
compares the data for the two ternary systems. It is interesting to
note that, unlike a linear system, continued injection of either
alcohol led #o an increase in the cumulative oil recovery at a slow
pace, for siug sizes ranging from 4O to 100%. The reason for such
behavior is that most of the slug material continues to flow through
the low-resistance channels, while the outer two channels are affected.
only to é limited extent. This is evident from Figures 16 and 17,
which show the distribution of the residual oil at the breakthrbugh bf
the miscible zone in the production well, for isopropyl alcohol and
tertiary butyl alcohol, respectively. In particular, the amount of
0il present in outer channels, in the case of isopropyl alcohol, is
much greater.

Figure 18 compares the computed behavior of the total production
of in-place fluids with the field data reported by Greenkorn et al9.
The computed data are for the tertiary butyl alcohol system, for a
slug size in excess of one pore volume. Thus, the alcohol displace-
ment may be looked upon as miscible displacement of oil and water by
tertiary butyl alcohol. The resulting curve (solid line) is seen to
fall close tc the field test curve for a mobility ratio of 0.l. The
mobility ratio in the alcohol displacement was approximately 0.3 with
respect to the oil, and 0.2 with respect to water. Thus, the com-
puted behavior follows the expected trend. It should be noted, however,

that the computed behavior is not as favorable as it seems to be,
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because macroscopic permeability heterogeneities were present in the
field. It is conceivable, then, that the agreement would not have been

as good if the field test were conducted in a homogeneous formation.

Conclusions and General Comments
| VThe technique presented above for the ébmputation of sweep

efficiency in an alcohol flood seems to be reliable and sufficiently
accurate, on the basis of comparison of the computed results with
rather limited experimental data. The agreement between the computed
and experimental data can be improved considerably by use of a
variable cell model, representing a varying rate of mass transfer, as
proposed by Farouq AlilY. Such a model has been shown to simulate
experimental tests in a linear system with good accuracy.

The number of cells used in the above computations was taken
as 4O, since in this way it was possible to use the geometrical shape
factors presented by Higgins and Leighton16. Work is presently
in progress for generating the shape factor data for any number of
cells., This would permit the use of the variable cell model, and allow
greater flexibility in the choice of the number of cells.

One of the advantages of the present computational scheme is
that the areal distribution of the formational permeability can be
varied in any desired manner. As shown by Greenkorn et a19, permeability

variations must be incorporated in the model, in order that the model

predictions may simulate the field situation.
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Farouq Ali

The limitations of the cell model, as discussed in detail by

17

, apply to all the computed data discussed. In particular,

it should be noted that in a field test of alcohol flooding excessive

fingering would be present, so that the sweep efficiency and oil

recovery would be lower than those predicted by the model.
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Produce the contents of the last cell by shifting the
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Petroleum Production Research at Penn State in Retrospect

R. F. Nielsen
L. T. Bissey

Introduction

At this Twenty-Fifth Technical Conference it seems appropriate to
review some of the highlights of previous conferences and the research
which has been done since the beginning of sponsorship by Pennsylvania
producers. Also it seems appropriate to recall the names of certain
people most actively concerned with the early work, and to mention cer=-
tain incidents involving some of these people., The chief purpose of
the review, however, is not to write a '"human interest story“ but to
tell what has been done and, particularly, where details can be found.
Useful ideas can often be obtained from early work, or one may wish to
trace back a certain subject. The numbers refer to bulletins or theses
listed at the end of the paper. These, or copies thereof, can be ob~-
tained from the Department of Petroleum and Natural Gas or through the
University Library. Tables of contents of tﬁe bulletins and titles of
all theses from the Department will be prepared sooh and distributed.

A brief but excellent review of events 1éading up to the research
program may be found in the Tenth Anniversary Bulletin, 19&5; published
as Bulletin 38 of the Mineral industries Experiment Station12 and in the
June Producers Monthly of that year. Steps were taken by Dean Steidle
and C. A. Bonine about 1928 to work with Pennsylvania produéers in

setting up research and teaching programs in oil production. 1In 1929
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the Legislature granted $50,000 for the biennium, to be divided be-
tween refining and production research, the former having been carried
on for some time already in the School of Chemistry. The cooperative
program with Bradford District began in 1933. Some familiar names were
associated with the program in the early years (1929-34) including
Kenneth Barnes, George Fancher, James Lewis, C. A. Bonine, Clark Barb,
Arthur Honess and, of course, "Doc" Gauger who was director of the
newly organized M. I. Experiment Station. It was in those years of
the great depression that hundreds of cores were collected, tested,
and filed in Room 1 of the Mineral Industries Building, this room
being labelled Pennsylvania Core Depository. Penn State pioneered in
porosity and permeability measurements and the development of 'flood
pots" for measuring water flood efficiencies by radial flow in cylind-
rical cores. "Bulletin 12", containing the article "Some Physical
Characteristics of Oil Sands", by Fancher, Lewis, and Barnes, has
become a classic.

Sam Yuster joined the staff in 1934k, The progress of the research
program under his direction is common knowledge. Others whom some of
you remember on the research staff up to 1940 include Luther Bissey,
"Beech" Charmbury, Kurt Andresen, Joe Levine, and John Caihoun. Ralph
Nielsen replaced Kurt Andresen in 1940. Francis Todd was on the re-
search staff on 'state funds".

A program sponsored by Penn Grade and connected primarily with

the Middle District and air-gas drive research was started in 19%6.

LOT

Gerald Hassler and Harry Krutter were appointed to the project and, in
1938, Bob Day. The famous '"Hassler sleeve" was devised at that time.
The air-gas and water flood research were combined under Yuster's direc-
tion when Krutter left in 194k,

The results of the programs were presented in periodic reports, at
meetings with the advisory committees, and at annual conferences. The
first Bradford District Technical Conference was in 1936. Another series
of annual Petroleum and Natural Gas conferences began in 1930, under
the auspices of the PNG department, headed in the early days by Bonine
(geology and PNG) and later by Pirson. The proceedings were published
in bulletins of the MI Experiment Station and contained mostly papers
from outside the PNG department, although some important Penn State re-
search was included. The famous Bulletin 12 was the Proceedings of the
Third PNG Conferernce. There were ten of these conferences, the fourth
to tenth being called Penn. Min. Ind. Conferences, PNG Section. Some
well known ''outside" contributors‘include Paul Torrey, Ralph Zook,

George Hanks, Harry Ryder, Per Frolich, Merril Fenske, ‘Gustav Egloff,

‘Art Simmons, Charles Fettke, Ed Heck, F. W, Laverty, and William

Brundred. A number of other people who worked closely with the Penn

State research in the early days might be mentioned. These include mem-

‘bers and officers of sponsoring groups and advisory committees. Such

+names as Joe Moorhead, Jerry Bauer, Cliff Martin, Cornell Pfohl, Coy

Hogg, Tony Saxe, Ed Booth, 'Dick' Jones, Bob Bossler, 'Tex" Young, .

John DePetro, and George Holbreck come

[

o mind.



Although established about ten years later than "early times", the
Bradford District~Penn Grade Laboratory should be mentioned because of
its close association with Penn State. The names of Rudy Pfister, Dick
Heoghes, Bob Bossler, and Joe Breston w&ll be recalled in connection with
“ta direction.

Now it scems to be in oxder to review some of the work done over
the vears. This will be grouped by subject matter rather than by time
increments. Names will not in general be mentioned, but the references
may be traced to show the people associated with various projects.

Porssity, Permeability, and Pore Structure

Bulletir 12 (19%3%) still stands as a monument to the systematic
determination cf the properties of porcus media. One wonders how so
few peopla could turn out go much work in so short a time. The deter-
mination of porosity and permeability and the relation cof the latter to
Reynold's number and turbulence were put on a scientific basis. Pre-
viouslyl {Barb and Honess, 193C) relations between porosity and permea-
1ility had been presented, and microscopic pore structures studied. The
relation of permeability to Poiseuille's law for flow in capillaries was
mentioned in 195M11. An empirical equation for calculating permeability
5

from sieve znalysic was suggested by Ryder” in 1936. The concept of

relative permeability and its relation to fluid saturation was pre-

sented in 19%6-37 without, however, using the word “relative”.lo’lu

Krynine's work on pore structure and petrology appeared over the years

1933-4a5> 155 16, 23, 2k, 38

. The effect of pressure on gas permea-

409
bility was noticed in the late 193O's16 and later became the subject of
Calhoun's doctoral thesis. During the course of his thesis research,
Calhoun, with Yuster and Nielsen, visited Muskat at the Gulf Laboratories
to get an opinion. By a strange coincidence, Muskat had just then fin-
ished reviewing the manuscript of the famous Klinkenberg paper. This is
just one of those cases where someone else ''got there first'.

Air drives on long coreseo’ 2l

from the Ranney 'mine" yielded
characteristic gas-oil ratio curves which Muskat showed to be due to
the trend in the relative permeability ratio with saturation. The
"Penn State Method”zu of determining relative permeabilities, a major

pioneering accomplishment, was developed in 19L6-L7.

Capillary Pressure, Pore Size Distribution, and "End Effect'

The concepts of interfacial tension forces in porous media, thresh-

old pressure, and its relation to permeability were mentioned in reports

as early as 193610’ 13. Jamin action, contact angles, and adhesion
10, 11 and visual ob-

: , o 11, 12. .
servance of these phenomena under a microscope was reported S

tension in two phase flow were mentioned in 1935
Distribution of phases in the pores and tﬂe relation‘of pore structure
and interfacial tension to displacement was di§cussed at the First
Technical Conference (1956)13;

The effect of pressureon oil recoveries from.laboratory cores
was apparent in some of the earliest work, but the relationkof this
effect to the capillary ''end effect'" was not recognized until the work
on capillary pressure-saturation curves was under way, about

194622 2, 27

Strangely enough, the first mathematical derivation of
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the end effect for displacement by the non-wetting phase (e.g. 0il or
water by gas) seen by the writers was a private communication from
Lincoln Elkins to Sylvain Pirson. The end effect had been anticipated
and measured some years earlier by Francis Todd, about 1938. He had
sealed concentric rings to a core to determine brine saturations by
electrical conductivity. But nobody would believe him at the time.

In anger he destroyed all his data and disassembled the apparatus. One
of the cores with the concentric rings was found several years later

in a scrap drawer.

Penn State pioneered on many aspects of determining capillary
pressure curves. For a while these determinations were on a real high
speed mass production basis. A little incident in the laboratory illus-
trates this. Drew Stahl was making measurements in a cabinet containing
36 capillary pressure cells. One of these had been disconnected for
repair. Sam Yuster happened to pass by and remarked '"Drew, there are
36 capillary pressure cells in that cabinet! Why are only 35 of them
running?" Later experiments included determination of pore size dis-
tribution by mercury injection25 (with a view toward permeability
calculations), hysteresis, and imbibition capillary pressure curVesE9.

Application of the Flow Laws to Field Operations

The first Penn Grade Report (19%6) says, regarding Darcy's Law,
"This law has no direct quantitative application to the problem of
flow in actual oil bearing sands". However, applications of Darcy's

Law and its modifications to "actual oil bearing sands" have been made

411

by the Penn State staff and others from that time to the present.
Muskat's papers on the conductivty and “sweep efficiency" of idealized
well configurations and flooding patterns were being published in :the
1930's and his book appeared in 1938. 1In those days, when most petrol-
eum engineers were frightened by Muskat's mathematics, we had the good
fortune of Harry Krutter's presence on the staff. Harry taught a course
which took most of the mystery out of equations which previously seemed
so formidable.

Methods of calculating secondary water flood histories, allowing
for permeability profiles, were developed about 1944 and tested against
actual field historiesgo’ 21. These methods are still being used in
modified forms. Pattern rearrangements, and intermittent injection in

18, 19, 204 | 1aved drilling'®

air-gas drive were suggested about 1942
and other factors in developing a water flood were examined on the basis
of the flow laws.

Jack Tarner published his well known ''Tarner's Method" in 194k while
at Penn State. It was to have been his M, S. thesis,“but a rule that
a thesis may not be published prior to commencement was discovered,

and Jack had to write a second thesis.

Selective Plugging

The use of air (or gas) in connection with water injection was a

means of selective plugging by "Jamin action" was suggestedll’ 1k, 15

in 1934, and some field experiments were tried soon after thatl6.

About 1938 experiments with suspensions and emulsions were under

agtls 16, 18, 19

W . Bulletin 55 mentions an analysis of data from one
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Pennsylvania cil company indicating a saving of over two million
dollars due to selective plugging alone. Experiments on selective
plugging with smokes were in progress for a while. Various methods

of generating smokes, such as atomization, condensation, and chemical
me2ns, were tried, but the main difficulty was getting the smoke down
the tubing,EO Alternate injection of dry ammonia and dry hydrogen
chloride gave "plugs' that lasted several months.25 However, selective
plugging with smokes was given up as impractical.

Miscible Displacement in Porous Media

The fact that a fluid may be displaced completely from a porous
medium by one miscible with it has been known since research on porous
media first began. Systematic study at Penn State was started10 about
1952. The "equilibrium cell" theory for calculating transition
(mixing or dispersion) zone compositions was proposed at that time,
tut the basic equations were not suited for hand computation. Later
(1962)35’ 36 the method was programmed, ard about this time algebraic
solutions appeared in the production research literature. Experiments
with long coreé, using liquids and gases, were made31 and relations to
viscosity ratios and diffusion constants studiedBl’ 5k, 56. Further
experiments included testing of equations for radial miscible displace-

; . 30 , . . R .
ment in porous medla,” for gravity effects in vertical miscible dis-

35, 36

placement
Lo, 41
es

» and for transition zone in long cylindrical capillar-

i . Fingering was studied by the method of x-ray shadow-

Lo, L3

graphs and other studies on fingering have been made and are
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continuing. Experiments in which a liquid was displaced by the same

28’ 29} 51 but

liquid at a different temperature have been described
the conduction and mixing effects were not separated in the mathematical
developments. The effect of a second phase was stud:’Ledm+ and also the
L5

effect of interphase material transfer.

The Alcohol Slug and Other Miscible Slug Processes

The experimental work on the alcohol slug process was first re-
ported33 in 1959. Modified and combination slugs, and effects of slug
sizes, velocities, sand type, and fluid properties have been studied
over a period of years, as have numerous water-alcohol-hydrocarbon

3k, 35, 36

phase relations The Penn State staff worked closely with

36

the oil producers in a field trial. Theofeticai and computational
procedures have been developedBé’ 46, b7 for linear and‘radial alcohol
floods.

Studies have been made of oil recoveries from water flooded cores

36,

by the use of light hydrocarbons and liquid carbon dioxidehB.
In some of these‘studies water was injected with the solvent, and the
core was tilted, to avoid fingering and overriding.

Flooding Models and Sweep Efficiency

A, Developed Floods

Electric models using metal foil and electrolytic models using
solutions or gels have been employed here since the late 1930's. These
have been limited to unit mobility ratio. Conductivities, flow

14, 15, 16

lines and sweep efficiencies for unusual patterns have been
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studied by this method. Recently ” the effect of vertical fractures and
the effect of barriers61 were studied with paper of high but uniform
electrical resistance, using a '"'field plotter".

A sand-packed lucite model was used in l9h119

to produce a motion
picture showing the'displacement of crude oil by water. Sweep effic-
iencies and water-oil ratios after breakthrough were obtained.

B. Pilot Floods (Closed Edge)

Sweep efficienéies for small groups of wells in which the total
production from wells waébequal to the injection have been studied
with sand-packed models’® 21 (miscible fluids) and "mathematical
models"sl. hThese included '"bounded" and '"unbounded" systems.

C. Pilot Floods (Open Edge)

Displacements in open edge models have been studied to simulate a

pilot water flood in a field with an initial gas saturation. Arti-

52

ficially consolidated slabs and Hele-Shaw (parallel glass plates)
mode1s53’ Sk were used. The large effect of rates and importaﬁce of
rate control in such models were demonstrated. This has apparently
not been emphasized in the literature in, for instance,nﬁhe case of
an inverted five-spot pilot. (See the paper by Bernard and Caudle

presented at the October, 1966 SPE meeting).

Phase Equilibria

Certain measurements of a purely physico-chemical nature dealing

with phase equilibria have been made. Thesé include solubilities of

27

methane and ethane”

29, 30, 36, 62.

and equilibria in carbon dioxide-hydrocaron

systems

k15

Interfacial Tension Measurements

Measurements of water-gas interfacial tensions in the presence of
a high pressure hydrocarbon gas phase were made by the pendant drop
method63. Spreading coefficients were made on a hydrophile balancels.
The rate of attainment of surface tension equilibrium28 and the nature

. 6L ,
of viscous films were studied.

Immiscible Displacement

Early experiments on displacement were aimed directly at increasing

oil recovery by water or air-gas drive. Effect of pressurelg’ Lk, 19,

20, 26, 50, intermittent gas injectioneo’ 29

12, 22, 23

, injection of both water

. . 1 . . .
, and effect of v1sc031ty2’ 2, interfacial ten31on3o,

25, 31

and gas

and wettability were among the factors studied. As displacement

30

theory (Buckley-Leverett etc.) developed, such things as input”  and

outlet29 29

transients, capillarity zones ~, saturation distributions
and their rate of change, and gravity counterflow were investigated65.

Surfactants and Other Additives

The addition of various materials to injection water in order to
increase oil recovery was probably considered when water flooding

began. Bulletin 11 (1932) describes laboratory experiments with soap,

. , 2, 1
sodium carbonate, and other materials™’ O. Later numerous surfactants

were triedlg’ 22, 27, 28, 29

27

wave”' suggested. Certain materials (e. g. carboxy-methyl-cellulose)

and the possibility of a chromatographic

which impart a high viscosity to water were tried in the early

1940's. Very recently other polymers such as acryl-amides have come
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into the limelight as "pushers"66’ 67. Some measurements of adsorption

11 (1937)

were made.

Well Shooting

The technique of ''shooting" wells with nitroglycerine or similar
explosives seems to have been well developed by the early 1930's. (The
booklet ""0il Well Shooting Theory and Practice' by Paul F. Lewis,
published by American Glycerine Co., was published in 1935). Articles
dealing with corrective shooting appeared in reports and bulletins
6, 11, 17, 18, 2h.

Such concepts as ''quarts per

from 1937 to 1948

foot", '"response", and 'best shot", based on collected field information,

were used in equations.

Well Problems

Certain well problems, such as corrosion and the deposition
of "gypsum" (""gyp") and wax were reported in the early days of the
research program. The relation of gas content to paraffin pointls,
the prevention of calcium sulfate precipitationl6, and the usevof amines

. 16 L |
and chromates for corrosion prevention = were studied in 1938-9.

Simmonsu reported on problems of flood water in 1935.

Microscopic Observations

Observations under a microscope have been made of fluid move-
ments between sand grains. Some of these have involved oil displacement
by air or water, using either small sand-filled cylindrical glass

L. 11, 12
capillaries55 or sand grains sealed between microscope slides ? .

L1t

A color motion picture was made of the former and is in the Visual Aids
Library files. Color films have also been made of alcohols displacing

39

oil and water, with the fluids shown by various colors~”.

Miscellaneous Investigations and Reports

Many types of investigation not mentioned above can be named.

Some of the topics are: electric logginggu’ 25, 28, 29, 50, radioactive

30

tracers” , use of semipermeable diaphragms to lower water-oil and

12

, .22 ; S . . .
gas-oil ratios ~, tracers to detect drilling water invasion in cores —,

25 19 56

, clay swelling ”, oxidation of crudes” ,

11(19%5), 57, 58, 59, 60 23

economics of well spacing

use of foam , magnetometer surveys -, and

determination of oil and water saturations by extraction#’ 12 and by
matched refractive indicesal.

An article by Paul Torreyl (1930) gives an interesting account of
"mining" oil in 1735 in the Pechelbronn field (Alsace) znd the vertical
gravity drainage from that field in 1917-24. Bulletin 20 contains

several articles on the results and problems of the St. Patrick's day

(1936) flood and storm.
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TREATMENT OF EQUILIBRIA BETWEEN TWO-LTQUID. PHASES
IN HYPROCARBON-ZARBOND DIOXIDE  SYSTEM

by

V. S. Gupta | The Pennsylvania State University
R. F. Nielsen University Park, Pennsylvania

ABSTRACT

For better understanding of the behavior of liquid carbon di-
oxide as a secondary or tertiary recovery agent, it is desirable to
have a wide range of equilibrium data for various liquid carbon
dioxide-hydrocarbon mixtures. A lack of sufficient number of ex-
perimental investigations do not permit an exact quantitative analy-
sis of this problem. Whatever tentative information has been reported
by previous workers, has been accepted as a basis for our present qual-
itative investigation. Equilibrium calculations for two liquid phases
in carbon dioxide-hydrocarbon systems were performed on the basis of
previously reported observations. These calculations are similar to
those for vapor-liquid equilibria.

This problem has also been treated from a theoretical angle.
One of the simiempirical thermodynamic equations is used to predict
the whole binodal curve of a ternary system on the basis of just one
set of liquid-liquid equilibrium data. For want of more experimental
observations, a comparison between theoretical and experimental curves
is not possible at this stage.

INTRODUCTION

The possibility of using liquid carbon dioxide as a secondary or
tertiary recovery agent for hydrocarbons has been recognized for some
years. The wide abudnance of carbon dioxide and relative cheapness of
its liquification makes this idea seem feasible., There is a good
possibility that under favorable circumstances, liquid carbon dioxide
may be an effective agent in miscible flooding.. This pgssibilit was
recognized gt least fifteen years ago by Pirson , Weber , Martin” and
Saxon et al . Currently at least one field test is under way and some
are being planned.

At room temperature (7O0°F), liquid carbon dioxide is miscible in
all proportions with the pure normal paraffinic hydrocarbons below
tetradecane. For tetradecane and higher, the miscibility range gradu-
ally becomes less with increasing molecular weight. For mixtures of
hydrocarbons, complete miscibility depends on the average molecular



L20

weight of the hydrocarbon mixture. In the absence of very heavy (waxy
or asphaltic) constituents, complete miscibility is generally obtained
if the average molecular weight is 180 or less.

While the critical temperature of carbon dioxide is low (88°F),
the solvent properties extend above this temperature, if the pressure
is sufficient. For instance, '"the single phase region' may include the
entire composition range with a light hydrocarbon at a temperature con-
siderably above the critical, This property indicates the possibility
of using carbon dioxide as a “pusher" in a graded miscible slug pro-
cess.

A number of laboratory tests have been conductedl’z’B’u to study
the effect of liquid carbon dioxide as a secondary or ;ertiary recov-
ery agent.  One such test was just conducted by Ashton” in this labor-
atory. Ashton observed that liquid carbon dioxide alone is less effic-
ient than liquid propane alone in a simple miscible slug process. How-
ever these results do not exclude the use of carbon dioxide in a mis-
cible process which must include the recovery of solvent or limit the
amount of solvents.

It therefore seems desirable to have phase diagrams and phase data
pertaining to equilibria in liquid carbon dioxide - hydrocarbon systems.
Unfortunately nothing very systematic is available in this regard.
Vapor-liquid equilibria invglving carbon7dioxide and light hgdrocarBons
have been studied by Kuenen , Olds et al', Poettman and Katz , Lara
and Stewert . While vapor-liquid equilibria are related to liquid-
liquid equilibria, the information from the farmer does not allow dir-
ect prediction of the latter for multicomponent systems.

Francis11 and Meldrum and Nielsen12 observed the miscibility
relations mentioned previously. Francis' work, though quite extensive,
does not cover the liquid-liquid equilibria involving carbon dioxide
and two or more paraffinic hydrocarbons. Meldrum and Nielsen have
reported a somewhat systematic treatment of liquid-liquid equilibria
between carbon dioxide and some light and intermediate paraffinic
hydrocarbons. Their work though limited to a few components, was a
study of the compositions of the vapor phase and the one or two liquid
phases in equilibrium with the vapor. One lighter phase, due to rel-
ative abundance of carbon dioxide, was called the carbon dioxide-rich
phase and the other, due to a somewhat higher fraction of hydrocarbons,
was called the hydrocarbon-rich phase. Meldrum and Nielsen also ob-
served that the distribution coefficients (equivalent to equilibrium
constants for vapor-liquid systems) of paraffinic components are de-
pendent upon their respective molecular weights. One of their figures
illustrating this dependence, drawn from very meager data, is repro-
duced here as Figure 1. For want of anything better, this figure will

be used here to illustrate some trends in the liquid-liquid equil-
ibria.

It. has been thought that some of the well known semi-empirical
equations for departure from Raoult's might be applicable. If so, this
can considerably cut down the number of lengthy and tiresome experi-
mental investigations. Such equations arg.those of van Laar andl&hose
of Margules, as reported by Bendict et al and applied by Wohl™ .
These equations, based on thermodynamics of scluticng, are expressions
for activity coefficients which measure the degree of departure from
ideality, that is, from Raouit's law. The application of these equa-
tions to two liquid phases will be shown below. As an example, the
Margules' two-suffix equation is used to predict the whole binodal
curve on a termary diagram on the basis of just one set of two phase
equilibrium data, repcrted by Meldrum and Nielsen. However due to the
lack of a sufficient number c¢f experimental observations, a comparison
between the theoretical and experimental curves cannot be made at this
time.

Some attempts have been made tg use ternary diagrams for iiquid-
liquid equilibria betwsen carbon d;ox%de and complex nydrocarbon mix-
tures such as a crude sil,  FHorstman ™~ used such disgrams but, as he
pointed out, the curves wers based on tihe first appearance of a second
liquid phase and therefore gave incomplete information, The three
components on his diagrams were crude oil, liguid cerber dicxide and
a light hydrocarbon. The significance and locatiorn of such curves in
relation to the order in which the components are mixed will be shown
by some calculations making use of Meldrum's distribulicn coefficients.

THEORETICAL AND EMPIRICAL CONSIDERATICNS

1. Calculation of Liquid-Liquicd Equilibria in Carbon dicxide -
Hydrocarbon System:

Liquid-liquid equilibria can be treated in the same way as is
commonly used for vapor~liguid system. The basic relatioms in this
case are,

The distribution coefficients of hydrocarboms as a function of
their molecular weights are shown in Figure 1. An empirical relation
for the distribution coefficient of liquid carbon~dioxide in carbon
dioxide-hydrocarbon systems is given by Meldrum and Nielsen as,

Cyy = 140.00 6 (M-180) === =-=mmmmmmmommmmmmm e (2)
2

*See the glossary of symbols.
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Now consider a known mixture of hydrocarbons to which liquid
carbon dioxide is continuously added under appropriate pressure and
temperature so as to maintain the liquid state, until the first drop
of carbon dioxide-rich phase appears. In this case the composition of
hydrocarbon-rich phase is same as the total composition of the mix-
ture. The mathematical relationship for this is,

(388 (oKgy ) # €y = 1 mrormrmsmsmsosossroseses s (3)

Similarly starting with a fixed amount of liquid carbon dioxide
and continuously adding a known mixture of hydrocarbons until the first
drop of the hydrocarbon-rich phase appears, the composition of carbon-
dioxide-rich phase in this case is same as the total composition, and
the mathematical relationship will be,

yCO

(EZYi/ci) (l-yCo ) + G 2 L ] momirmeemcmemcememcmcmaaones (&)
2

C02

When we have substantial amounts of both phases under equilibrium,
i.e. when the total composition is well within the two phase region
of the phase diagram, the mathematical relationship would be,

Z; (ci- 1) 3 ,
Y GRS 2 0 = mmmermmee e oeee oo (5a.)
25
L (Ci-l) v o+ 1 TTTTTTTTTTTTTTmmmm T --=-(50.)

The use of equations 1-5 will be illustrated below.

2. Herpules' Teo Suffik Bquation:

Poth Margules and van Laar hove given a seriecs of empirical equa-.
tions for activity coefficicuts, These cquations velabe the acrivity
coefficient of a particular component with chn wole or volume frac-
tions of other components. 7The higher the nuuber of suffixes in such
an equation, the move conskawts iv contvaing wudthe grester ave the
chances of accuracy. However, che highee che uumber of suffixes, the
greater is the number of expevimental dats wequived to solve the equa-
tions. As a first step, for ternary systems, the two-suffix Margules'
equation was selected. This is the simplest of all such equations and
its solution requires only one set of equilibrium data. The Margules
two~suffix equation is as shown. If Xy X5y Xy are the mole fractions

>3

of the components 1, 2 and 3 in a particular phase and their corres-
ponding activity coefficients are \21,'?2,‘93 then

Lo3
_ 2 2
108‘91 = A12 X2 + A15 XB + x2 X5 (A12 + A13 - A23) """"""" 6a.
2 2
1 - e A, ) mmmmmcem————as
og‘32 A, %+ A25 gt Xy g (A12 + A23 Alﬁ) 6b.
2 2
log V3 = Ay x5+ Ay x5 ) x, (Ag + Apg = Ap) =mmmmmsmmeeoes 6c.
where ‘
limit 1og§ 1 (xi—éo;sz—al) = limit 1og532 (xéz?o;~Xf—?l) =.A12--7a.
limit logy 1 (xi—%o, xj—el) = limit 1og\83 (xi—ao, xi—%l) = AlB--7b.
limit 108\?2 (Xé"Oi x;—»l) = limit log\)?5 (xj—éo, Xé—el) = A25--7c.

When the two phases are at equilibrium i.e. carbon dioxide-rich
and hydrocarbon-rich phases in our case, then we have

(x¥y) ¢

_rich = (¥ yj) HG-rich? § =10 25 3

)
2
hence (log Xy 1og'yj) co,-rich = g}og‘xj + 1og‘%g) HC-rich; i =1,z
Substituting for log\gj from 6a, 6b & 6¢
2 2
1 -
[_°g Xp ot A Ky b A XU 4 xy xg (A, + Ay A25§| co,-rich

o [}og Xy +‘¢12 Xy o b A15 x5 T Xy x§ (A12 +

2 2 s
log x, + Ajp X7 + Ay Xgm + Xy Xy (A)p + Ay - Ay5) co,-rich

X) %5 (Ajp + Ayg - A15€]HC-rich-—

M=

= [?og X, + A, X 2. a 8b.

12 X1 03 ¥3

> 2 '
E°g Xz + Apg XyT o Apg XoT + Xy Xy (Mg Ayg - Alei] co,-rich

2
i [103 Xy *Apy X * Agy xp ¥ Xy Xy (A Ay - Aleﬂnc-rich“&'
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Later in this paper it is shown that how Equations 8a, 8b, and 8¢ are
applied to predict the whole phase diagram with just one set of equil-
ibrium data for a ternary system,

CALCULATION PROCEDURE A AR gy e

1. Calculation of Liquid-Liquid Equilibria:

Equilibrium calculations were performed assuming one component as :

"crude oil," second component as carbon dioxide and third component as
another hydrocarbon, in this case hexane or pentadecane. The assumed
composition of the "crude o0il" used in such calculations is as shown . :
in Table 1. ‘

“Table 1

Assumed Composition of '"Crude 0Oil"

Components Mole Fraction
Ch : 0.15
C8 0.15
C12 0.15
Cl6 | 0.15
C20 ' 0.15
C2h v 0.15
050 0.10

Making use of Equations 1-5, equilibrium calculations were performed

for Crude oil - Carbon dioxide - Hexane and Crude oil - Carbon dioxide -
Pentadecane systems for all three cases mentioned above, namely, when
there is an infintesimal amount of carbon dioxide-rich phase, when there
is an infitesimal amount of hydrocarbon-rich phase, and when both the
phases in question are in substantial amounts. Results of these cal-
culations are presented in Figures 2-9.

It should be noted that in representing these complex mixtures on
a ternary diagram, the "crude' does not have the composition of the
original "crude" except in a phase which is in equilibrium with only an
infitisimal amount of the other phase. Note that the position of the
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curves, with these restrictions, depend on the relative amounts of the
starting components.

2. Applying Margules' two-suffix equation for predicting a phase
diagram:

Modified forms of Margules' two-suffix equations, as represented
by 8a, 8b and 8c, were used for the carbon dioxide - propane - hexadecane
system. One set of equilibrium data for such a system was taken from
Meldrum as a starting point. This set of equilibrium data is repro-
duced in Table 2.

Table 2
Component Mole fraction in Mole :fraction in
COe—rich phase hydrocarvon-rich phase
CO2 0.960 0.740
C5 0.023 0.033
Cl6 C. 017 O.227

The above values were substitutad for X1, Fgy X in Equations 8a, 8b and
8c to obtain the values of A o Al’ and A2 . Since these equations are
linear with respect to A, .., A 2 ang A25’ sglving these equations for
A12, A1 and A,, presents no problem. “These values were then used in
Equatiogs Ba, gg and 8¢ to compute other sets of points on the binodal
curve. Since the sum of the mole fractions of all three cowponents in
both of the phases is unity, the mole fraction of any ons of the com-
ponents can be substituted in terms of the cther two. Hence we are
left with only four unknowns and three equations, so, theoretically it
is possible to solve for any three of the unkowas in terms of the re-
mainder. However it is to be noted that 8a, 8b and 8¢ are transcenden-
tal equations in terms of the mcle fractions and therefcre it is rather
difficult to solve for mole fractioms by any simple mathematical pro-
cedure. For this reason they were numerically solved on am 1.B.M. 70Tk
digital computer, using trial and error techtnigue,

It is also to be noted that these are second order equations and
hence there is more than omne solution for each unkncwn. This diffi-
culty was noticed while soiving these equations for mcle fractions. Tc
avoid this discrepancy, only those points out of thz several possible
solutions which more or less lie on a closed binodal curve were selected.
The phase diagram thus obtained is presented in Figure 10.
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DISCUSSION AND CONCLUSION:

It is to be pointed out that the distribution coefficients presented
in Figure 1 are tentative and extremely approximate and were drawn with-
out enough experimental data. They represent a general trend rather
than actual numerical values. For this reason the results presented in
Figures 2-9 are not to be taken at their face values. Apart from this,
the distribution coefficient of liquid carbon dioxide, represented as
a linear function of the apparent molecular weight of the hydrocarbon
nixture is questionable. Though this equation was empirically obtained
by Meldrum and Nielsen, it is not founded on many experimental obser-
vations and hence its validity may be questioned over a wider range of
hydrocarbon compositions. It is felt that the distribution coefficient
of carbon dioxide may also vary with the total amount of hydrocarbon in
the system. However this variation is not believed to be large enough
to affect the qualitative trend in our results.

It is true that the results presented in Figures 2-9 are not backed
by experimental observations, however as a first step to our long range
undertaking, it does give us an idea as to what one might expect the
phase diagrams for such mixtures to look like.

At this stage it cannot be said whether the predicted phase dia-
gram for carbondiocxide - propane - hexadecane system as shown in Figure
10 is correct or not. Margules' two-suffix equation was selected only
to see if it gives us some kind of plot. The exact shape of such a
phase diagrar can be determined when more experimental data would be
forthcoming. The fact that this approach does give us some kind of
binodal curve, gives erough encouragement for solving other more
accurate equations suggested by Margules and van Laar in order to find
t he most accurate mathematical fit for a particular system.

GLOSSARY OF SYMBOLS

Z. - mole fraction of ith component in whole system.

X. - mole fracticn of ith component in hydrocarbon-rich phase

Y. - mole fractionof ith component in carbon dioxide-rich phase
v =~ mole fraction of carbon dioxide-rich phase

C - distribution coefficient

M - average molecular weight of hydrocarbons

Y - activity coefficient

Lot

SUBSCRIPTS

i - ?efers to the properties of ith component. In Equations 3 and k4,
i refers to hydrocarbons only.

002 - refers to the properties of carbon dioxide
COQ-rich - refers to carbon dioxide-rich phase

HC-rich - refers to hydrocarbon-rich phase
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