Best Milking Practices

Greg Strait- Fulton County Extension
Amber Yutzy- Huntingdon County Extension
Milking is a complex interaction

AND not likely related to ONE factor alone

What is Mastitis?
• Bacterial infection of the udder
• 99% occurs when bacterial exposure at the teat end exceeds the ability of immune defense of the cow

• Subclinical Mastitis
 ✓ Milk appears normal but contains excessive number of inflammatory cells
 ✓ This milk can be sold for human consumption

• Clinical Mastitis
 ✓ Visual abnormalities of the milk
 ✓ Cannot be sold for human consumption

Bacterial infection of the udder
99% occurs when bacterial exposure at the teat end exceeds the ability of immune defense of the cow

Subclinical Mastitis
• Milk appears normal but contains excessive number of inflammatory cells
• This milk can be sold for human consumption

Clinical Mastitis
• Visual abnormalities of the milk
• Cannot be sold for human consumption
What are Somatic Cells?

SCC is composed of white blood cells & occasional dead epithelial cells

- If present in milk indication of subclinical mastitis infections
 - There is no way of knowing how many cows are infected without doing an individual cow SCC Test

Somatic Cells are NOT affected by:

- Breed
- Milk Yield
 - Unless < 15 lbs/day
- Stage of Lactation
 - Unless there are more infected cows in later lactation
- Nutritional Management
 - Unless diet results in very loose feces and dirtier cows
- Other cow diseases
Somatic Cells **ARE** affected by:

- Management practices that expose teats to bacteria that causes mastitis
 - In milk that came from infected udders of cows
 - Exposure of contagious mastitis
 - In the environment that the cows live in
 - Exposure to environmental bacteria

Cows are calm

- Loud & Unusual Noises
- Sore teats & Udder Pain
- Unusual routine – Heifer in Parlor for 1st Time
- Memory of bad events
- Harsh Treatment – Yelling, Erratic Movement by Pusher, shock gates, prods

Events 30 minutes before & during milking will negatively impact milk let-down
Adrenaline has opposite effect of oxytocin

- Constricts blood vessels
- Blocks oxytocin action on myoepithelial cells
- Reduces milk flow and let-down

Strategies to Reduce Stressors

- Handle cows calmly – limited use of cattle prods, tail twisting, yelling
- Allow cows to move into the milking facility on their own or gently move if needed
- Move cows consistently and quietly **BY ALL**
- Move Fresh Heifers w- Cows - give Oxytocin injections only as last resort & for very limited time
Cow Cleanliness Impacts Milking

• Cleanliness impacts speed of prepping cows
 - Dirty cows doubled cow prep time & reduced parlor throughput [Reneau, 1997]
• Research shows rear udder & rear leg cleanliness is associated with risk of mastitis
 - Use scorecard or visual method to ensure <1% of cows are in categories 3 & 4.

Source: Cook, Univ. WI Vet School
Scorecard available through Pfizer

Additional Diagnostics to Assess Cow and Teat Cleanliness

• Check milk filter for cleanliness – signs of mastitis, dirt, manure, and bedding
• Alcohol test of teat ends following prep
• Knee test for bedding dryness & impact on udders, visible manure on beds
• Bacteria Culturing – Bedding, Towels, Cows, Bulk Tank
• Visual inspection – facility floor, units, cows as they come into the parlor (hygiene evaluation)
Grouping to minimize infection

- Minimize exposure of infected to non-infected cows
- Importance is highest when contagious organisms are present in herd

Dedicate milking units or inflations for 'infected' cows
- 6 units used for milking
- 30% herd is 'infected'
- 6 x 0.30 = 1.8 or 2 units reserved for 'infected'

Back flush units before moving from infected to non-infected cows

Recommended Procedure:
- Rinse unit
- Expose unit to 25 to 50 ppm iodine for at least 30-seconds
- Rinse w/ clean water
- Dry thoroughly

Remember – water aids bacteria entering teats!

Milking Procedure

• Prep Lag Time is a Key to Successful milking: Time from start of prep till machine put on cow (Goal: 60 to 120 sec)

Pre Dip
20 sec per cow

Teat Stimulation
(Striping, Cleaning, Drying)
30 to 50 sec per cow

Attachment Delay
(10-20 sec/cow)

Prep-Lag Time
60 to 90 sec/cow

New data shows 90 sec. best for late lactation – esp. 3X milking
Example of Poor Prep Milking

- **Milk Flow:** Lb/min
 - 15.4
 - 13.2
 - 11.0
 - 8.8
 - 6.6
 - 4.4
 - 2.2

- **Amount of Milk:** 31.55 lbs.

- **Alveolar Milk**
 - **Peak Flow Rate**

- **Good Massage & Attach within 60 to 120 seconds**
 - **35.50 lbs. milk**
 - **Rapid uninterrupted increase in flow to peak**
 - **High Milk Flow Rate**
 - **Rapid Milk Out**
Why Pre-Dip?

• **Environmental Mastitis Control**
 - kills bacteria on teat end - quickly
 - Typical contact time 15-30 seconds (read the label)
 - Controls environmental Strep infections
 - Limited control with Environmental Staph (CNS) group of organisms

• **Coverage**
 - Cover ¾ up the teat (all the way around)
 - Keep dipper CLEAN- dip is neutralized by manure
 - Paper Towel Test

Why Fore-stripe?

1. **Stimulates Udder** for good let-down
 A. Evidence of importance for 3X and 2X milking
 a. Vigorous 3-4 streams per teat

2. **Reduces Bacteria on Teat End**

3. **Reduces Somatic Cells** in Teat Cistern
 A. 1st milk has highest SCC

4. **Check for Clinical Mastitis**
 A. Detect new cases sooner – quicker cure if diagnosed and acted on sooner

If milking in stall barn DO NOT strip on beds!!
Teats are dry before milking

- Most IMPORTANT part of disinfection process
 - Water aids bacteria growth
- Towels – cleaned and dried between uses
 - Cloth vs paper
 - Cloth more absorbent
 - Must use hot water with disinfectant
 - MUST dry towels after washing
 - COST!
- Towel Containers Clean
- Close to workers

Unit Attachment

- Use care not to admit air when attaching the milking unit
 - Increases the risk of unit fall-offs
 - Slows milking
 - Increases the chance of mastitis
- Squarely aligned under cow
 - Consistent milk out of all four quarters
Over- Milking

- When unit stays on the cow when she is ‘finished’ milking
- Causes of Over milking:
 - Cow Stress Pre-milking
 - Improper Prepping Procedure
 - People Knowledge of When to Remove Milking Unit
 - Detacher Settings – too dry!
 - Old school – Pulling Down on Units at End of Milking
- Result of Over milking – Damaged Teat Ends

Strip Yield Test

Evaluation of:
- Completeness of Milking
- Milking Procedures
- Detacher Settings
- Unit Handling by people

In general, ‘Wet’ Milking is preferred over ‘Dry’ Milking due to impact on teat health – most important w-3X milking; Essential for mastitis control!

- Check volume of milk in quarter immediately after unit comes off
 - Goal: 2 ounces per teat
Post Milking Teat Dip

- To provide protection between milkings
 - Leave film on teat for 'period' of time post-milking until teat sphincter closes
- Removes milk residue from teat
 - Aids in reduced spread of contagious mastitis
- Teat dips should be selected for emollient and conditioning properties in winter. Barrier properties in summer and wet weather
- Spray vs. Dipper

Use of Nitrile Gloves

- Very important to reduce spread of pathogens
 - Reduce transfer from infected to non-infected cows
 - Change gloves or disinfect/dry gloves after handling mastitis cows
 - Keep clean gloves in enclosed container till use
How to assess teat end damage?

- Teat end scoring used to assess the effects of:
 - Milking management
 - Milking equipment
 - Environment

<table>
<thead>
<tr>
<th>Score</th>
<th>Description</th>
<th>Illustration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Score 1 (N)</td>
<td>No Ring. The teat-end is smooth with a small, even orifice. This is a typical status for many teats soon after the start of lactation.</td>
<td></td>
</tr>
<tr>
<td>Score 2 (S)</td>
<td>Smooth or Slightly Rough Ring. A raised ring encircles the teat orifice. The surface of the ring is smooth or it may feel slightly rough but no fragments of old keratin are evident.</td>
<td></td>
</tr>
<tr>
<td>Score 3 (R)</td>
<td>Rough Ring. A raised, roughened ring with isolated fragments of old keratin extending a short distance from the teat orifice.</td>
<td></td>
</tr>
<tr>
<td>Score 4 (VR)</td>
<td>Very Rough Ring. A raised ring with rough fragments of old keratin extending out from the teat orifice. The rim of the ring is rough and may be cracked, often giving the teat-end a “flowered” appearance.</td>
<td></td>
</tr>
<tr>
<td>Score 5</td>
<td>Open Lesions or Scabs.</td>
<td></td>
</tr>
</tbody>
</table>
Causes of longer-term effects

- Hyperkeratosis
 - Udder prep
 - Teat end shape/size
 - Production level
 - Overmilking
- Check ATO’s
- Machine on time
- Amount of unit-on time when flow is < 1 kg/min
 - Genetic predisposition
 - Slow milking and high producing cows
 - High vacuum

Why do we care about our SCC?

- Product Quality!!!!!
- Injury to secretory cells reduces synthesis of lactose, proteins and fats
- Increased permeability of cells allow leakage of blood components into milk
- Reduced shelf life!!
Clinical vs. Subclinical

- What is the difference?
 - Clinical mastitis is characterized by visible abnormalities in the milk or the udder.
 - The most obvious abnormalities in the milk are flakes, clots and a watery appearance
 - Subclinical mastitis is inflammation of the mammary gland that does not create visible changes in the milk or the udder.
 - Although the milk appears normal, subclinically infected cows will produce less milk, and the quality of the milk will be reduced

Subclinical Mastitis

- Almost any pathogen can cause mastitis
- Host adapts to the bacteria
- Most cases are Gram Positive Bacteria
- **CAUSES CHRONIC COWS!!!**
- Must have an individual cow SCC test to find.
 - DHIA
 - CMT
California Mastitis Test (CMT)

- Cow side test for SCC
- Should be used on all fresh cows
- Helps decide which quarter should be cultured or treated on subclinical cows

<table>
<thead>
<tr>
<th>CMT Score</th>
<th>Somatic Cell Range</th>
<th>Gelling</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>0 to 200,000</td>
<td>None</td>
</tr>
<tr>
<td>Trace</td>
<td>200,000 to 400,000</td>
<td>Very Mild</td>
</tr>
<tr>
<td>1</td>
<td>400,000 to 1,200,000</td>
<td>Mild</td>
</tr>
<tr>
<td>2</td>
<td>1,200,000 to 5,000,000</td>
<td>Moderate</td>
</tr>
<tr>
<td>3</td>
<td>Over 5,000,000</td>
<td>Heavy, almost solidified</td>
</tr>
</tbody>
</table>

Clinical Mastitis

- Clinical mastitis can be mild, moderate or severe.
- Easy to detect
- Easy to treat if caught early
- Pre-stripping is important in detection
How do herds achieve BTSCC <200,000?

- Goals for SCC
 - 80% of herd with SCC <100,000
 - <5% of cows develop new infection/month
- Cows with SCC >200,000 have 1 or more quarters with subclinical mastitis
 - Heifers should be <100,000
- Low SCC results for cumulative effect
 - Adopting BEST MILKING PRACTICES
- Low SCC herds make more MONEY

Contagious vs. Environmental

S. Aureus
- Reservoir is Udder
- Exposure is often during milking
- Can almost be completely eradicated

Env. Streps

Coliforms
- Reservoir is Environment
- Exposure is often BETWEEN milking
- Cannot be eradicated
Contagious Mastitis

- Consistently High BTSCC
- Greatest BTSCC is usually caused by the presence of cows infected with
 - Staph Aureus, Strep Ag., Mycoplasma Bovis
- Individual quarter cultures will help to determine a treatment protocol.

Key Mastitis Control Practices

- Effective Teat Dipping
 - 97% of farms dip, but may not do effectively (POST)
- Dry cow therapy of ALL quarters of ALL cows
 - Treats subclinical mastitis present at dry off
 - 70% of all cases can be cured during the dry period
 - Not necessary if you have a routinely LOW herd SCC
 - Selective dry treatment
- Appropriate treatments of clinical cases
 - Record all cases
 - Monitor outcomes
- Culling chronically infected cows
- Regular milking machine maintenance
Treatment of Subclinical Mastitis

• Its almost NEVER cost effective to solve subclinical mastitis problems through treatment during lactation
• WHY?
 o These animals are typically chronic
 • Lower chance of cure
 • Waste of antibiotics
• Except for Streptococcus Ag.

Options for Handling Chronic Mastitis

Treat, Segregate, Dry off cow, Dry off Quarter or Cull
Strategies to Reduce SCC

- Perform Bulk Tank Cultures to look for:
 - Staph aureus
 - Strep ag.
 - Mycoplasma
- Review monthly Individual cow SCC
 - ID all cows >200,000
 - ID Chronic Cows
- Culture ¼ samples obtained from CMP + quarters of cows > 200K
- Review clinical mastitis records
 - ID Chronic Cows
- Make a Milk Quality Plan based on the data found

Milk Quality Plan

- ALWAYS more cost effective to prevent than to treat
- The development of a Chronic cow is an indication of failure
 1. Prevention
 2. Detection
 3. Treatment
Solving Mastitis Problems

- Technically Easy
 - KEEP BACTERIA AWAY FROM TEAT
- Find Infected Cows
 - Decide what to do with them
 - Treat them or Eat them
- Determine WHY they were infected
 - What is the source of bacteria
 - Other cows or environment?????
- Decide how to stop new infections
 - What management changes need to occur??

Questions?