Diagnosing Two-Way Coupling in Decadal North Atlantic SST Variability Using Time-Evolving Self-Organizing Maps
Decadal variability in the North Atlantic plays a critical role in modulating regional and global climate. To identify the complex spatiotemporal patterns associated with decadal variability and diagnose mechanisms responsible spatially and over time simultaneously, we debut a novel application of a machine learning method—evolution self-organizing maps. This time-evolving framework is applied to a Community Earth System Model pre-industrial simulation to identify 10-year consecutive spatiotemporal evolutions of winter sea surface temperature (SST). Here we focus on a single evolution that transitions from SST patterns typically associated with a positive North Atlantic Oscillation (NAO) to a positive Atlantic Multidecadal Variability to a weak negative NAO and find that it can occur over just a 10-year period. This method facilitates a new examination of buoyancy-driven and wind-driven ocean circulations as well as ocean-atmosphere transient-eddy feedbacks that confirms the importance of coupled atmosphere-ocean dynamics in producing this decadal variability.
Files
Metadata
Work Title | Diagnosing Two-Way Coupling in Decadal North Atlantic SST Variability Using Time-Evolving Self-Organizing Maps |
---|---|
Access | |
Creators |
|
License | In Copyright (Rights Reserved) |
Work Type | Article |
Publisher |
|
Publication Date | March 30, 2022 |
Publisher Identifier (DOI) |
|
Deposited | July 21, 2022 |
Versions
Analytics
Collections
This resource is currently not in any collection.