
Flow and Residence Time Distribution in Small-Scale Dual-Layer Depth Filter Capsules
Depth filtration is widely used for clarification of liquid feeds, including the purification of biopharmaceuticals. The performance characteristics of these depth filters can be strongly influenced by the local flow and pressure distribution within the filter capsule, but there is currently little information on these phenomena in commercial depth filter modules. This work used a combination of computational fluid dynamics (CFD), residence time distribution (RTD) measurements, and dye binding experiments to obtain detailed information on the pressure and flow distribution within a small-scale SupracapTM depth filtration capsule, containing two layers of depth filter media with different pore size, that is of high interest in bioprocessing. The results confirmed the presence of four distinct flow paths through the capsule, with less than 40% of the flow passing completely through even a single layer of the depth filter media and only 11% passing through both layers. Model calculations were in good agreement with the measured RTD and images of dye binding, providing further confirmation of the flow phenomena. These studies provide important insights into the performance characteristics of these depth filters, while providing a framework that can be applied to analyze the pressure and flow distribution in other membrane and depth filtration modules.
Files
Metadata
Work Title | Flow and Residence Time Distribution in Small-Scale Dual-Layer Depth Filter Capsules |
---|---|
Access | |
Creators |
|
Keyword |
|
License | CC BY-NC-ND 4.0 (Attribution-NonCommercial-NoDerivatives) |
Work Type | Article |
Publisher |
|
Publication Date | August 16, 2020 |
Publisher Identifier (DOI) |
|
Deposited | March 07, 2021 |
Versions
Analytics
Collections
This resource is currently not in any collection.