Abstract

Drug treatment provokes a variety of responses in patients – some are able to respond effectively to the treatment while others aren’t. The study of patient responses to medications is called pharmacogenetics. Pharmacogenetics focuses on the inherited genetic differences that affect the drug metabolic pathway. This explains how and why patients respond differently to drugs. Adverse drug reactions are the results of how the patient responds negatively to the treatment. The purpose of this literature review is to understand the role of pharmacogenetics in understanding adverse drug reactions.
The effects of pharmacogenetics on adverse drug reactions

Jennifer Ramon

i. Introduction

Today’s medicine is based on several diagnostic judgments. These diagnoses involve physicians observing the patient’s signs and symptoms as well as listening to his or her story in order to arrive at an appropriate diagnosis. After making a diagnosis and administering appropriate medications, it was found that some patients are able to respond positively to the prescribed drug treatment, whereas others aren’t able to respond as expected. Reasons for not responding as expected are due to diseases being caused by a variety of things, such as bacteria or viruses, which may lead the patient to require different drug treatments for a therapeutic effect. Another reason may be that not all patients respond the same way to the drug treatment. Different responses to drug treatment likely results from inherited genetic differences in drug metabolic pathways, affecting the patients’ reactions to treatment. This study is called pharmacogenetics.

Although the field of pharmacogenetics is quite new, the topic is important to be aware of due to differences in patient responses to medicine; the responses to medications can range from responding positively to treatment whereas others aren’t effectively responding. Those who don’t respond effectively to treatment are called adverse drug reactions.

Adverse drug reactions develop unpleasant reactions in the patient that can further injure him or her. Such reactions can range from nausea, blurry vision, and drowsiness to being fatal at some doses. One study showed that adverse drug reactions resulted from

genetic variants of other drug-metabolizing enzymes2. Furthermore, several other studies suggest that genetic polymorphisms, mutant genes, could explain why a small proportion of the population poses a high risk of drug toxicity3,4.

It was found that adverse drug reactions are classified into six groups: dose-related, non-dose related, dose-related and time-related, time-related, withdrawal, and failure of therapy5. Dose-related reactions are predictable when the pharmacological properties of the drug are known and are dose-dependent. Non-dose related reactions are unpredictable and doesn’t show any dose-related response. Although they represent a small proportion of the population, they are often serious and account for many drug-related deaths; such reactions aren’t observed in animal testing. Time-related reactions deals with how much and how long will the patient rely on drug treatment in order to get better. The last classifications are withdrawal and failure of therapy. Withdrawal is when the patient is already dependent on the drug and suffers from the side effects when he or she is taken off from the drug. Failure of therapy deals with the patient not responding effectively to such treatment. This last group may also lead to drug-related deaths as the patient’s health hasn’t improved from the treatment5. Timing, illness, medical observations and lab results can all contribute to a suspected drug adverse reaction6.

According to a study done by Chyka (2000), death rates, gender, age, and drug categories associated with adverse reactions were analyzed. In 1995, it was found that 206 patients’ deaths were due to adverse drug reactions in the United States. Furthermore, the majority of deaths were among patients’ 60 years or older, and the gender ratio was equal\(^7\).

Based on all prior information given, there appears to be a relationship between pharmacogenetics and adverse drug reactions. The relationship between the two variables is genetic susceptibility\(^8\). One study showed that genetic factors could determine susceptibility to dose-dependent and dose-independent adverse drug reactions. Susceptible determinants include pharmacokinetic and pharmacodynamics factors\(^9\).

The importance of pharmacogenetics has opened up a new field in medicine. The variability of patients’ responses to drug efficacy and safety will change the practice and economics of medicine. Tests that are specific to certain gene-causing diseases can easily help determine the onset of the disease in the individual. For example, those who are susceptible to late-onset Alzheimer’s disease are likely to be carriers of the susceptibility gene, ApoE, on chromosome 19q13 or in the gene locus on chromosome 12q\(^10\). Although there may be current ethical implications for genetic testing, it is important to note that

pharmacogenetics can be applied to drug development and can help improve adverse drug reactions by decreasing drug-related deaths.

ii. Methods

The research of this paper was completed with the help of several research engines that includes Google Scholar, PubMed and the Penn State LionSearch. Terms that were used in this paper were ‘pharmacogenetics’, ‘adverse drug reactions’, ‘drug treatment’ and ‘genetics’.

Requirements of papers to be used in this systematic review were that they must have full text papers available through the PSU library subscription. Primary research articles must also include the topic of pharmacogenetics and adverse drug reactions, must have a research design that involves cohort studies for risk factors in adverse drug reactions and randomized clinical trials for intervention studies. Furthermore, articles must have studies on cytochrome P450 enzymes and its role in adverse drug reactions, preferably in how the drug affects patient responses. Research subjects are to be focused on adults of 21 years or older. Lastly, articles must be published within the past 30 years.

iii. Results

Author: U. Meyer

Article: “Pharmacogenetics and adverse drug reactions”

Summary: The purpose of this retrospective cohort study was to assess the etiology and frequency of adverse drug reactions. Although adverse drug reactions affects a small number of the population, at least 6-7% of patients in U.S. hospitals have suffered from serious adverse reactions and 0.32% have fatal reactions (causing at least 100,000 deaths a year in America). To find out the mechanism behind these reactions, researchers
performed analytical methods to find out which CYP450 enzyme plays a role in adverse reactions. Compared to the CYP450 family, further investigations led researchers to believe that CYP2D6 is the enzyme that causes the most severe therapeutic failure. Researchers found that the enzyme would interfere with metabolizing enzymes, drug receptors and several other drug transport systems, all of which causes severe therapeutic issues, such as toxicity and tardive dyskinesia\(^2\).

Author: A. D. Roses

Article: “Pharmacogenetics and future drug development and delivery”

Summary: The main objective of this prospective cohort study was to foresee the role of pharmacogenetics in drug development and delivery. It carried out a study in 829 middle-aged men who were homozygous carriers of Gly16/Gly16 and Arg16/Arg16, and also had moderate to severe asthma. Results show that it was found that homozygous Gly16/Gly16 carriers were more prone to be desensitized to the medication than Arg16/Arg16, leaving Gly16/Gly16 carriers to not achieve a therapeutic affect from drug treatment\(^4\).

Author: M. Ingelman-Sundberg et al.

Article: “Polymorphic human cytochrome P450 enzymes: An opportunity for individualized drug treatment”

Summary: This clinical trial examined the relationship between CYP450 enzymes and personalized drug treatment. There were 450 subjects with neuropathy disorder in the trial and it was predicted that carriers of poor genetic variation in CYP2C9, CYP2C19 and CYP2D6 resulted in therapeutic failure and adverse effects of the drug. Furthermore, it was found that those who carried the CYP2D6 gene, in particular, were more likely to
be affected with adverse reactions; this gene copy was mostly observed in African (Ethiopian) and Middle Eastern (Saudi Arabian) descent.

Author: Park et al.

Article: “Bioactivation and bioinactivation of drugs and drug metabolites: Relevance to adverse drug reactions”

Summary: The objective of this retrospective cohort study was to investigate whether or not it would be successful to directly measure chemically reactive metabolites and to confirm its responsibility in adverse drug reactions. It’s primary goals were to achieve full chemical analysis (quantitative and qualitative) of drug and drug metabolites, to use human cells and tissues for gene variation in enzyme activity and lastly, to use peripheral blood cells as targets for drug toxicity. Results show that direct chemical measurement isn’t always possible, even when using in vitro experiments.

Author: Hoffmeyer et al.

Article: “Functional polymorphisms of the human multidrug-resistance gene: Multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo”

Summary: This cohort study investigated whether the multidrug-resistance (MDR)-1 gene is associated with intestinal MDR-1 expression and the uptake of P-glycoprotein (PGP) substrates through oral administration. It was found that homozygote carriers for MDR-1 had lower duodenal MDR-1 expression and high digoxin plasma levels. This polymorphism indicates that absorption and tissue concentrations of MDR-1 are likely to be affected by drug intake.

Author: M. Pirmohamed and B. K. Park
Article: “Genetic susceptibility to adverse drug reactions”

Summary: This retrospective cohort study focused on genetic factors that can determine the influence of adverse reactions in individuals. Determinants of susceptibility include pharmacokinetic factors such as individual’s response to the drug and pharmacodynamics factors such as genetic variants in drug targets. Results show that gene polymorphisms in CYP450 enzymes contributed to adverse reactions; CYP2D6, CYP2C19, CYP2C9 AND CYP1A2 produced lethal reactions, respectively. Furthermore, these reactions were likely to increase with environmental factors such as smoking, diet and alcohol.

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Design</th>
<th>Population</th>
<th>Sample Size</th>
<th>Predictor</th>
<th>Outcome</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meyer</td>
<td>2000</td>
<td>Retrospective</td>
<td>Caucasians, Asians and Black Africans who have had suffered from non-fatal adverse reactions in the past</td>
<td>206</td>
<td>Poor metabolites</td>
<td>Therapeutic failure, adverse effects</td>
<td>Poor genetic variation in CYP2D6 led to people suffering from adverse reactions such as tardive dyskinesia, drug dependence and toxicity</td>
</tr>
<tr>
<td>Roses</td>
<td>2000</td>
<td>Prospective</td>
<td>Middle-aged men who are carriers of common disease susceptibility and carriers of single-gene mutations and rare diseases</td>
<td>829</td>
<td>Formoterol</td>
<td>Moderate to severe asthma</td>
<td>Homozygous carriers of Gly16/Gly16 were prone to being unaffected by the medications than Arg16/Arg16 carriers</td>
</tr>
<tr>
<td>Park</td>
<td>1994</td>
<td>Retrospective</td>
<td>Adults who were hospitalized for adverse reactions</td>
<td>348</td>
<td>Direct chemical measurement – in vitro</td>
<td>Effectiveness of drug metabolites</td>
<td>Direct chemical measurement isn’t always achieved in bioactivation of drug metabolites.</td>
</tr>
<tr>
<td>Hoffmeyer</td>
<td>1999</td>
<td>Cohort study</td>
<td>Volunteers whose expression and function in the</td>
<td>21</td>
<td>MDR-1 gene</td>
<td>Intestinal MDR-1 expression and</td>
<td>Homozygote carriers were likely to carry</td>
</tr>
</tbody>
</table>
iv. Discussion

The main findings of the results prove to be corresponding with each other in that CYP450 enzymes play a vital role in drug adverse reactions. Compared to other CYP450 enzymes, two of the three articles confirmed that poor genetic variations in CYP2D6 provides the most serious adverse drug reactions in patients. These adverse reactions include, but not limit to, tardive dyskinesia, poor metabolism of drugs which can lead to toxicity and become fatal and tachycardia². Among the three studies, one study didn’t look into what enzymes caused the adverse reactions, but rather, focused on a population
that was diagnosed with a certain illness and focused on the genes that were associated in helping cause adverse reactions to a specific medication⁴.

The results agree with other review articles on this topic that genetic susceptibility does play a role in the relationship between pharmacogenetics and adverse drug reactions. For example, it was found that people of Middle Eastern (Saudi Arabians) or African (Ethiopian) descent were likely to have a high gene expression of CYP2D6 which increases their susceptibility to adverse reactions³².

Reviewing the field of pharmacogenetics and its effect on adverse drug reactions can impact the medical and scientific research field immensely. This will not only lead to further progressing the idea of personalized medicine, but will also lead to lower rates of drug-related deaths, drug dependence and other drug-related complications that may impact an individual’s health in a harmful manner.

Unfortunately, there are implications that may prevent pharmacogenetics from progressing in its field. For example, pharmacogenetics requires obtaining samples from an individual in order to gain access and interpret his or her genotype and phenotype. Depending on how to gain access to these results, some patients aren’t very trusting if results are handed over the internet or over the counter. Another concern is in regards to the confidentiality of storage and how genetic information will be used for research. Lastly, it is questionable as to whether or not patients would have control over being tested for certain¹¹. To acquire access to one’s own personal results, it would be beneficial to provide some kind of official documentation to confirm the patient’s identity. Results should also be stored in a confidential and secured room and should not

be handed out to anyone else but the patient and the medical team, unless judicial courts grant access to such documents of an individual.